Documentation Verification Report

ZeroMorphisms

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean

Statistics

MetricCount
DefinitionsHasZeroMorphisms, zero, zeroMorphismsOfZeroObject, ofIsZero, ofIsZero, hasZeroMorphisms, ι, π, fst, snd, hasZeroMorphismsOpposite, hasZeroMorphismsPEmpty, hasZeroMorphismsPUnit, idZeroEquivIsoZero, imageFactorisationZero, imageZero, imageZero', instHasZeroMorphismsFunctor, isIsoZeroEquiv, isIsoZeroEquivIsoZero, isIsoZeroSelfEquiv, isIsoZeroSelfEquivIsoZero, isoOfIsIsomorphicZero, isoZeroOfEpiEqZero, isoZeroOfEpiZero, isoZeroOfMonoEqZero, isoZeroOfMonoZero, monoFactorisationZero, inl, inr
30
Theoremszero_obj, comp_zero, ext, instSubsingleton, zero_comp, instFunctor, zeroIsoInitial_hom, zeroIsoInitial_inv, zeroIsoIsInitial_hom, zeroIsoIsInitial_inv, zeroIsoIsTerminal_hom, zeroIsoIsTerminal_inv, zeroIsoTerminal_hom, zeroIsoTerminal_inv, isZero_pt, isZero, isZero_pt, isZero, eq_zero_of_src, eq_zero_of_tgt, iff_id_eq_zero, iff_isSplitEpi_eq_zero, iff_isSplitMono_eq_zero, map, of_epi, of_epi_eq_zero, of_epi_zero, of_mono, of_mono_eq_zero, of_mono_zero, ι_π, ι_π_assoc, ι_π_eq_id, ι_π_eq_id_assoc, ι_π_of_ne, ι_π_of_ne_assoc, ι_π, ι_π_assoc, ι_π_eq_id, ι_π_eq_id_assoc, ι_π_of_ne, ι_π_of_ne_assoc, comp_factorThruImage_eq_zero, comp_zero, inl_fst, inl_fst_assoc, inl_snd, inl_snd_assoc, inr_fst, inr_fst_assoc, inr_snd, inr_snd_assoc, epi_of_target_iso_zero, eq_zero_of_image_eq_zero, hasImage_zero, hasZeroObject_of_hasInitial_object, hasZeroObject_of_hasTerminal_object, idZeroEquivIsoZero_apply_hom, idZeroEquivIsoZero_apply_inv, id_zero, ι_zero, ι_zero', image_ι_comp_eq_zero, instEpiFst, instEpiSnd, instEpiπ, instMonoInl, instMonoInr, instMonoι_1, isIsoZero_iff_source_target_isZero, isIso_of_source_target_iso_zero, isSplitEpi_pi_π, isSplitEpi_prod_fst, isSplitEpi_prod_snd, isSplitMono_coprod_inl, isSplitMono_coprod_inr, isSplitMono_sigma_ι, isoZeroOfEpiZero_hom, isoZeroOfEpiZero_inv, isoZeroOfMonoZero_hom, isoZeroOfMonoZero_inv, monoFactorisationZero_I, monoFactorisationZero_e, monoFactorisationZero_m, mono_of_source_iso_zero, nonzero_image_of_nonzero, op_zero, inl_fst, inl_fst_assoc, inl_snd, inl_snd_assoc, inr_fst, inr_fst_assoc, inr_snd, inr_snd_assoc, unop_zero, zero_app, zero_comp, zero_of_comp_mono, zero_of_epi_comp, zero_of_from_zero, zero_of_source_iso_zero, zero_of_source_iso_zero', zero_of_target_iso_zero, zero_of_target_iso_zero', zero_of_to_zero, zero_map
107
Total137

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
zero_map 📖mathematicalFunctor.map
Functor
Limits.HasZeroObject.zero'
Functor.category
Limits.HasZeroObject.instFunctor
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Limits.HasZeroMorphisms.zero
Limits.IsZero.map
Limits.HasZeroObject.instFunctor
Limits.isZero_zero

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
zero_obj 📖mathematicalCategoryTheory.Limits.IsZero
obj
CategoryTheory.Functor
CategoryTheory.Limits.HasZeroObject.zero'
category
CategoryTheory.Limits.HasZeroObject.instFunctor
CategoryTheory.Limits.IsZero.obj
CategoryTheory.Limits.HasZeroObject.instFunctor
CategoryTheory.Limits.isZero_zero

CategoryTheory.Limits

Definitions

NameCategoryTheorems
HasZeroMorphisms 📖CompData
1 mathmath: HasZeroMorphisms.instSubsingleton
hasZeroMorphismsOpposite 📖CompOp
211 mathmath: CochainComplex.acyclic_op, CategoryTheory.ShortComplex.HomologyMapData.op_left, CategoryTheory.ShortComplex.LeftHomologyData.op_g', CategoryTheory.kernelUnopOp_inv, CategoryTheory.ShortComplex.hasRightHomology_iff_op, CategoryTheory.ShortComplex.cyclesOpIso_inv_op_iCycles_assoc, CategoryTheory.ShortComplex.homologyOpIso_hom_naturality, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φQ, CategoryTheory.ShortComplex.LeftHomologyData.unop_p, CategoryTheory.ShortComplex.op_g, CategoryTheory.ShortComplex.unop_X₂, CategoryTheory.ShortComplex.ShortExact.op, HomologicalComplex.op_d, HomologicalComplex.opSymm_d, CategoryTheory.ShortComplex.instCategoryWithHomologyOpposite, CategoryTheory.ShortComplex.RightHomologyMapData.op_φH, HomologicalComplex.unopFunctor_obj, CochainComplex.exactAt_op, CategoryTheory.ShortComplex.opMap_τ₁, HomologicalComplex.opcyclesOpIso_inv_naturality_assoc, CategoryTheory.ShortComplex.LeftHomologyData.unop_ι, HomologicalComplex.instHasHomologyOppositeOp, CategoryTheory.ShortComplex.hasLeftHomology_iff_op, CategoryTheory.ShortComplex.shortExact_iff_op, HomologicalComplex.extend_op_d_assoc, CategoryTheory.cokernelUnopUnop_inv, CategoryTheory.kernelOpUnop_hom, HomologicalComplex.isStrictlySupportedOutside_op_iff, HomologicalComplex.unopInverse_map, CategoryTheory.ShortComplex.RightHomologyData.unop_i, HomologicalComplex.unopEquivalence_functor, CategoryTheory.ShortComplex.HomologyMapData.unop_right, CategoryTheory.ShortComplex.unopFunctor_map, imageToKernel_op, CategoryTheory.ShortComplex.op_X₁, CochainComplex.homotopyUnop_hom_eq, HomologicalComplex.opcyclesOpIso_inv_naturality, HomologicalComplex.extend.XOpIso_hom_d_op, HomologicalComplex.opEquivalence_unitIso, CategoryTheory.cokernelOpOp_hom, CategoryTheory.ShortComplex.op_pOpcycles_opcyclesOpIso_hom, CategoryTheory.ShortComplex.RightHomologyMapData.op_φK, CategoryTheory.ShortComplex.opMap_id, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φH, HomologicalComplex.extend.XOpIso_hom_d_op_assoc, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₂, HomologicalComplex.opFunctor_obj, CategoryTheory.ShortComplex.HomologyData.op_right, HomologicalComplex.instQuasiIsoAtMapOppositeSymmUnopFunctorOp, CategoryTheory.ShortComplex.leftHomologyMap_op, CategoryTheory.ShortComplex.homologyOpIso_inv_naturality, HomologicalComplex.cyclesOpIso_inv_naturality_assoc, HomologicalComplex.Acyclic.op, CategoryTheory.ShortComplex.exact_op_iff, CategoryTheory.ShortComplex.cyclesOpIso_hom_naturality, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₁, CategoryTheory.ShortComplex.hasLeftHomology_iff_unop, CategoryTheory.ShortComplex.exact_unop_iff, CategoryTheory.ShortComplex.LeftHomologyData.op_H, HomologicalComplex.cyclesOpNatIso_inv_app, CategoryTheory.kernelUnopUnop_inv, CategoryTheory.ShortComplex.opMap_τ₃, CategoryTheory.ShortComplex.opcyclesOpIso_hom_naturality_assoc, CategoryTheory.ShortComplex.unop_f, CategoryTheory.kernelOpUnop_inv, CategoryTheory.ShortComplex.homologyMap'_op, CategoryTheory.ShortComplex.unopFunctor_obj, CategoryTheory.ShortComplex.unopMap_τ₁, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φQ, CategoryTheory.ShortComplex.op_pOpcycles_opcyclesOpIso_hom_assoc, CategoryTheory.cokernelUnopOp_hom, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φK, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₃, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₃, HomologicalComplex.opcyclesOpIso_hom_naturality_assoc, CategoryTheory.ShortComplex.HomologyData.unop_left, HomologicalComplex.quasiIsoAt_unopFunctor_map_iff, CategoryTheory.cokernel.π_unop, HomologicalComplex.opcyclesOpIso_hom_toCycles_op, CategoryTheory.ShortComplex.RightHomologyData.op_K, HomologicalComplex.unop_X, HomologicalComplex.opFunctor_map_f, CategoryTheory.ShortComplex.opEquiv_functor, CategoryTheory.ShortComplex.HomologyMapData.op_right, CategoryTheory.ShortComplex.fromOpcycles_op_cyclesOpIso_inv_assoc, CategoryTheory.ShortComplex.rightHomologyMap'_op, CategoryTheory.ShortComplex.opcyclesOpIso_hom_toCycles_op_assoc, CategoryTheory.ShortComplex.opcyclesOpIso_hom_naturality, HomologicalComplex.instQuasiIsoAtOppositeMapSymmOpFunctorOp, CategoryTheory.ShortComplex.RightHomologyData.unop_f', CategoryTheory.kernelUnopOp_hom, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₁, CategoryTheory.ShortComplex.homologyOpIso_hom_naturality_assoc, CategoryTheory.ShortComplex.LeftHomologyData.op_Q, HomologicalComplex.isSupportedOutside_op_iff, HomologicalComplex.unopEquivalence_unitIso, CategoryTheory.cokernel.π_op, HomologicalComplex.exactAt_op_iff, HomologicalComplex.opEquivalence_counitIso, CategoryTheory.ShortComplex.instHasHomologyOppositeOp, CategoryTheory.Pretriangulated.Opposite.contractible_distinguished, HomologicalComplex.fromOpcycles_op_cyclesOpIso_inv_assoc, CategoryTheory.cokernelOpUnop_inv, HomologicalComplex.homologyOp_hom_naturality_assoc, CategoryTheory.ShortComplex.cyclesOpIso_inv_naturality, CategoryTheory.kernel.ι_unop, HomologicalComplex.unopSymm_X, CategoryTheory.ShortComplex.instHasLeftHomologyOppositeOpOfHasRightHomology, CategoryTheory.ShortComplex.unop_X₁, CategoryTheory.ShortComplex.unopMap_τ₂, HomologicalComplex.cyclesOpIso_inv_naturality, HomologicalComplex.opcyclesOpIso_hom_naturality, CategoryTheory.ShortComplex.opEquiv_counitIso, HomologicalComplex.instHasHomologyOppositeObjSymmOpFunctorOp, CategoryTheory.ShortComplex.unop_X₃, HomologicalComplex.extend_op_d, CategoryTheory.ShortComplex.hasRightHomology_iff_unop, HomologicalComplex.opInverse_obj, HomologicalComplex.unopSymm_d, CochainComplex.homotopyOp_hom_eq, HomologicalComplex.isStrictlySupported_op_iff, HomologicalComplex.cyclesOpIso_hom_naturality_assoc, CategoryTheory.ShortComplex.RightHomologyData.op_H, CategoryTheory.ShortComplex.opMap_τ₂, CategoryTheory.ShortComplex.opcyclesOpIso_inv_naturality, HomologicalComplex.cyclesOpIso_hom_naturality, CategoryTheory.ShortComplex.LeftHomologyData.op_p, CategoryTheory.ShortComplex.HomologyData.op_left, CategoryTheory.kernelUnopUnop_hom, CategoryTheory.ShortComplex.homologyOpIso_inv_naturality_assoc, CategoryTheory.ShortComplex.rightHomologyMap_op, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, CategoryTheory.ShortComplex.quasiIso_opMap, unop_zero, CategoryTheory.ShortComplex.rightHomologyFunctorOpNatIso_hom_app, CategoryTheory.ShortComplex.opEquiv_inverse, CategoryTheory.ShortComplex.RightHomologyData.unop_K, CategoryTheory.ShortComplex.LeftHomologyData.unop_H, CategoryTheory.ShortComplex.opFunctor_obj, CategoryTheory.ShortComplex.RightHomologyData.op_f', CategoryTheory.cokernelUnopUnop_hom, CategoryTheory.ShortComplex.leftHomologyFunctorOpNatIso_hom_app, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φH, HomologicalComplex.instQuasiIsoOppositeMapSymmOpFunctorOp, CategoryTheory.ShortComplex.Exact.op, CategoryTheory.ShortComplex.shortExact_iff_unop, HomologicalComplex.isSupported_op_iff, CategoryTheory.ShortComplex.unop_g, CategoryTheory.cokernelOpUnop_hom, HomologicalComplex.acyclic_op_iff, CategoryTheory.kernel.