| Name | Category | Theorems |
HasInitial π | MathDef | 27 mathmath: CategoryTheory.hasInitial_of_equivalence, CategoryTheory.hasInitial_of_weakly_initial_and_hasWideEqualizers, CategoryTheory.Grp.instHasInitial, CategoryTheory.Factorisation.instHasInitial, CategoryTheory.CategoryOfElements.instHasInitialElementsOppositeOfIsRepresentable, AugmentedSimplexCategory.instHasInitial, CategoryTheory.Equivalence.hasInitial_iff, Preorder.instHasInitialOfOrderBot, hasInitial_of_unique, AlgebraicGeometry.instHasInitialScheme, CategoryTheory.Bicategory.HasLeftKanLift.hasInitial, CategoryTheory.WithInitial.instHasInitial, IsInitial.hasInitial, CategoryTheory.isRightAdjoint_iff_hasInitial_structuredArrow, CategoryTheory.CategoryOfElements.instHasInitialElementsOfIsCorepresentable, CategoryTheory.Bicategory.instHasInitialLeftExtensionOfHasLeftKanExtension, hasInitial_of_hasInitial_of_preservesColimit, CategoryTheory.Bicategory.HasLeftKanExtension.hasInitial, CategoryTheory.CommGrp.instHasInitial, hasColimit_iff_hasInitial_cocone, CategoryTheory.Bicategory.instHasInitialLeftLiftOfHasLeftKanLift, CategoryTheory.CommMon.instHasInitial, hasInitial_of_hasTerminal_op, HasZeroObject.hasInitial, CategoryTheory.hasInitial_of_isCoseparating, hasInitial_op_of_hasTerminal, CategoryTheory.Mon.instHasInitial
|
HasTerminal π | MathDef | 25 mathmath: CategoryTheory.Over.instHasTerminal, hasLimit_iff_hasTerminal_cone, CategoryTheory.Equivalence.hasTerminal_iff, CategoryTheory.MorphismProperty.Over.instHasTerminalTopOfContainsIdentities, SimplexCategory.instHasTerminal, HasZeroObject.hasTerminal, hasTerminal_of_hasInitial_op, CategoryTheory.CostructuredArrow.hasTerminal, CategoryTheory.isLeftAdjoint_iff_hasTerminal_costructuredArrow, CategoryTheory.Cat.instHasTerminal, CategoryTheory.Comon.instHasTerminal, Preorder.instHasTerminalOfOrderTop, CategoryTheory.hasTerminal_of_isSeparating, CategoryTheory.PreGaloisCategory.hasTerminal, hasTerminal_of_unique, hasTerminal_of_hasTerminal_of_preservesLimit, CategoryTheory.Over.over_hasTerminal, FormalCoproduct.instHasTerminal, AlgebraicGeometry.instHasTerminalScheme, CategoryTheory.WithTerminal.instHasTerminal, CategoryTheory.Factorisation.instHasTerminal, hasTerminal_op_of_hasInitial, CategoryTheory.Classifier.SubobjectRepresentableBy.hasTerminal, IsTerminal.hasTerminal, CategoryTheory.hasTerminal_of_equivalence
|
colimitConstInitial π | CompOp | 3 mathmath: colimitConstInitial_inv, ΞΉ_colimitConstInitial_hom, ΞΉ_colimitConstInitial_hom_assoc
|
colimitOfInitial π | CompOp | β |
colimitOfTerminal π | CompOp | β |
initial π | CompOp | 57 mathmath: initialMul_inv, CategoryTheory.Initial.mono_to, CategoryTheory.to_initial_isIso, inl_coprodIsoPushout_hom, initialIsoIsInitial_hom, CategoryTheory.FinitaryExtensive.isPullback_initial_to_binaryCofan, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Functor.initial_const_initial, CategoryTheory.Subobject.bot_eq_initial_to, CategoryTheory.isPullback_of_cofan_isVanKampen, instHasColimitObjFunctorConstInitial, coprod.leftUnitor_hom, inr_coprodIsoPushout_hom_assoc, initialIsoIsInitial_inv, CategoryTheory.WithInitial.starIsoInitial_inv, initial.mono_from, CategoryTheory.MonoOver.bot_left, initial.isSplitEpi_to, CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen, initial.to_comp_assoc, mulInitial_inv, coprod.leftUnitor_inv, isIso_ΞΉ_initial, PreservesInitial.iso_hom, CategoryTheory.FinitaryExtensive.isPullback_initial_to_sigma_ΞΉ, CategoryTheory.monoidalOfHasFiniteCoproducts.rightUnitor_hom, HasZeroObject.zeroIsoInitial_inv, instIsIsoInitialComparison, HomotopicalAlgebra.isCofibrant_iff, colimitConstInitial_inv, coprod.rightUnitor_inv, inr_coprodIsoPushout_hom, CategoryTheory.IsPushout.of_hasBinaryCoproduct', coprod.rightUnitor_hom, CategoryTheory.monoidalOfHasFiniteCoproducts.leftUnitor_hom, initial_isIso_to, initialMul_hom, coprod.triangle, inl_coprodIsoPushout_inv, CategoryTheory.WithInitial.starIsoInitial_hom, CategoryTheory.MonoOver.initialTo_b_eq_zero, ΞΉ_colimitConstInitial_hom, inr_coprodIsoPushout_inv, inl_coprodIsoPushout_hom_assoc, isIso_Ο_initial, mulInitial_hom, inl_coprodIsoPushout_inv_assoc, CategoryTheory.FinitaryExtensive.isPullback_initial_to, inr_coprodIsoPushout_inv_assoc, AlgebraicGeometry.initial_isEmpty, HasZeroObject.zeroIsoInitial_hom, initial.to_comp, CategoryTheory.BinaryCofan.isPullback_initial_to_of_isVanKampen, initial.subsingleton_to, ΞΉ_colimitConstInitial_hom_assoc, SSet.instFiniteInitial
|
initialComparison π | CompOp | 2 mathmath: PreservesInitial.iso_hom, instIsIsoInitialComparison
|
initialIsInitial π | CompOp | 2 mathmath: initialIsoIsInitial_hom, CategoryTheory.WithInitial.starIsoInitial_inv
|
initialIsoIsInitial π | CompOp | 2 mathmath: initialIsoIsInitial_hom, initialIsoIsInitial_inv
|
limitConstTerminal π | CompOp | 3 mathmath: limitConstTerminal_inv_Ο_assoc, limitConstTerminal_hom, limitConstTerminal_inv_Ο
|
limitOfInitial π | CompOp | β |
limitOfTerminal π | CompOp | β |
terminal π | CompOp | 108 mathmath: prod.rightUnitor_hom, isIso_ΞΉ_terminal, terminal.subsingleton_to, skyscraperPresheaf_obj, prodIsoPullback_inv_fst, CategoryTheory.Dial.tensorUnit_src, CategoryTheory.Dial.rightUnitor_hom_f, CategoryTheory.Dial.rightUnitorImpl_inv_f, prod.rightUnitor_hom_naturality, prod.rightUnitor_hom_naturality_assoc, limitConstTerminal_inv_Ο_assoc, skyscraperPresheafCocone_pt, prod.rightUnitor_inv, StalkSkyscraperPresheafAdjunctionAuxs.germ_fromStalk, PreservesTerminal.iso_hom, prodIsoPullback_inv_fst_assoc, isIso_Ο_terminal, HasZeroObject.zeroIsoTerminal_inv, instIsIsoTerminalComparison, limitConstTerminal_hom, CategoryTheory.Dial.leftUnitor_hom_f, HasZeroObject.zeroIsoTerminal_hom, CategoryTheory.Dial.rightUnitor_hom_F, AlgebraicGeometry.instIsOverTerminalScheme, CategoryTheory.Dial.rightUnitorImpl_inv_F, prodIsoPullback_hom_fst_assoc, terminal.isSplitMono_from, prod.leftUnitor_inv_naturality_assoc, SSet.Augmented.stdSimplex_map_right, prod_rightUnitor_inv_naturality_assoc, prod.leftUnitor_hom_naturality_assoc, CategoryTheory.Dial.rightUnitorImpl_hom_F, CategoryTheory.monoOver_terminal_to_subterminals_comp, prod.leftUnitor_inv, CategoryTheory.Dial.leftUnitor_inv_f, AlgebraicGeometry.instSubsingletonOverTerminalScheme, limitConstTerminal_inv_Ο, AlgebraicGeometry.compactSpace_iff_quasiCompact, prod.triangle, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.monoidalOfHasFiniteProducts.tensorUnit, CategoryTheory