Documentation Verification Report

Terminal

πŸ“ Source: Mathlib/CategoryTheory/Limits/Shapes/Terminal.lean

Statistics

MetricCount
DefinitionsHasInitial, HasTerminal, colimitConstInitial, colimitOfInitial, colimitOfTerminal, initial, to, initialComparison, initialIsInitial, initialIsoIsInitial, limitConstTerminal, limitOfInitial, limitOfTerminal, terminal, from, terminalComparison, terminalIsTerminal, terminalIsoIsTerminal, uniqueFromInitial, uniqueToTerminal, Β«term⊀__Β», Β«termβŠ₯__Β»
22
Theoremsof_initial, of_terminal, hasInitial, hasTerminal, colimitConstInitial_inv, hasColimit_of_domain_hasInitial, hasColimit_of_domain_hasTerminal, hasInitialChangeDiagram, hasInitialChangeUniverse, hasInitial_of_hasTerminal_op, hasInitial_of_unique, hasInitial_op_of_hasTerminal, hasLimit_of_domain_hasInitial, hasLimit_of_domain_hasTerminal, hasTerminalChangeDiagram, hasTerminalChangeUniverse, hasTerminal_of_hasInitial_op, hasTerminal_of_unique, hasTerminal_op_of_hasInitial, hom_ext, hom_ext_iff, isSplitEpi_to, mono_from, to_comp, to_comp_assoc, initialIsoIsInitial_hom, initialIsoIsInitial_inv, instHasColimitObjFunctorConstInitial, instHasLimitObjFunctorConstTerminal, isIso_ΞΉ_initial, isIso_ΞΉ_of_isInitial, isIso_ΞΉ_of_isTerminal, isIso_ΞΉ_terminal, isIso_Ο€_initial, isIso_Ο€_of_isInitial, isIso_Ο€_of_isTerminal, isIso_Ο€_terminal, limitConstTerminal_hom, limitConstTerminal_inv_Ο€, limitConstTerminal_inv_Ο€_assoc, comp_from, comp_from_assoc, hom_ext, hom_ext_iff, isSplitMono_from, terminalIsoIsTerminal_hom, terminalIsoIsTerminal_inv, ΞΉ_colimitConstInitial_hom, ΞΉ_colimitConstInitial_hom_assoc
49
Total71