ι_op, HomologicalComplex.ExactAt.op, CategoryTheory.ShortComplex.LeftHomologyData.unop_Q, HomologicalComplex.opEquivalence_functor, CategoryTheory.ShortComplex.op_f, HomologicalComplex.op_X, HomologicalComplex.quasiIso_opFunctor_map_iff, CategoryTheory.ShortComplex.unopMap_id, CategoryTheory.ShortComplex.homologyMap_op, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₂, CategoryTheory.ShortComplex.rightHomologyFunctorOpNatIso_inv_app, CategoryTheory.ShortComplex.HomologyData.unop_iso, CategoryTheory.ShortComplex.HomologyData.op_iso, CategoryTheory.ShortComplex.op_X₃, HomologicalComplex.unopInverse_obj, HomologicalComplex.opEquivalence_inverse, CategoryTheory.kernelOpOp_inv, HomologicalComplex.cyclesOpNatIso_hom_app, HomologicalComplex.fromOpcycles_op_cyclesOpIso_inv, CategoryTheory.ShortComplex.RightHomologyData.op_i, CategoryTheory.ShortComplex.unopMap_τ₃, HomologicalComplex.instIsStrictlySupportedOppositeOpOp, HomologicalComplex.unopEquivalence_inverse, op_zero, CategoryTheory.ShortComplex.opcyclesOpIso_hom_toCycles_op, CategoryTheory.ShortComplex.RightHomologyData.unop_π, CategoryTheory.ShortComplex.leftHomologyFunctorOpNatIso_inv_app, CategoryTheory.ShortComplex.opEquiv_unitIso, CategoryTheory.cokernelUnopOp_inv, HomologicalComplex.unop_d, HomologicalComplex.opFunctor_additive, CategoryTheory.kernelOpOp_hom, CategoryTheory.ShortComplex.cyclesOpIso_inv_op_iCycles, CategoryTheory.ShortComplex.HomologyData.unop_right, CategoryTheory.ShortComplex.RightHomologyData.unop_H, CategoryTheory.ShortComplex.cyclesOpIso_inv_naturality_assoc, CategoryTheory.Pretriangulated.preadditiveYoneda_map_distinguished, HomologicalComplex.unopFunctor_map_f, HomologicalComplex.homologyOp_hom_naturality, CategoryTheory.ShortComplex.fromOpcycles_op_cyclesOpIso_inv, CategoryTheory.ShortComplex.LeftHomologyData.unop_g', HomologicalComplex.opcyclesOpIso_hom_toCycles_op_assoc, HomologicalComplex.quasiIsoAt_opFunctor_map_iff, CategoryTheory.Functor.map_distinguished_op_exact, HomologicalComplex.unopFunctor_additive, CategoryTheory.ShortComplex.opcyclesOpIso_inv_naturality_assoc, HomologicalComplex.unopEquivalence_counitIso, CategoryTheory.ShortComplex.opFunctor_map, HomologicalComplex.opInverse_map, HomologicalComplex.opSymm_X, HomologicalComplex.instHasHomologyObjOppositeSymmUnopFunctorOp, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φH, CategoryTheory.cokernelOpOp_inv, CategoryTheory.ShortComplex.LeftHomologyData.op_ι, CategoryTheory.ShortComplex.RightHomologyData.op_π, CategoryTheory.ShortComplex.quasiIso_opMap_iff, CategoryTheory.ShortComplex.op_X₂, CategoryTheory.ShortComplex.leftHomologyMap'_op, CategoryTheory.ShortComplex.instHasRightHomologyOppositeOpOfHasLeftHomology, CategoryTheory.ShortComplex.cyclesOpIso_hom_naturality_assoc, CategoryTheory.ShortComplex.HomologyMapData.unop_left
hasZeroMorphismsPEmpty 📖CompOp
hasZeroMorphismsPUnit 📖CompOp
idZeroEquivIsoZero 📖CompOp
2 mathmath: idZeroEquivIsoZero_apply_inv, idZeroEquivIsoZero_apply_hom
imageFactorisationZero 📖CompOp
imageZero 📖CompOp
imageZero' 📖CompOp
instHasZeroMorphismsFunctor 📖CompOp
61 mathmath: CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₁, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_obj, CategoryTheory.ShortComplex.π₁Toπ₂_comp_π₂Toπ₃_assoc, CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₂, CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₂_app, CategoryTheory.ShortComplex.functorEquivalence_counitIso, HomologicalComplex.asFunctor_obj_X, CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₁_app, HomologicalComplex.complexOfFunctorsToFunctorToComplex_obj, CategoryTheory.Localization.liftNatTrans_zero, coker.condition_assoc, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, CategoryTheory.ShortComplex.functorEquivalence_functor, CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₃_app, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₂, CategoryTheory.ShortComplex.π₁Toπ₂_comp_π₂Toπ₃, CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_inv_app_app_τ₃, HomologicalComplex.quasiIso_iff_evaluation, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₃, CategoryTheory.Functor.preservesZeroMorphisms_evaluation_obj, ker.condition, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₁, coker.condition, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_map, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_X₁, HomologicalComplex.complexOfFunctorsToFunctorToComplex_map_app_f, CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_map, CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₁, CategoryTheory.Functor.whiskerRight_zero, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_f, CategoryTheory.plusPlusSheaf_preservesZeroMorphisms, HomologicalComplex.asFunctor_obj_d, HomologicalComplex.quasiIsoAt_iff_evaluation, CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_inv_app_τ₃_app, instPreservesHomologyFunctorAddCommGrpCatColim, CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_obj, CategoryTheory.Functor.instPreservesZeroMorphismsFlipOfObj, CategoryTheory.GrothendieckTopology.plusFunctor_preservesZeroMorphisms, CategoryTheory.ShortComplex.quasiIso_iff_evaluation, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₁_app, CategoryTheory.ShortComplex.functorEquivalence_unitIso, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, ker.condition_assoc, zero_app, HomologicalComplex.asFunctor_map_f, CategoryTheory.ShortComplex.FunctorEquivalence.functor_map_app, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₂, CategoryTheory.ShortComplex.functorEquivalence_inverse, Action.functorCategoryEquivalence_preservesZeroMorphisms, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_g, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.ShortComplex.FunctorEquivalence.unitIso_hom_app_τ₂_app, CategoryTheory.ShortComplex.FunctorEquivalence.counitIso_hom_app_app_τ₃, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₃, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₂, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.epi_f