.Dial.rightUnitor_inv_f, CategoryTheory.Dial.tensorUnitImpl_src, terminal.comp_from, SSet.Augmented.stdSimplex_obj_right, CategoryTheory.WithTerminal.starIsoTerminal_inv, CategoryTheory.Dial.leftUnitor_hom_F, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi_assoc, StalkSkyscraperPresheafAdjunctionAuxs.germ_fromStalk_assoc, skyscraperPresheafCocone_ΞΉ_app, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, prodIsoPullback_hom_snd, CategoryTheory.WithTerminal.starIsoTerminal_hom, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, terminalIsoIsTerminal_hom, CategoryTheory.Dial.tensorUnit_rel, prodIsoPullback_hom_snd_assoc, germ_skyscraperPresheafStalkOfSpecializes_hom_assoc, prod.leftUnitor_hom, prodIsoPullback_hom_fst, CategoryTheory.CechNerveTerminalFrom.hasWidePullback', CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, SSet.Augmented.stdSimplex_obj_hom_app, Types.instSubsingletonTerminalType, CategoryTheory.Dial.tensorUnit_tgt, AlgebraicGeometry.instIsAffineTerminalScheme, CategoryTheory.Dial.leftUnitorImpl_hom_F, AlgebraicGeometry.Scheme.isSeparated_iff, prodIsoPullback_inv_snd, terminal_isIso_from, CategoryTheory.Functor.final_const_terminal, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, AlgebraicGeometry.quasiSeparatedSpace_iff_quasiSeparated, SSet.Augmented.stdSimplex_map_left, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.Dial.leftUnitor_inv_F, AlgebraicGeometry.AffineSpace.over_over, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi_assoc, terminal.comp_from_assoc, HomotopicalAlgebra.isFibrant_iff, CategoryTheory.Dial.leftUnitorImpl_inv_f, CategoryTheory.Dial.rightUnitor_inv_F, AlgebraicGeometry.Scheme.IsSeparated.isSeparated_terminal_from, prodIsoPullback_inv_snd_assoc, CategoryTheory.isSubterminal_of_terminal, terminalIsoIsTerminal_inv, CategoryTheory.IsSubterminal.mono_terminal_from, SkyscraperPresheafFunctor.map'_app, CategoryTheory.IsPullback.of_hasBinaryProduct', prod.leftUnitor_inv_naturality, prod.leftUnitor_hom_naturality, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_obj_obj, CategoryTheory.Dial.tensorUnitImpl_rel, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget, CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi, CategoryTheory.Dial.leftUnitorImpl_hom_f, CategoryTheory.Dial.rightUnitorImpl_hom_f, instHasLimitObjFunctorConstTerminal, CategoryTheory.Dial.leftUnitorImpl_inv_F, germ_skyscraperPresheafStalkOfSpecializes_hom, prod_rightUnitor_inv_naturality, skyscraperPresheaf_map, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app, CategoryTheory.Dial.tensorUnitImpl_tgt
|
terminalComparison π | CompOp | 3 mathmath: PreservesTerminal.iso_hom, instIsIsoTerminalComparison, CategoryTheory.monoidalOfHasFiniteProducts.Ξ·_eq
|
terminalIsTerminal π | CompOp | 5 mathmath: CategoryTheory.WithTerminal.starIsoTerminal_hom, terminalIsoIsTerminal_inv, SkyscraperPresheafFunctor.map'_app, skyscraperPresheaf_map, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app
|
terminalIsoIsTerminal π | CompOp | 2 mathmath: terminalIsoIsTerminal_hom, terminalIsoIsTerminal_inv
|
uniqueFromInitial π | CompOp | β |
uniqueToTerminal π | CompOp | β |
Β«termβ€__Β» π | CompOp | β |
Β«termβ₯__Β» π | CompOp | β |