CategoryTheory.Limits

Definitions

NameCategoryTheorems
HasInitial πŸ“–MathDef
27 mathmath: CategoryTheory.hasInitial_of_equivalence, CategoryTheory.hasInitial_of_weakly_initial_and_hasWideEqualizers, CategoryTheory.Grp.instHasInitial, CategoryTheory.Factorisation.instHasInitial, CategoryTheory.CategoryOfElements.instHasInitialElementsOppositeOfIsRepresentable, AugmentedSimplexCategory.instHasInitial, CategoryTheory.Equivalence.hasInitial_iff, Preorder.instHasInitialOfOrderBot, hasInitial_of_unique, AlgebraicGeometry.instHasInitialScheme, CategoryTheory.Bicategory.HasLeftKanLift.hasInitial, CategoryTheory.WithInitial.instHasInitial, IsInitial.hasInitial, CategoryTheory.isRightAdjoint_iff_hasInitial_structuredArrow, CategoryTheory.CategoryOfElements.instHasInitialElementsOfIsCorepresentable, CategoryTheory.Bicategory.instHasInitialLeftExtensionOfHasLeftKanExtension, hasInitial_of_hasInitial_of_preservesColimit, CategoryTheory.Bicategory.HasLeftKanExtension.hasInitial, CategoryTheory.CommGrp.instHasInitial, hasColimit_iff_hasInitial_cocone, CategoryTheory.Bicategory.instHasInitialLeftLiftOfHasLeftKanLift, CategoryTheory.CommMon.instHasInitial, hasInitial_of_hasTerminal_op, HasZeroObject.hasInitial, CategoryTheory.hasInitial_of_isCoseparating, hasInitial_op_of_hasTerminal, CategoryTheory.Mon.instHasInitial
HasTerminal πŸ“–MathDef
25 mathmath: CategoryTheory.Over.instHasTerminal, hasLimit_iff_hasTerminal_cone, CategoryTheory.Equivalence.hasTerminal_iff, CategoryTheory.MorphismProperty.Over.instHasTerminalTopOfContainsIdentities, SimplexCategory.instHasTerminal, HasZeroObject.hasTerminal, hasTerminal_of_hasInitial_op, CategoryTheory.CostructuredArrow.hasTerminal, CategoryTheory.isLeftAdjoint_iff_hasTerminal_costructuredArrow, CategoryTheory.Cat.instHasTerminal, CategoryTheory.Comon.instHasTerminal, Preorder.instHasTerminalOfOrderTop, CategoryTheory.hasTerminal_of_isSeparating, CategoryTheory.PreGaloisCategory.hasTerminal, hasTerminal_of_unique, hasTerminal_of_hasTerminal_of_preservesLimit, CategoryTheory.Over.over_hasTerminal, FormalCoproduct.instHasTerminal, AlgebraicGeometry.instHasTerminalScheme, CategoryTheory.WithTerminal.instHasTerminal, CategoryTheory.Factorisation.instHasTerminal, hasTerminal_op_of_hasInitial, CategoryTheory.Classifier.SubobjectRepresentableBy.hasTerminal, IsTerminal.hasTerminal, CategoryTheory.hasTerminal_of_equivalence
colimitConstInitial πŸ“–CompOp
3 mathmath: colimitConstInitial_inv, ΞΉ_colimitConstInitial_hom, ΞΉ_colimitConstInitial_hom_assoc
colimitOfInitial πŸ“–CompOpβ€”
colimitOfTerminal πŸ“–CompOpβ€”
initial πŸ“–CompOp
57 mathmath: initialMul_inv, CategoryTheory.Initial.mono_to, CategoryTheory.to_initial_isIso, inl_coprodIsoPushout_hom, initialIsoIsInitial_hom, CategoryTheory.FinitaryExtensive.isPullback_initial_to_binaryCofan, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Functor.initial_const_initial, CategoryTheory.Subobject.bot_eq_initial_to, CategoryTheory.isPullback_of_cofan_isVanKampen, instHasColimitObjFunctorConstInitial, coprod.leftUnitor_hom, inr_coprodIsoPushout_hom_assoc, initialIsoIsInitial_inv, CategoryTheory.WithInitial.starIsoInitial_inv, initial.mono_from, CategoryTheory.MonoOver.bot_left, initial.isSplitEpi_to, CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen, initial.to_comp_assoc, mulInitial_inv, coprod.leftUnitor_inv, isIso_ΞΉ_initial, PreservesInitial.iso_hom, CategoryTheory.FinitaryExtensive.isPullback_initial_to_sigma_ΞΉ, CategoryTheory.monoidalOfHasFiniteCoproducts.rightUnitor_hom, HasZeroObject.zeroIsoInitial_inv, instIsIsoInitialComparison, HomotopicalAlgebra.isCofibrant_iff, colimitConstInitial_inv, coprod.rightUnitor_inv, inr_coprodIsoPushout_hom, CategoryTheory.IsPushout.of_hasBinaryCoproduct', coprod.rightUnitor_hom, CategoryTheory.monoidalOfHasFiniteCoproducts.leftUnitor_hom, initial_isIso_to, initialMul_hom, coprod.triangle, inl_coprodIsoPushout_inv, CategoryTheory.WithInitial.starIsoInitial_hom, CategoryTheory.MonoOver.initialTo_b_eq_zero, ΞΉ_colimitConstInitial_hom, inr_coprodIsoPushout_inv, inl_coprodIsoPushout_hom_assoc, isIso_Ο€_initial, mulInitial_hom, inl_coprodIsoPushout_inv_assoc, CategoryTheory.FinitaryExtensive.isPullback_initial_to, inr_coprodIsoPushout_inv_assoc, AlgebraicGeometry.initial_isEmpty, HasZeroObject.zeroIsoInitial_hom, initial.to_comp, CategoryTheory.BinaryCofan.isPullback_initial_to_of_isVanKampen, initial.subsingleton_to, ΞΉ_colimitConstInitial_hom_assoc, SSet.instFiniteInitial