isIsoZeroEquiv 📖CompOp
isIsoZeroEquivIsoZero 📖CompOp
isIsoZeroSelfEquiv 📖CompOp
isIsoZeroSelfEquivIsoZero 📖CompOp
isoOfIsIsomorphicZero 📖CompOp
isoZeroOfEpiEqZero 📖CompOp
isoZeroOfEpiZero 📖CompOp
2 mathmath: isoZeroOfEpiZero_hom, isoZeroOfEpiZero_inv
isoZeroOfMonoEqZero 📖CompOp
isoZeroOfMonoZero 📖CompOp
2 mathmath: isoZeroOfMonoZero_inv, isoZeroOfMonoZero_hom
monoFactorisationZero 📖CompOp
3 mathmath: monoFactorisationZero_I, monoFactorisationZero_e, monoFactorisationZero_m

Theorems

NameKindAssumesProvesValidatesDepends On
comp_factorThruImage_eq_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
image
factorThruImage
zero_of_comp_mono
instMonoι
CategoryTheory.Category.assoc
image.fac
comp_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
HasZeroMorphisms.comp_zero
epi_of_target_iso_zero 📖mathematicalCategoryTheory.Epizero_of_source_iso_zero
eq_zero_of_image_eq_zero 📖image.ι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
image
HasZeroMorphisms.zero
image.fac
HasZeroMorphisms.comp_zero
hasImage_zero 📖mathematicalHasImage
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
hasZeroObject_of_hasInitial_object 📖mathematicalHasZeroObjectUnique.instSubsingleton
CategoryTheory.Category.comp_id
HasZeroMorphisms.comp_zero
hasZeroObject_of_hasTerminal_object 📖mathematicalHasZeroObjectCategoryTheory.Category.id_comp
Unique.instSubsingleton
zero_comp
idZeroEquivIsoZero_apply_hom 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CategoryTheory.Iso.hom
HasZeroObject.zero'
DFunLike.coe
Equiv
CategoryTheory.Iso
EquivLike.toFunLike
Equiv.instEquivLike
idZeroEquivIsoZero
idZeroEquivIsoZero_apply_inv 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CategoryTheory.Iso.inv
HasZeroObject.zero'
DFunLike.coe
Equiv
CategoryTheory.Iso
EquivLike.toFunLike
Equiv.instEquivLike
idZeroEquivIsoZero
id_zero 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
HasZeroObject.from_zero_ext
image_ι_comp_eq_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
image
image.ι
zero_of_epi_comp
image.fac_assoc
instEpiFst 📖mathematicalCategoryTheory.Epi
coprod
coprod.fst
coprod.inl_fst_assoc
instEpiSnd 📖mathematicalCategoryTheory.Epi
coprod
coprod.snd
coprod.inr_snd_assoc
instEpiπ 📖mathematicalCategoryTheory.Epi
sigmaObj
Sigma.π
Sigma.ι_π_eq_id_assoc
instMonoInl 📖mathematicalCategoryTheory.Mono
prod
prod.inl
CategoryTheory.Category.assoc
prod.inl_fst
CategoryTheory.Category.comp_id
instMonoInr 📖mathematicalCategoryTheory.Mono
prod
prod.inr
CategoryTheory.Category.assoc
prod.inr_snd
CategoryTheory.Category.comp_id
instMonoι_1 📖mathematicalCategoryTheory.Mono
piObj
Pi.ι
CategoryTheory.Category.assoc
Pi.ι_π_eq_id
CategoryTheory.Category.comp_id
isIsoZero_iff_source_target_isZero 📖mathematicalCategoryTheory.IsIso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
IsZero
IsZero.of_iso
isZero_zero
isIso_of_source_target_iso_zero 📖mathematicalCategoryTheory.IsIsozero_of_source_iso_zero
isSplitEpi_pi_π 📖mathematicalCategoryTheory.IsSplitEpi
piObj
Pi.π
CategoryTheory.IsSplitEpi.mk'
limit.lift_π
Pi.single_eq_same
isSplitEpi_prod_fst 📖mathematicalCategoryTheory.IsSplitEpi
prod
prod.fst
CategoryTheory.IsSplitEpi.mk'
limit.lift_π
isSplitEpi_prod_snd 📖mathematicalCategoryTheory.IsSplitEpi
prod
prod.snd
CategoryTheory.IsSplitEpi.mk'
limit.lift_π
isSplitMono_coprod_inl 📖mathematicalCategoryTheory.IsSplitMono
coprod
coprod.inl
CategoryTheory.IsSplitMono.mk'
colimit.ι_desc
isSplitMono_coprod_inr 📖mathematicalCategoryTheory.IsSplitMono
coprod
coprod.inr
CategoryTheory.IsSplitMono.mk'
colimit.ι_desc
isSplitMono_sigma_ι 📖mathematicalCategoryTheory.IsSplitMono
sigmaObj
Sigma.ι
CategoryTheory.IsSplitMono.mk'
colimit.ι_desc
Pi.single_eq_same
isoZeroOfEpiZero_hom 📖mathematicalCategoryTheory.Iso.hom
HasZeroObject.zero'
isoZeroOfEpiZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
isoZeroOfEpiZero_inv 📖mathematicalCategoryTheory.Iso.inv
HasZeroObject.zero'
isoZeroOfEpiZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
isoZeroOfMonoZero_hom 📖mathematicalCategoryTheory.Iso.hom
HasZeroObject.zero'
isoZeroOfMonoZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
isoZeroOfMonoZero_inv 📖mathematicalCategoryTheory.Iso.inv
HasZeroObject.zero'
isoZeroOfMonoZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
monoFactorisationZero_I 📖mathematicalMonoFactorisation.I
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
monoFactorisationZero
HasZeroObject.zero'
monoFactorisationZero_e 📖mathematicalMonoFactorisation.e
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
monoFactorisationZero
HasZeroObject.zero'
monoFactorisationZero_m 📖mathematicalMonoFactorisation.m
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
monoFactorisationZero
HasZeroObject.zero'
mono_of_source_iso_zero 📖mathematicalCategoryTheory.Monozero_of_target_iso_zero
nonzero_image_of_nonzero 📖eq_zero_of_image_eq_zero
op_zero 📖mathematicalQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
HasZeroMorphisms.zero
Opposite
Quiver.opposite
Opposite.op
CategoryTheory.Category.opposite
hasZeroMorphismsOpposite
unop_zero 📖mathematicalQuiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
Opposite
Quiver.opposite
