Documentation Verification Report

StrongEpi

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/StrongEpi.lean

Statistics

MetricCount
DefinitionsStrongEpi, StrongEpiCategory, StrongMono, StrongMonoCategory
4
Theoremsepi, iff_of_arrow_iso, llp, mk', of_arrow_iso, strongEpi_of_epi, iff_of_arrow_iso, mk', mono, of_arrow_iso, rlp, strongMono_of_mono, balanced_of_strongEpiCategory, balanced_of_strongMonoCategory, epi_of_strongEpi, isIso_of_epi_of_strongMono, isIso_of_mono_of_strongEpi, mono_of_strongMono, strongEpi_comp, strongEpi_of_epi, strongEpi_of_isIso, strongEpi_of_strongEpi, strongMono_comp, strongMono_of_isIso, strongMono_of_mono, strongMono_of_strongMono
26
Total30

CategoryTheory

Definitions

NameCategoryTheorems
StrongEpi 📖CompData
18 mathmath: strongEpi_of_epi, strongEpi_of_effectiveEpi, Limits.strongEpi_of_strongEpiMonoFactorisation, StrongEpi.mk', Functor.strongEpi_map_iff_strongEpi_of_isEquivalence, StrongEpi.of_arrow_iso, Limits.StrongEpiMonoFactorisation.e_strong_epi, Limits.HasStrongEpiImages.strong_factorThruImage, Adjunction.strongEpi_map_of_strongEpi, strongEpi_of_strongEpi, extremalEpi_iff_strongEpi_of_hasPullbacks, StrongEpi.iff_of_arrow_iso, strongEpi_comp, Limits.strongEpi_factorThruImage_of_strongEpiMonoFactorisation, strongEpi_of_isIso, StrongEpiCategory.strongEpi_of_epi, Adjunction.strongEpi_map_of_isEquivalence, strongEpi_of_regularEpi
StrongEpiCategory 📖CompData
1 mathmath: strongEpiCategory_of_regularEpiCategory
StrongMono 📖CompData
10 mathmath: StrongMono.of_arrow_iso, strongMono_comp, RegularMono.strongMono, strongMono_of_strongMono, strongMono_of_mono, StrongMono.iff_of_arrow_iso, strongMono_of_isIso, StrongMono.mk', StrongMonoCategory.strongMono_of_mono, instStrongMonoOfIsRegularMono
StrongMonoCategory 📖CompData
1 mathmath: strongMonoCategory_of_regularMonoCategory

Theorems

NameKindAssumesProvesValidatesDepends On
balanced_of_strongEpiCategory 📖mathematicalBalancedisIso_of_mono_of_strongEpi
strongEpi_of_epi
balanced_of_strongMonoCategory 📖mathematicalBalancedisIso_of_epi_of_strongMono
strongMono_of_mono
epi_of_strongEpi 📖mathematicalEpiStrongEpi.epi
isIso_of_epi_of_strongMono 📖mathematicalIsIsoCategory.id_comp
Category.comp_id
sq_hasLift_of_hasLiftingProperty
StrongMono.rlp
CommSq.fac_left
CommSq.fac_right
isIso_of_mono_of_strongEpi 📖mathematicalIsIsoCategory.id_comp
Category.comp_id
sq_hasLift_of_hasLiftingProperty
StrongEpi.llp
CommSq.fac_left
CommSq.fac_right
mono_of_strongMono 📖mathematicalMonoStrongMono.mono
strongEpi_comp 📖mathematicalStrongEpi
CategoryStruct.comp
Category.toCategoryStruct
epi_comp
epi_of_strongEpi
HasLiftingProperty.of_comp_left
StrongEpi.llp
strongEpi_of_epi 📖mathematicalStrongEpiStrongEpiCategory.strongEpi_of_epi
strongEpi_of_isIso 📖mathematicalStrongEpiIsSplitEpi.epi
IsSplitEpi.of_iso
HasLiftingProperty.of_left_iso
strongEpi_of_strongEpi 📖mathematicalStrongEpiepi_of_epi
epi_of_strongEpi
Category.assoc
CommSq.w
CommSq.HasLift.mk'
sq_hasLift_of_hasLiftingProperty
StrongEpi.llp
cancel_mono
CommSq.fac_right
strongMono_comp 📖mathematicalStrongMono
CategoryStruct.comp
Category.toCategoryStruct
mono_comp
mono_of_strongMono
HasLiftingProperty.of_comp_right
StrongMono.rlp
strongMono_of_isIso 📖mathematicalStrongMonoIsSplitMono.mono
IsSplitMono.of_iso
HasLiftingProperty.of_right_iso
strongMono_of_mono 📖mathematicalStrongMonoStrongMonoCategory.strongMono_of_mono
strongMono_of_strongMono 📖mathematicalStrongMonomono_of_mono
mono_of_strongMono
Category.assoc
eq_whisker
CommSq.w
CommSq.HasLift.mk'
sq_hasLift_of_hasLiftingProperty
StrongMono.rlp
CommSq.fac_left
cancel_epi
CommSq.fac_left_assoc

CategoryTheory.StrongEpi

Theorems

NameKindAssumesProvesValidatesDepends On
epi 📖mathematicalCategoryTheory.Epi
iff_of_arrow_iso 📖mathematicalCategoryTheory.StrongEpiof_arrow_iso
llp 📖mathematicalCategoryTheory.HasLiftingProperty
mk' 📖mathematicalCategoryTheory.CommSq.HasLiftCategoryTheory.StrongEpi
of_arrow_iso 📖mathematicalCategoryTheory.StrongEpiCategoryTheory.Arrow.iso_w'
CategoryTheory.epi_comp
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Arrow.isIso_left
CategoryTheory.Iso.isIso_inv
CategoryTheory.Arrow.epi_right
CategoryTheory.Iso.isIso_hom
CategoryTheory.HasLiftingProperty.of_arrow_iso_left
llp

CategoryTheory.StrongEpiCategory

Theorems

NameKindAssumesProvesValidatesDepends On
strongEpi_of_epi 📖mathematicalCategoryTheory.StrongEpi

CategoryTheory.StrongMono

Theorems

NameKindAssumesProvesValidatesDepends On
iff_of_arrow_iso 📖mathematicalCategoryTheory.StrongMonoof_arrow_iso
mk' 📖mathematicalCategoryTheory.CommSq.HasLiftCategoryTheory.StrongMono
mono 📖mathematicalCategoryTheory.Mono
of_arrow_iso 📖mathematicalCategoryTheory.StrongMonoCategoryTheory.Arrow.iso_w'
CategoryTheory.mono_comp
CategoryTheory.Arrow.mono_left
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Arrow.isIso_right
CategoryTheory.Iso.isIso_hom
CategoryTheory.HasLiftingProperty.of_arrow_iso_right
rlp
rlp 📖mathematicalCategoryTheory.HasLiftingProperty

CategoryTheory.StrongMonoCategory

Theorems

NameKindAssumesProvesValidatesDepends On
strongMono_of_mono 📖mathematicalCategoryTheory.StrongMono

---

← Back to Index