initialComparison πŸ“–CompOp
2 mathmath: PreservesInitial.iso_hom, instIsIsoInitialComparison
initialIsInitial πŸ“–CompOp
2 mathmath: initialIsoIsInitial_hom, CategoryTheory.WithInitial.starIsoInitial_inv
initialIsoIsInitial πŸ“–CompOp
2 mathmath: initialIsoIsInitial_hom, initialIsoIsInitial_inv
limitConstTerminal πŸ“–CompOp
3 mathmath: limitConstTerminal_inv_Ο€_assoc, limitConstTerminal_hom, limitConstTerminal_inv_Ο€
limitOfInitial πŸ“–CompOpβ€”
limitOfTerminal πŸ“–CompOpβ€”
terminal πŸ“–CompOp
108 mathmath: prod.rightUnitor_hom, isIso_ΞΉ_terminal, terminal.subsingleton_to, skyscraperPresheaf_obj, prodIsoPullback_inv_fst, CategoryTheory.Dial.tensorUnit_src, CategoryTheory.Dial.rightUnitor_hom_f, CategoryTheory.Dial.rightUnitorImpl_inv_f, prod.rightUnitor_hom_naturality, prod.rightUnitor_hom_naturality_assoc, limitConstTerminal_inv_Ο€_assoc, skyscraperPresheafCocone_pt, prod.rightUnitor_inv, StalkSkyscraperPresheafAdjunctionAuxs.germ_fromStalk, PreservesTerminal.iso_hom, prodIsoPullback_inv_fst_assoc, isIso_Ο€_terminal, HasZeroObject.zeroIsoTerminal_inv, instIsIsoTerminalComparison, limitConstTerminal_hom, CategoryTheory.Dial.leftUnitor_hom_f, HasZeroObject.zeroIsoTerminal_hom, CategoryTheory.Dial.rightUnitor_hom_F, AlgebraicGeometry.instIsOverTerminalScheme, CategoryTheory.Dial.rightUnitorImpl_inv_F, prodIsoPullback_hom_fst_assoc, terminal.isSplitMono_from, prod.leftUnitor_inv_naturality_assoc, SSet.Augmented.stdSimplex_map_right, prod_rightUnitor_inv_naturality_assoc, prod.leftUnitor_hom_naturality_assoc, CategoryTheory.Dial.rightUnitorImpl_hom_F, CategoryTheory.monoOver_terminal_to_subterminals_comp, prod.leftUnitor_inv, CategoryTheory.Dial.leftUnitor_inv_f, AlgebraicGeometry.instSubsingletonOverTerminalScheme, limitConstTerminal_inv_Ο€, AlgebraicGeometry.compactSpace_iff_quasiCompact, prod.triangle, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.monoidalOfHasFiniteProducts.tensorUnit, CategoryTheory.Dial.rightUnitor_inv_f, CategoryTheory.Dial.tensorUnitImpl_src, terminal.comp_from, SSet.Augmented.stdSimplex_obj_right, CategoryTheory.WithTerminal.starIsoTerminal_inv, CategoryTheory.Dial.leftUnitor_hom_F, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi_assoc, StalkSkyscraperPresheafAdjunctionAuxs.germ_fromStalk_assoc, skyscraperPresheafCocone_ΞΉ_app, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, prodIsoPullback_hom_snd, CategoryTheory.WithTerminal.starIsoTerminal_hom, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, terminalIsoIsTerminal_hom, CategoryTheory.Dial.tensorUnit_rel, prodIsoPullback_hom_snd_assoc, germ_skyscraperPresheafStalkOfSpecializes_hom_assoc, prod.leftUnitor_hom, prodIsoPullback_hom_fst, CategoryTheory.CechNerveTerminalFrom.hasWidePullback', CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, SSet.Augmented.stdSimplex_obj_hom_app, Types.instSubsingletonTerminalType, CategoryTheory.Dial.tensorUnit_tgt, AlgebraicGeometry.instIsAffineTerminalScheme, CategoryTheory.Dial.leftUnitorImpl_hom_F, AlgebraicGeometry.Scheme.isSeparated_iff, prodIsoPullback_inv_snd, terminal_isIso_from, CategoryTheory.Functor.final_const_terminal, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, AlgebraicGeometry.quasiSeparatedSpace_iff_quasiSeparated, SSet.Augmented.stdSimplex_map_left, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.Dial.leftUnitor_inv_F, AlgebraicGeometry.AffineSpace.over_over, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi_assoc, terminal.comp_from_assoc, HomotopicalAlgebra.isFibrant_iff, CategoryTheory.Dial.leftUnitorImpl_inv_f, CategoryTheory.Dial.rightUnitor_inv_F, AlgebraicGeometry.Scheme.IsSeparated.isSeparated_terminal_from, prodIsoPullback_inv_snd_assoc, CategoryTheory.isSubterminal_of_terminal, terminalIsoIsTerminal_inv, CategoryTheory.IsSubterminal.mono_terminal_from, SkyscraperPresheafFunctor.map'_app, CategoryTheory.IsPullback.of_hasBinaryProduct', prod.leftUnitor_inv_naturality, prod.leftUnitor_hom_naturality, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_obj_obj, CategoryTheory.Dial.tensorUnitImpl_rel, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget, CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi, CategoryTheory.Dial.leftUnitorImpl_hom_f, CategoryTheory.Dial.rightUnitorImpl_hom_f, instHasLimitObjFunctorConstTerminal, CategoryTheory.Dial.leftUnitorImpl_inv_F, germ_skyscraperPresheafStalkOfSpecializes_hom, prod_rightUnitor_inv_naturality, skyscraperPresheaf_map, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app, CategoryTheory.Dial.tensorUnitImpl_tgt
terminalComparison πŸ“–CompOp
3 mathmath: PreservesTerminal.iso_hom, instIsIsoTerminalComparison, CategoryTheory.monoidalOfHasFiniteProducts.Ξ·_eq
terminalIsTerminal πŸ“–CompOp
5 mathmath: CategoryTheory.WithTerminal.starIsoTerminal_hom, terminalIsoIsTerminal_inv, SkyscraperPresheafFunctor.map'_app, skyscraperPresheaf_map, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app
terminalIsoIsTerminal πŸ“–CompOp
2 mathmath: terminalIsoIsTerminal_hom, terminalIsoIsTerminal_inv
uniqueFromInitial πŸ“–CompOpβ€”
uniqueToTerminal πŸ“–CompOpβ€”
Β«term⊀__Β» πŸ“–CompOpβ€”
Β«termβŠ₯__Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
colimitConstInitial_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
colimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
initial
instHasColimitObjFunctorConstInitial
colimitConstInitial
initial.to
β€”instHasColimitObjFunctorConstInitial
hasColimit_of_domain_hasInitial πŸ“–mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
HasColimitβ€”β€”
hasColimit_of_domain_hasTerminal πŸ“–mathematicalβ€”HasColimitβ€”β€”
hasInitialChangeDiagram πŸ“–mathematicalβ€”HasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”CategoryTheory.Category.comp_id
CategoryTheory.instIsEmptyDiscrete
PEmpty.instIsEmpty
hasInitialChangeUniverse πŸ“–mathematicalβ€”HasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”hasInitialChangeDiagram
HasColimitsOfShape.has_colimit
hasInitial_of_hasTerminal_op πŸ“–mathematicalβ€”HasInitialβ€”IsInitial.hasInitial
hasInitial_of_unique πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasInitialβ€”β€”
hasInitial_op_of_hasTerminal πŸ“–mathematicalβ€”HasInitial
Opposite
CategoryTheory.Category.opposite
β€”IsInitial.hasInitial
hasLimit_of_domain_hasInitial πŸ“–mathematicalβ€”HasLimitβ€”β€”
hasLimit_of_domain_hasTerminal πŸ“–mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
HasLimitβ€”β€”
hasTerminalChangeDiagram πŸ“–mathematicalβ€”HasLimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”CategoryTheory.Category.id_comp
CategoryTheory.instIsEmptyDiscrete
PEmpty.instIsEmpty
hasTerminalChangeUniverse πŸ“–mathematicalβ€”HasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”hasTerminalChangeDiagram
HasLimitsOfShape.has_limit
hasTerminal_of_hasInitial_op πŸ“–mathematicalβ€”HasTerminalβ€”IsTerminal.hasTerminal
hasTerminal_of_unique πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasTerminalβ€”β€”
hasTerminal_op_of_hasInitial πŸ“–mathematicalβ€”HasTerminal
Opposite
CategoryTheory.Category.opposite
β€”IsTerminal.hasTerminal
initialIsoIsInitial_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
initial
initialIsoIsInitial
IsInitial.to
initialIsInitial
β€”β€”
initialIsoIsInitial_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
initial
initialIsoIsInitial
IsInitial.to
β€”β€”
instHasColimitObjFunctorConstInitial πŸ“–mathematicalβ€”HasColimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