HasZeroMorphisms.zero
CategoryTheory.Category.opposite
hasZeroMorphismsOpposite
Opposite.unop
zero_app 📖mathematicalCategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HasZeroMorphisms.zero
instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
zero_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
HasZeroMorphisms.zero_comp
zero_of_comp_mono 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CategoryTheory.cancel_mono
zero_comp
zero_of_epi_comp 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HasZeroMorphisms.zero
CategoryTheory.cancel_epi
comp_zero
zero_of_from_zero 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroObject.zero'
HasZeroMorphisms.zero
HasZeroObject.from_zero_ext
zero_of_source_iso_zero 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id_assoc
id_zero
zero_comp
comp_zero
zero_of_source_iso_zero' 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
zero_of_source_iso_zero
zero_of_target_iso_zero 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
id_zero
zero_comp
comp_zero
zero_of_target_iso_zero' 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroMorphisms.zero
zero_of_target_iso_zero
zero_of_to_zero 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HasZeroObject.zero'
HasZeroMorphisms.zero
HasZeroObject.to_zero_ext

CategoryTheory.Limits.HasZeroMorphisms

Definitions

NameCategoryTheorems
zero 📖CompOp
803 mathmath: CategoryTheory.ShortComplex.toCycles_comp_homologyπ, CategoryTheory.ShortComplex.toCycles_comp_homologyπ_assoc, CategoryTheory.Limits.eq_zero_of_mono_cokernel, CategoryTheory.Limits.zero_of_from_zero, CategoryTheory.ShortComplex.Homotopy.h₀_f_assoc, CategoryTheory.Limits.cokernelBiproductιIso_hom, TopModuleCat.hom_zero, HomologicalComplex.singleMapHomologicalComplex_hom_app_ne, CategoryTheory.ObjectProperty.isoModSerre_zero_iff, CategoryTheory.Limits.Bicone.π_of_isColimit, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.Limits.inr_of_isLimit, CategoryTheory.Limits.coprod.inl_snd, CategoryTheory.ShortComplex.Homotopy.refl_h₀, HomologicalComplex.dFrom_comp_xNextIsoSelf, CategoryTheory.Preadditive.IsIso.comp_left_eq_zero, CategoryTheory.ShortComplex.hasHomology_of_zeros, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, CategoryTheory.ShortComplex.RightHomologyData.ι_g', CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, HomologicalComplex.double_d_eq_zero₀, CategoryTheory.ComposableArrows.IsComplex.zero'_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, AlgebraicTopology.DoldKan.σ_comp_PInfty_assoc, HomologicalComplex.dFrom_eq_zero, AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.BicartesianSq.of_is_biproduct₁, CategoryTheory.NonPreadditiveAbelian.diag_σ, CategoryTheory.Limits.monoFactorisationZero_I, CategoryTheory.Limits.biprod.inl_snd_assoc, CategoryTheory.IsPushout.of_is_bilimit', CategoryTheory.ShortComplex.homologyMap_zero, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hg', CategoryTheory.ShortComplex.π₁Toπ₂_comp_π₂Toπ₃_assoc, CategoryTheory.Abelian.Pseudoelement.pseudoZero_def, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, TopModuleCat.hom_zero_apply, HomologicalComplex.extend.d_comp_eq_zero_iff, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hg, CategoryTheory.Limits.kernelBiprodSndIso_hom, CochainComplex.mappingCone.inr_f_fst_v, CategoryTheory.ShortComplex.zero_assoc, CategoryTheory.ShortComplex.RightHomologyData.wp, CategoryTheory.ShiftedHom.mk₀_zero, HomologicalComplex.homotopyCofiber.inrX_fstX_assoc, CategoryTheory.ShortComplex.RightHomologyData.wp_assoc, CategoryTheory.Limits.biproduct.ι_π_assoc, CategoryTheory.ShortComplex.exact_iff_iCycles_pOpcycles_zero, CategoryTheory.Abelian.LeftResolution.chainComplexMap_zero, CategoryTheory.Limits.BinaryBicone.ofLimitCone_inl, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, CategoryTheory.Functor.PreservesHomology.preservesKernels, HomologicalComplex.dTo_eq_zero, DerivedCategory.HomologySequence.comp_δ, CategoryTheory.ShortComplex.HasLeftHomology.of_zeros, CategoryTheory.DifferentialObject.d_squared_apply, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.Subobject.factorThru_eq_zero, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂, CategoryTheory.Limits.prod.inl_snd, CategoryTheory.Limits.KernelFork.condition_assoc, CategoryTheory.Limits.zero_of_source_iso_zero, CategoryTheory.Limits.HasZeroObject.zeroIsoIsInitial_inv, CategoryTheory.ShortComplex.LeftHomologyData.f'_π_assoc, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι_assoc, HomologicalComplex.biprod_inl_snd_f_assoc, Homotopy.nullHomotopicMap_f_eq_zero, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, CategoryTheory.ShortComplex.toCycles_comp_leftHomologyπ_assoc, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, CategoryTheory.Preadditive.isColimitCoforkOfCokernelCofork_desc, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, CategoryTheory.Limits.prod.inr_fst_assoc, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles_assoc, CategoryTheory.Limits.biprod.inlCokernelCofork_π, HomologicalComplex₂.d_f_comp_d_f, CategoryTheory.Limits.kernelForkBiproductToSubtype_cone, CategoryTheory.Limits.KernelFork.IsLimit.isZero_of_mono, AlgebraicGeometry.Scheme.Modules.Hom.zero_app, HomologicalComplex₂.d₁_eq_zero', HomologicalComplex₂.D₁_D₁_assoc, CategoryTheory.Functor.homologySequence_comp, CategoryTheory.InjectiveResolution.of_def, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁, CategoryTheory.GradedObject.zero_apply, CategoryTheory.IsPushout.zero_top, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_isColimit, CategoryTheory.ShortComplex.homologyMap'_zero, CategoryTheory.Preadditive.IsIso.comp_right_eq_zero, CategoryTheory.Limits.Sigma.