Documentation Verification Report

SplitCoequalizer

πŸ“ Source: Mathlib/CategoryTheory/Limits/Shapes/SplitCoequalizer.lean

Statistics

MetricCount
DefinitionsIsSplitPair, HasSplitCoequalizer, coequalizerOfSplit, coequalizerΟ€, isSplitCoequalizer, IsSplitCoequalizer, asCofork, isCoequalizer, leftSection, map, rightSection, instInhabitedIsSplitCoequalizerId
12
Theoremssplittable, asCofork_pt, asCofork_Ο€, condition, condition_assoc, leftSection_bottom, leftSection_bottom_assoc, leftSection_top, leftSection_top_assoc, map_leftSection, map_rightSection, rightSection_Ο€, rightSection_Ο€_assoc, hasCoequalizer_of_hasSplitCoequalizer, map_is_split_pair
15
Total27

CategoryTheory

Definitions

NameCategoryTheorems
HasSplitCoequalizer πŸ“–CompData
1 mathmath: map_is_split_pair
IsSplitCoequalizer πŸ“–CompData
1 mathmath: HasSplitCoequalizer.splittable
instInhabitedIsSplitCoequalizerId πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
map_is_split_pair πŸ“–mathematicalβ€”HasSplitCoequalizer
Functor.obj
Functor.map
β€”β€”

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsSplitPair πŸ“–MathDef
1 mathmath: CategoryTheory.Monad.MonadicityInternal.main_pair_G_split

CategoryTheory.HasSplitCoequalizer

Definitions

NameCategoryTheorems
coequalizerOfSplit πŸ“–CompOpβ€”
coequalizerΟ€ πŸ“–CompOpβ€”
isSplitCoequalizer πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
splittable πŸ“–mathematicalβ€”CategoryTheory.IsSplitCoequalizerβ€”β€”

CategoryTheory.IsSplitCoequalizer

Definitions

NameCategoryTheorems
asCofork πŸ“–CompOp
2 mathmath: asCofork_pt, asCofork_Ο€
isCoequalizer πŸ“–CompOpβ€”
leftSection πŸ“–CompOp
5 mathmath: leftSection_bottom_assoc, leftSection_top, leftSection_bottom, leftSection_top_assoc, map_leftSection
map πŸ“–CompOp
2 mathmath: map_leftSection, map_rightSection
rightSection πŸ“–CompOp
5 mathmath: leftSection_top, leftSection_top_assoc, rightSection_Ο€, rightSection_Ο€_assoc, map_rightSection

Theorems

NameKindAssumesProvesValidatesDepends On
asCofork_pt πŸ“–mathematicalβ€”CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
asCofork
β€”β€”
asCofork_Ο€ πŸ“–mathematicalβ€”CategoryTheory.Limits.Cofork.Ο€
asCofork
β€”β€”
condition πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
condition_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
leftSection_bottom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftSection
CategoryTheory.CategoryStruct.id
β€”β€”
leftSection_bottom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftSection
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
leftSection_bottom
leftSection_top πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftSection
rightSection
β€”β€”
leftSection_top_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftSection
rightSection
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftSection_top
map_leftSection πŸ“–mathematicalβ€”leftSection
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
β€”β€”
map_rightSection πŸ“–mathematicalβ€”rightSection
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
β€”β€”
rightSection_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightSection
CategoryTheory.CategoryStruct.id
β€”β€”
rightSection_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightSection
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
rightSection_Ο€

CategoryTheory.Limits

Theorems

NameKindAssumesProvesValidatesDepends On
hasCoequalizer_of_hasSplitCoequalizer πŸ“–mathematicalβ€”HasCoequalizerβ€”β€”

---

← Back to Index