initial
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
initial.to_comp
Unique.instSubsingleton
instHasLimitObjFunctorConstTerminal πŸ“–mathematicalβ€”HasLimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
terminal
β€”terminal.comp_from
CategoryTheory.Category.comp_id
Unique.instSubsingleton
isIso_ΞΉ_initial πŸ“–mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
initial
colimit
hasColimit_of_domain_hasInitial
colimit.ΞΉ
β€”isIso_ΞΉ_of_isInitial
hasColimit_of_domain_hasInitial
isIso_ΞΉ_of_isInitial πŸ“–mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
colimit
colimit.ΞΉ
β€”IsInitial.to_self
colimit.ΞΉ_desc
CategoryTheory.inv.congr_simp
colimit.hom_ext
colimit.ΞΉ_desc_assoc
CategoryTheory.Category.comp_id
colimit.w
isIso_ΞΉ_of_isTerminal πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Functor.obj
colimit
colimit.ΞΉ
β€”colimit.ΞΉ_desc
IsTerminal.from_self
CategoryTheory.Functor.map_id
colimit.hom_ext
colimit.ΞΉ_desc_assoc
colimit.w
CategoryTheory.Category.comp_id
isIso_ΞΉ_terminal πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Functor.obj
terminal
colimit
hasColimit_of_domain_hasTerminal
colimit.ΞΉ
β€”isIso_ΞΉ_of_isTerminal
hasColimit_of_domain_hasTerminal
isIso_Ο€_initial πŸ“–mathematicalβ€”CategoryTheory.IsIso
limit
hasLimit_of_domain_hasInitial
CategoryTheory.Functor.obj
initial
limit.Ο€
β€”isIso_Ο€_of_isInitial
hasLimit_of_domain_hasInitial
isIso_Ο€_of_isInitial πŸ“–mathematicalβ€”CategoryTheory.IsIso
limit
CategoryTheory.Functor.obj
limit.Ο€
β€”limit.hom_ext
CategoryTheory.Category.assoc
limit.lift_Ο€
limit.w
CategoryTheory.Category.id_comp
IsInitial.to_self
CategoryTheory.Functor.map_id
isIso_Ο€_of_isTerminal πŸ“–mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
limit
limit.Ο€
β€”limit.hom_ext
CategoryTheory.Category.assoc
limit.lift_Ο€
CategoryTheory.Category.id_comp
limit.w
IsTerminal.from_self
CategoryTheory.Functor.map_id
CategoryTheory.inv.congr_simp
CategoryTheory.IsIso.inv_id
isIso_Ο€_terminal πŸ“–mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
limit
hasLimit_of_domain_hasTerminal
terminal
limit.Ο€
β€”isIso_Ο€_of_isTerminal
hasLimit_of_domain_hasTerminal
limitConstTerminal_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
limit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
terminal
instHasLimitObjFunctorConstTerminal
limitConstTerminal
terminal.from
β€”instHasLimitObjFunctorConstTerminal
limitConstTerminal_inv_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
terminal
limit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
instHasLimitObjFunctorConstTerminal
CategoryTheory.Iso.inv
limitConstTerminal
limit.Ο€
terminal.from
β€”instHasLimitObjFunctorConstTerminal
Unique.instSubsingleton
limitConstTerminal_inv_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
terminal
limit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
instHasLimitObjFunctorConstTerminal
CategoryTheory.Iso.inv
limitConstTerminal
limit.Ο€
terminal.from
β€”instHasLimitObjFunctorConstTerminal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
limitConstTerminal_inv_Ο€
terminalIsoIsTerminal_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
terminal
terminalIsoIsTerminal
IsTerminal.from
β€”β€”
terminalIsoIsTerminal_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
terminal
terminalIsoIsTerminal
IsTerminal.from
terminalIsTerminal
β€”β€”
ΞΉ_colimitConstInitial_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
initial
colimit
instHasColimitObjFunctorConstInitial
colimit.ΞΉ
CategoryTheory.Iso.hom
colimitConstInitial
initial.to
β€”instHasColimitObjFunctorConstInitial
Unique.instSubsingleton
ΞΉ_colimitConstInitial_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
initial
colimit
instHasColimitObjFunctorConstInitial
colimit.ΞΉ
CategoryTheory.Iso.hom
colimitConstInitial
initial.to
β€”instHasColimitObjFunctorConstInitial
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ΞΉ_colimitConstInitial_hom