ι_π_assoc, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_of_mono₂, CategoryTheory.Limits.kernel.condition_apply, CategoryTheory.Limits.equalizer_as_kernel, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃_assoc, HomologicalComplex.extend.d_none_eq_zero', CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃, HomologicalComplex₂.D₁_D₁, CategoryTheory.zero_map, CategoryTheory.InjectiveResolution.complex_d_comp, CategoryTheory.Limits.PreservesCokernel.of_iso_comparison, HomologicalComplex.single_obj_d, CategoryTheory.ShortComplex.ShortExact.comp_δ, CategoryTheory.Limits.kernelBiprodFstIso_hom, CategoryTheory.Limits.monoFactorisationZero_e, CategoryTheory.IsPullback.inr_fst, HomologicalComplex₂.D₂_D₂, CategoryTheory.ShortComplex.Homotopy.g_h₃_assoc, HomologicalComplex.d_toCycles_assoc, CategoryTheory.kernel_zero_of_nonzero_from_simple, HomologicalComplex.xPrevIsoSelf_comp_dTo, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂, CategoryTheory.Limits.isoZeroOfEpiZero_hom, CategoryTheory.Limits.kernelBiproductπIso_hom, CategoryTheory.Abelian.tfae_epi, HomologicalComplex.d_comp_d_assoc, CategoryTheory.Limits.BinaryBicone.sndKernelFork_ι, CochainComplex.fromSingle₀Equiv_apply_coe, HomologicalComplex.dgoToHomologicalComplex_obj_d, CategoryTheory.Localization.liftNatTrans_zero, HomotopyCategory.quotient_map_eq_zero_iff, CategoryTheory.Abelian.Pseudoelement.zero_eq_zero', CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.f', Homotopy.nullHomotopicMap'_f_eq_zero, HomologicalComplex₂.d₂_eq_zero, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hf', CategoryTheory.Biprod.unipotentLower_inv, CategoryTheory.ShortComplex.Splitting.rightHomologyData_ι, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inl, CategoryTheory.ShortComplex.hasHomology_of_hasCokernel, CategoryTheory.Idempotents.Karoubi.hom_eq_zero_iff, CategoryTheory.Limits.biprod.inr_fst, CategoryTheory.kernelCokernelCompSequence.ι_φ, CategoryTheory.Limits.HasZeroObject.zeroIsoTerminal_inv, CategoryTheory.Preadditive.isSeparator_iff, HomologicalComplex.fromOpcycles_d_assoc, CategoryTheory.IsPullback.zero_top, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃_assoc, CategoryTheory.ShortComplex.Homotopy.refl_h₃, CochainComplex.HomComplex.Cochain.single_zero, CategoryTheory.ShortComplex.SnakeInput.δ_L₃_f, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.Limits.coker.condition_assoc, CategoryTheory.Limits.BinaryBicone.inl_snd_assoc, CategoryTheory.Preadditive.isSeparating_iff, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, CategoryTheory.ShortComplex.iCycles_g, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, HomologicalComplex.truncGE'.d_comp_d, CategoryTheory.Limits.cokernel.π_zero_isIso, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zero_f, HomologicalComplex.extend.d_none_eq_zero, HomologicalComplex.mapBifunctor₂₃.ιOrZero_eq_zero, CochainComplex.ConnectData.d_comp_d, HomologicalComplex.d_pOpcycles, CategoryTheory.Limits.isIsoZero_iff_source_target_isZero, CategoryTheory.Limits.Pi.ι_π_of_ne, CategoryTheory.ShiftedHom.zero_comp, CategoryTheory.ShortComplex.Homotopy.refl_h₂, HomologicalComplex.fromOpcycles_eq_zero, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f_assoc, ChainComplex.toSingle₀Equiv_apply_coe, HomologicalComplex.homologyι_opcyclesToCycles_assoc, CategoryTheory.NormalEpi.w, CategoryTheory.Limits.coequalizer_as_cokernel, CategoryTheory.Limits.HasZeroObject.zeroIsoTerminal_hom, CategoryTheory.IsPushout.inl_snd', CategoryTheory.ShortComplex.π₁Toπ₂_comp_π₂Toπ₃, CategoryTheory.Limits.Pi.ι_π, CategoryTheory.BicartesianSq.of_has_biproduct₂, HomologicalComplex₂.d_f_comp_d_f_assoc, HomologicalComplex.homotopyCofiber.inlX_sndX_assoc, HomologicalComplex.homologyι_comp_fromOpcycles, CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero, CategoryTheory.Limits.zero_of_target_iso_zero', CategoryTheory.Limits.biprod.fstKernelFork_ι, AlgebraicTopology.DoldKan.QInfty_f_0, CategoryTheory.ShortComplex.RightHomologyData.wι_assoc, CategoryTheory.InjectiveResolution.ι_f_succ, CategoryTheory.Limits.comp_zero, CategoryTheory.Limits.monoFactorisationZero_m, CategoryTheory.Limits.preservesKernel_zero, CategoryTheory.Functor.map_zero, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero_assoc, AlgebraicTopology.AlternatingFaceMapComplex.d_squared, CategoryTheory.Limits.inr_pushoutZeroZeroIso_hom, HomologicalComplex.mapBifunctorMapHomotopy.zero₁, CategoryTheory.Preadditive.epi_iff_cancel_zero, Homotopy.dNext_zero_chainComplex, HomologicalComplex.mapBifunctor₂₃.d₃_eq_zero, CategoryTheory.InjectiveResolution.