Documentation Verification Report

SplitEqualizer

๐Ÿ“ Source: Mathlib/CategoryTheory/Limits/Shapes/SplitEqualizer.lean

Statistics

MetricCount
DefinitionsIsCosplitPair, HasSplitEqualizer, equalizerOfSplit, equalizerฮน, isSplitEqualizer, IsSplitEqualizer, asFork, isEqualizer, leftRetraction, map, rightRetraction, instInhabitedIsSplitEqualizerId
12
Theoremssplittable, asFork_pt, asFork_ฮน, bottom_rightRetraction, bottom_rightRetraction_assoc, condition, condition_assoc, map_leftRetraction, map_rightRetraction, top_rightRetraction, top_rightRetraction_assoc, ฮน_leftRetraction, ฮน_leftRetraction_assoc, hasEqualizer_of_hasSplitEqualizer, map_is_cosplit_pair
15
Total27

CategoryTheory

Definitions

NameCategoryTheorems
HasSplitEqualizer ๐Ÿ“–CompData
1 mathmath: map_is_cosplit_pair
IsSplitEqualizer ๐Ÿ“–CompData
1 mathmath: HasSplitEqualizer.splittable
instInhabitedIsSplitEqualizerId ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
map_is_cosplit_pair ๐Ÿ“–mathematicalโ€”HasSplitEqualizer
Functor.obj
Functor.map
โ€”โ€”

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsCosplitPair ๐Ÿ“–MathDef
1 mathmath: CategoryTheory.Comonad.ComonadicityInternal.main_pair_F_cosplit

CategoryTheory.HasSplitEqualizer

Definitions

NameCategoryTheorems
equalizerOfSplit ๐Ÿ“–CompOpโ€”
equalizerฮน ๐Ÿ“–CompOpโ€”
isSplitEqualizer ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
splittable ๐Ÿ“–mathematicalโ€”CategoryTheory.IsSplitEqualizerโ€”โ€”

CategoryTheory.IsSplitEqualizer

Definitions

NameCategoryTheorems
asFork ๐Ÿ“–CompOp
2 mathmath: asFork_pt, asFork_ฮน
isEqualizer ๐Ÿ“–CompOpโ€”
leftRetraction ๐Ÿ“–CompOp
5 mathmath: ฮน_leftRetraction, top_rightRetraction, top_rightRetraction_assoc, map_leftRetraction, ฮน_leftRetraction_assoc
map ๐Ÿ“–CompOp
2 mathmath: map_rightRetraction, map_leftRetraction
rightRetraction ๐Ÿ“–CompOp
5 mathmath: bottom_rightRetraction, bottom_rightRetraction_assoc, top_rightRetraction, top_rightRetraction_assoc, map_rightRetraction

Theorems

NameKindAssumesProvesValidatesDepends On
asFork_pt ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
asFork
โ€”โ€”
asFork_ฮน ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.Fork.ฮน
asFork
โ€”โ€”
bottom_rightRetraction ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightRetraction
CategoryTheory.CategoryStruct.id
โ€”โ€”
bottom_rightRetraction_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightRetraction
โ€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
bottom_rightRetraction
condition ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
โ€”โ€”
condition_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
map_leftRetraction ๐Ÿ“–mathematicalโ€”leftRetraction
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
โ€”โ€”
map_rightRetraction ๐Ÿ“–mathematicalโ€”rightRetraction
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
โ€”โ€”
top_rightRetraction ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightRetraction
leftRetraction
โ€”โ€”
top_rightRetraction_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightRetraction
leftRetraction
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
top_rightRetraction
ฮน_leftRetraction ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftRetraction
CategoryTheory.CategoryStruct.id
โ€”โ€”
ฮน_leftRetraction_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftRetraction
โ€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ฮน_leftRetraction

CategoryTheory.Limits

Theorems

NameKindAssumesProvesValidatesDepends On
hasEqualizer_of_hasSplitEqualizer ๐Ÿ“–mathematicalโ€”HasEqualizerโ€”โ€”

---

โ† Back to Index