CategoryTheory.Limits.InitialMonoClass

Theorems

NameKindAssumesProvesValidatesDepends On
of_initial πŸ“–mathematicalCategoryTheory.Mono
CategoryTheory.Limits.initial
CategoryTheory.Limits.initial.to
CategoryTheory.Limits.InitialMonoClassβ€”of_isInitial
of_terminal πŸ“–mathematicalβ€”CategoryTheory.Limits.InitialMonoClassβ€”of_isTerminal

CategoryTheory.Limits.IsInitial

Theorems

NameKindAssumesProvesValidatesDepends On
hasInitial πŸ“–mathematicalβ€”CategoryTheory.Limits.HasInitialβ€”CategoryTheory.Category.comp_id
CategoryTheory.instIsEmptyDiscrete
PEmpty.instIsEmpty

CategoryTheory.Limits.IsTerminal

Theorems

NameKindAssumesProvesValidatesDepends On
hasTerminal πŸ“–mathematicalβ€”CategoryTheory.Limits.HasTerminalβ€”CategoryTheory.Category.id_comp
CategoryTheory.instIsEmptyDiscrete
PEmpty.instIsEmpty

CategoryTheory.Limits.initial

Definitions

NameCategoryTheorems
to πŸ“–CompOp
32 mathmath: CategoryTheory.Limits.initialMul_inv, CategoryTheory.Initial.mono_to, inl_coprodIsoPushout_hom, CategoryTheory.FinitaryExtensive.isPullback_initial_to_binaryCofan, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Subobject.bot_eq_initial_to, CategoryTheory.isPullback_of_cofan_isVanKampen, CategoryTheory.Limits.coprod.leftUnitor_hom, inr_coprodIsoPushout_hom_assoc, CategoryTheory.MonoOver.bot_arrow, CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen, to_comp_assoc, CategoryTheory.Limits.mulInitial_inv, CategoryTheory.FinitaryExtensive.isPullback_initial_to_sigma_ΞΉ, CategoryTheory.monoidalOfHasFiniteCoproducts.rightUnitor_hom, HomotopicalAlgebra.isCofibrant_iff, CategoryTheory.Limits.colimitConstInitial_inv, inr_coprodIsoPushout_hom, CategoryTheory.IsPushout.of_hasBinaryCoproduct', CategoryTheory.Limits.coprod.rightUnitor_hom, CategoryTheory.monoidalOfHasFiniteCoproducts.leftUnitor_hom, inl_coprodIsoPushout_inv, CategoryTheory.MonoOver.initialTo_b_eq_zero, CategoryTheory.Limits.ΞΉ_colimitConstInitial_hom, inr_coprodIsoPushout_inv, inl_coprodIsoPushout_hom_assoc, inl_coprodIsoPushout_inv_assoc, CategoryTheory.FinitaryExtensive.isPullback_initial_to, inr_coprodIsoPushout_inv_assoc, to_comp, CategoryTheory.BinaryCofan.isPullback_initial_to_of_isVanKampen, CategoryTheory.Limits.ΞΉ_colimitConstInitial_hom_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext πŸ“–β€”β€”β€”β€”CategoryTheory.Limits.colimit.hom_ext
hom_ext_iff πŸ“–β€”β€”β€”β€”hom_ext
isSplitEpi_to πŸ“–mathematicalβ€”CategoryTheory.IsSplitEpi
CategoryTheory.Limits.initial
β€”CategoryTheory.Limits.IsInitial.isSplitEpi_to
mono_from πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Limits.initial
β€”CategoryTheory.Limits.IsInitial.mono_from
to_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.initial
to
β€”Unique.instSubsingleton
to_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.initial
to
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
to_comp