ι_f_zero_comp_complex_d_assoc, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, CategoryTheory.Limits.kernelBiprodFstIso_inv, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_of_mono₃, CategoryTheory.Limits.kernelBiproductToSubtypeIso_hom, CategoryTheory.Limits.CokernelCofork.condition, CochainComplex.HomComplex.Cochain.zero_v, CategoryTheory.Limits.cokernel.condition, CategoryTheory.NonPreadditiveAbelian.sub_zero, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.g, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_inr, CategoryTheory.IsPushout.zero_bot, CategoryTheory.Limits.BinaryBicone.ofLimitCone_inr, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, CategoryTheory.IsPushout.zero_left, HomologicalComplex.mapBifunctor₁₂.d₂_eq_zero, CategoryTheory.Biprod.unipotentUpper_hom, CategoryTheory.ShortComplex.Homotopy.ofEq_h₂, CategoryTheory.Subobject.bot_factors_iff_zero, CategoryTheory.MonoidalPreadditive.whiskerLeft_zero, HomologicalComplex.iCycles_d, HomologicalComplex.mapBifunctor₁₂.ιOrZero_eq_zero, CategoryTheory.Limits.pullbackZeroZeroIso_inv_fst, CategoryTheory.InjectiveResolution.extMk_zero, ChainComplex.mk_congr_succ_X₃, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂_assoc, CategoryTheory.Limits.pullbackZeroZeroIso_hom_snd, CategoryTheory.ShortComplex.homologyι_comp_fromOpcycles_assoc, HomologicalComplex.dTo_comp_dFrom, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f, HomologicalComplex₂.D₁_shape, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', CategoryTheory.Limits.cokernelBiprodInlIso_inv, CategoryTheory.DifferentialObject.d_squared, CategoryTheory.ComposableArrows.IsComplex.zero_assoc, CategoryTheory.ObjectProperty.monoModSerre_zero_iff, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φH, CategoryTheory.Limits.image.ι_zero, CategoryTheory.Abelian.Pseudoelement.zero_morphism_ext, CategoryTheory.Limits.kernel.ι_of_mono, CategoryTheory.Limits.inl_of_isLimit, CategoryTheory.Pretriangulated.contractibleTriangle_mor₂, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq_zero, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hf, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, CategoryTheory.ShortComplex.Homotopy.ofEq_h₀, HomologicalComplex.opcyclesToCycles_homologyπ, CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_inv, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_of_epi₁, CategoryTheory.Limits.biprod.sndKernelFork_ι, CategoryTheory.Preadditive.forkOfKernelFork_pt, CochainComplex.HomComplex.Cocycle.toSingleMk_zero, AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero, CategoryTheory.Limits.ker.condition, HomologicalComplex.homotopyCofiber.inrX_fstX, CategoryTheory.Limits.BinaryBicone.inr_fst_assoc, DerivedCategory.HomologySequence.comp_δ_assoc, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁, CategoryTheory.Functor.map_eq_zero_iff, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, SimplicialObject.Splitting.cofan_inj_comp_PInfty_eq_zero, SimplicialObject.Splitting.ιSummand_comp_d_comp_πSummand_eq_zero, CategoryTheory.Biprod.unipotentLower_hom, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, CategoryTheory.Limits.zero_of_to_zero, CategoryTheory.Limits.snd_of_isColimit, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_of_epi₂, HomologicalComplex.d_toCycles, CategoryTheory.Limits.id_zero, CategoryTheory.Limits.cokernelBiprodInrIso_inv, CategoryTheory.IsPushout.inr_fst, CategoryTheory.Pretriangulated.contractible_distinguished₂, CategoryTheory.ShortComplex.homologyι_descOpcycles_eq_zero_of_boundary, CategoryTheory.Functor.homologySequenceδ_comp_assoc, HomologicalComplex.d_pOpcycles_assoc, CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_leftAdd, CategoryTheory.IsPullback.inl_snd, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁_assoc, CategoryTheory.ProjectiveResolution.of_def, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, Homotopy.zero, CategoryTheory.Limits.imageSubobject_zero_arrow, CategoryTheory.ProjectiveResolution.π_f_succ, CategoryTheory.ShortComplex.rightHomologyι_comp_fromOpcycles_assoc, CategoryTheory.IsPushout.of_hasBinaryCoproduct, CategoryTheory.Idempotents.zero_def, CategoryTheory.IsPullback.of_hasBinaryProduct, CategoryTheory.Limits.imageSubobject_zero, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_inv, CategoryTheory.ShortComplex.rightHomologyι_descOpcycles_π_eq_zero_of_boundary, HomologicalComplex.liftCycles_homologyπ_eq_zero_of_boundary, Homotopy.extend.hom_eq_zero₁, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, AlgebraicTopology.AlternatingCofaceMapComplex.d_squared, CategoryTheory.Limits.cokernel.π_of_zero, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_pt, CategoryTheory.Triangulated.TStructure.zero, HomologicalComplex.extend_single_d, CategoryTheory.projective_iff_llp_epimorphisms_zero, CategoryTheory.ShortComplex.liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc, HomologicalComplex.mapBifunctor.d₁_eq_zero, HomologicalComplex₂.d₁_eq_zero, CategoryTheory.ObjectProperty.epiModSerre_zero_iff, CochainComplex.singleFunctor_obj_d, CategoryTheory.ShortComplex.LeftHomologyData.f'_π, CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_hom, CategoryTheory.Subobject.mk_eq_bot_iff_zero, CategoryTheory.Limits.HasZeroObject.zeroIsoIsTerminal_hom, HomologicalComplex.extend_d_to_eq_zero, CategoryTheory.Functor.mapZeroObject_inv, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero, CategoryTheory.Limits.coker.condition, CategoryTheory.ShiftedHom.comp_zero, CategoryTheory.NatTrans.app_zero, CategoryTheory.ShortComplex.Homotopy.refl_h₁, CategoryTheory.ShortComplex.Exact.shortExact, CategoryTheory.Limits.KernelFork.condition, CategoryTheory.Limits.biproduct.fromSubtype_π, CategoryTheory.Limits.kernel.