Documentation Verification Report

StrictInitial

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/StrictInitial.lean

Statistics

MetricCount
DefinitionsHasStrictInitialObjects, HasStrictTerminalObjects, ofStrict, ofStrict, initialMul, isInitialMul, mulInitial, mulIsInitial
8
Theoremsout, out, isIso_to, strict_hom_ext, subsingleton_to, isIso_from, strict_hom_ext, subsingleton_to, hasStrictInitialObjects_of_initial_is_strict, hasStrictTerminalObjects_of_terminal_is_strict, strict_hom_ext, strict_hom_ext_iff, subsingleton_to, initialMul_hom, initialMul_inv, initial_isIso_to, initial_mono_of_strict_initial_objects, isInitialMul_hom, isInitialMul_inv, limit_π_isIso_of_is_strict_terminal, mulInitial_hom, mulInitial_inv, mulIsInitial_hom, mulIsInitial_inv, strict_hom_ext, strict_hom_ext_iff, subsingleton_to, terminal_isIso_from
28
Total36

CategoryTheory.Limits

Definitions

NameCategoryTheorems
HasStrictInitialObjects 📖CompData
4 mathmath: CategoryTheory.hasStrictInitial_of_isUniversal, hasStrictInitialObjects_of_initial_is_strict, AlgebraicGeometry.instHasStrictInitialObjectsScheme, CategoryTheory.hasStrictInitialObjects_of_finitaryPreExtensive
HasStrictTerminalObjects 📖CompData
2 mathmath: CommRingCat.commRingCat_hasStrictTerminalObjects, hasStrictTerminalObjects_of_terminal_is_strict
initialMul 📖CompOp
2 mathmath: initialMul_inv, initialMul_hom
isInitialMul 📖CompOp
2 mathmath: isInitialMul_hom, isInitialMul_inv
mulInitial 📖CompOp
2 mathmath: mulInitial_inv, mulInitial_hom
mulIsInitial 📖CompOp
2 mathmath: mulIsInitial_hom, mulIsInitial_inv

Theorems

NameKindAssumesProvesValidatesDepends On
hasStrictInitialObjects_of_initial_is_strict 📖mathematicalCategoryTheory.IsIso
initial
HasStrictInitialObjectsCategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id
IsInitial.hom_ext
hasStrictTerminalObjects_of_terminal_is_strict 📖mathematicalCategoryTheory.IsIsoHasStrictTerminalObjectsIsTerminal.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
initialMul_hom 📖mathematicalCategoryTheory.Iso.hom
prod
initial
initialMul
prod.fst
initialMul_inv 📖mathematicalCategoryTheory.Iso.inv
prod
initial
initialMul
initial.to
Unique.instSubsingleton
initial_isIso_to 📖mathematicalCategoryTheory.IsIso
initial
IsInitial.isIso_to
initial_mono_of_strict_initial_objects 📖mathematicalInitialMonoClassIsInitial.strict_hom_ext
isInitialMul_hom 📖mathematicalCategoryTheory.Iso.hom
prod
isInitialMul
prod.fst
isInitialMul_inv 📖mathematicalCategoryTheory.Iso.inv
prod
isInitialMul
IsInitial.to
IsInitial.hom_ext
limit_π_isIso_of_is_strict_terminal 📖mathematicalCategoryTheory.IsIso
limit
CategoryTheory.Functor.obj
limit.π
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id
IsTerminal.isIso_from
CategoryTheory.IsIso.comp_inv_eq
IsTerminal.hom_ext
limit.hom_ext
CategoryTheory.Category.assoc
limit.lift_π
CategoryTheory.Category.id_comp
CategoryTheory.eqToHom_refl
mulInitial_hom 📖mathematicalCategoryTheory.Iso.hom
prod
initial
mulInitial
prod.snd
mulInitial_inv 📖mathematicalCategoryTheory.Iso.inv
prod
initial
mulInitial
initial.to
Unique.instSubsingleton
mulIsInitial_hom 📖mathematicalCategoryTheory.Iso.hom
prod
mulIsInitial
prod.snd
mulIsInitial_inv 📖mathematicalCategoryTheory.Iso.inv
prod
mulIsInitial
IsInitial.to
IsInitial.hom_ext
terminal_isIso_from 📖mathematicalCategoryTheory.IsIso
terminal
IsTerminal.isIso_from

CategoryTheory.Limits.HasStrictInitialObjects

Theorems

NameKindAssumesProvesValidatesDepends On
out 📖mathematicalCategoryTheory.IsIso

CategoryTheory.Limits.HasStrictTerminalObjects

Theorems

NameKindAssumesProvesValidatesDepends On
out 📖mathematicalCategoryTheory.IsIso

CategoryTheory.Limits.IsInitial

Definitions

NameCategoryTheorems
ofStrict 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_to 📖mathematicalCategoryTheory.IsIsoCategoryTheory.Limits.HasStrictInitialObjects.out
strict_hom_ext 📖CategoryTheory.eq_of_inv_eq_inv
isIso_to
hom_ext
subsingleton_to 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
strict_hom_ext

CategoryTheory.Limits.IsTerminal

Definitions

NameCategoryTheorems
ofStrict 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_from 📖mathematicalCategoryTheory.IsIsoCategoryTheory.Limits.HasStrictTerminalObjects.out
strict_hom_ext 📖CategoryTheory.eq_of_inv_eq_inv
isIso_from
hom_ext
subsingleton_to 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
strict_hom_ext

CategoryTheory.Limits.initial

Theorems

NameKindAssumesProvesValidatesDepends On
strict_hom_ext 📖CategoryTheory.Limits.IsInitial.strict_hom_ext
strict_hom_ext_iff 📖strict_hom_ext
subsingleton_to 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.initial
CategoryTheory.Limits.IsInitial.subsingleton_to

CategoryTheory.Limits.terminal

Theorems

NameKindAssumesProvesValidatesDepends On
strict_hom_ext 📖CategoryTheory.Limits.IsTerminal.strict_hom_ext
strict_hom_ext_iff 📖strict_hom_ext
subsingleton_to 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.terminal
CategoryTheory.Limits.IsTerminal.subsingleton_to

---

← Back to Index