CategoryTheory.Limits.terminal

Definitions

NameCategoryTheorems
from πŸ“–CompOp
47 mathmath: prodIsoPullback_inv_fst, CategoryTheory.Dial.rightUnitorImpl_inv_f, CategoryTheory.Limits.limitConstTerminal_inv_Ο€_assoc, CategoryTheory.Limits.prod.rightUnitor_inv, prodIsoPullback_inv_fst_assoc, CategoryTheory.Limits.limitConstTerminal_hom, CategoryTheory.Dial.rightUnitor_hom_F, prodIsoPullback_hom_fst_assoc, SSet.Augmented.stdSimplex_map_right, CategoryTheory.Dial.rightUnitorImpl_hom_F, CategoryTheory.Limits.prod.leftUnitor_inv, CategoryTheory.Dial.leftUnitor_inv_f, CategoryTheory.Limits.limitConstTerminal_inv_Ο€, AlgebraicGeometry.compactSpace_iff_quasiCompact, CategoryTheory.Dial.rightUnitor_inv_f, comp_from, CategoryTheory.Dial.leftUnitor_hom_F, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi_assoc, skyscraperPresheafCocone_ΞΉ_app, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, prodIsoPullback_hom_snd, prodIsoPullback_hom_snd_assoc, prodIsoPullback_hom_fst, CategoryTheory.CechNerveTerminalFrom.hasWidePullback', CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, SSet.Augmented.stdSimplex_obj_hom_app, CategoryTheory.Dial.leftUnitorImpl_hom_F, AlgebraicGeometry.Scheme.isSeparated_iff, prodIsoPullback_inv_snd, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, AlgebraicGeometry.quasiSeparatedSpace_iff_quasiSeparated, SSet.Augmented.stdSimplex_map_left, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, AlgebraicGeometry.AffineSpace.over_over, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi_assoc, comp_from_assoc, HomotopicalAlgebra.isFibrant_iff, CategoryTheory.Dial.leftUnitorImpl_inv_f, AlgebraicGeometry.Scheme.IsSeparated.isSeparated_terminal_from, prodIsoPullback_inv_snd_assoc, CategoryTheory.IsSubterminal.mono_terminal_from, CategoryTheory.IsPullback.of_hasBinaryProduct', CategoryTheory.subterminalsEquivMonoOverTerminal_functor_obj_obj, CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi

Theorems

NameKindAssumesProvesValidatesDepends On
comp_from πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.terminal
from
β€”Unique.instSubsingleton
comp_from_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.terminal
from
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_from
hom_ext πŸ“–β€”β€”β€”β€”CategoryTheory.Limits.limit.hom_ext
hom_ext_iff πŸ“–β€”β€”β€”β€”hom_ext
isSplitMono_from πŸ“–mathematicalβ€”CategoryTheory.IsSplitMono
CategoryTheory.Limits.terminal
β€”CategoryTheory.Limits.IsTerminal.isSplitMono_from

---

← Back to Index