ι_of_zero, prevD_eq_zero, CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel, CategoryTheory.Mat_.isoBiproductEmbedding_hom, CategoryTheory.NonPreadditiveAbelian.add_zero, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, CategoryTheory.InjectiveResolution.ι_f_zero_comp_complex_d, CategoryTheory.Functor.PreservesHomology.preservesCokernels, CategoryTheory.ShortComplex.HasLeftHomology.of_hasCokernel, CategoryTheory.Preadditive.cokernelCoforkOfCofork_π, CategoryTheory.Limits.biproduct.toSubtype_fromSubtype, CategoryTheory.Functor.comp_homologySequenceδ, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CategoryTheory.Limits.cokernelBiprodInrIso_hom, CategoryTheory.Limits.kernel.condition, CategoryTheory.MonoOver.bot_arrow_eq_zero, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.Biprod.column_nonzero_of_iso, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.g', CochainComplex.HomComplex.Cochain.fromSingleMk_zero, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_pt, CategoryTheory.Limits.biprod.inl_snd, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, CochainComplex.mappingCone.inl_v_snd_v_assoc, HomologicalComplex.cylinder.inlX_π, CategoryTheory.Limits.Sigma.ι_π, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, HomologicalComplex.biprod_inr_fst_f, CategoryTheory.Limits.cokernel.condition_assoc, TopModuleCat.comp_cokerπ, CategoryTheory.Limits.kernelSubobject_arrow_comp_apply, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_snd, AlgebraicTopology.DoldKan.Hσ_eq_zero, CochainComplex.ConnectData.d₀_comp, HomologicalComplex.tensor_unit_d₂, CategoryTheory.ShortComplex.RightHomologyData.ι_descQ_eq_zero_of_boundary_assoc, ChainComplex.mk'_congr_succ'_d, CategoryTheory.Limits.cokernelBiproductιIso_inv, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_fst, CategoryTheory.Limits.kernelBiproductπIso_inv, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₁, HomologicalComplex.homologyι_comp_fromOpcycles_assoc, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_hom, CategoryTheory.Preadditive.kernelForkOfFork_ι, CategoryTheory.Pretriangulated.Triangle.zero_hom₁, HomologicalComplex.cylinder.inlX_π_assoc, CategoryTheory.ShortComplex.SnakeInput.L₀_g_δ, HomologicalComplex₂.d₂_eq_zero', CategoryTheory.ShortComplex.Splitting.leftHomologyData_π, CategoryTheory.Limits.prod.inl_snd_assoc, HomologicalComplex.d_comp_d', CategoryTheory.Limits.bicone_ι_π_ne_assoc, imageToKernel_epi_of_zero_of_mono, zero_comp, HomologicalComplex.zero_f, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_eq_zero, CategoryTheory.ShortComplex.cyclesMap'_zero, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_iff_epi₁, CategoryTheory.ShortComplex.zero_τ₃, CategoryTheory.ShortComplex.HasRightHomology.of_hasCokernel, CategoryTheory.Limits.biproduct.ι_π_ne, CategoryTheory.Pretriangulated.contractibleTriangleFunctor_map_hom₃, CategoryTheory.Limits.biproduct.fromSubtype_π_assoc, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, AlgebraicTopology.DoldKan.Q_f_0_eq, CategoryTheory.Triangulated.TStructure.zero_of_isLE_of_isGE, CategoryTheory.ShortComplex.RightHomologyData.wι, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, CategoryTheory.IsPullback.zero_left, CategoryTheory.ShortComplex.iCycles_g_assoc, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁_assoc, CategoryTheory.ShortComplex.Exact.mono_g_iff, CategoryTheory.ShortComplex.rightHomologyMap_zero, CategoryTheory.ShortComplex.exact_iff_i_p_zero, CategoryTheory.Limits.Bicone.ofLimitCone_ι, CategoryTheory.Abelian.Pseudoelement.zero_morphism_ext', Homotopy.ofEq_hom, HomologicalComplex₂.D₂_shape, CategoryTheory.Preadditive.mono_iff_isZero_kernel', CategoryTheory.ShortComplex.LeftHomologyData.wi, Action.zero_hom, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_inl, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, CategoryTheory.Preadditive.isCoseparating_iff, CategoryTheory.MonoidalPreadditive.tensor_zero, CategoryTheory.Adjunction.homAddEquiv_symm_zero, CategoryTheory.IsPushout.of_isBilimit, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero, HomologicalComplex.homotopyCofiber.inlX_sndX, HomologicalComplex.truncGE'.d_comp_d_assoc, CategoryTheory.ShortComplex.cyclesMap_zero, CategoryTheory.ShortComplex.LeftHomologyMapData.zero_φH, AddCommGrpCat.kernelIsoKer_inv_comp_ι, CategoryTheory.ShortComplex.HasRightHomology.of_hasKernel, HomologicalComplex.ιMapBifunctorOrZero_eq_zero, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₃, CategoryTheory.Limits.biproduct.fromSubtype_eq_lift, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc, CategoryTheory.Limits.eq_zero_of_epi_kernel, CategoryTheory.Limits.IsZero.map, CategoryTheory.ComposableArrows.isComplex₂_iff, SheafOfModules.Presentation.map_relations_I, CategoryTheory.Functor.shiftMap_zero, CategoryTheory.ShortComplex.toCycles_comp_leftHomologyπ, AlgebraicTopology.NormalizedMooreComplex.d_squared, CategoryTheory.Limits.kernelSubobject_factors_iff, CategoryTheory.ProjectiveResolution.complex_d_succ_comp, CategoryTheory.Abelian.Ext.zero_hom, HomologicalComplex.homotopyCofiber.shape, Homotopy.mkCoinductiveAux₂_zero, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wπ, CategoryTheory.Abelian.Ext.mk₀_zero, SheafOfModules.Presentation.mapRelations_mapGenerators, CategoryTheory.IsPushout.inr_fst', CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃_assoc, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero_assoc, CategoryTheory.Limits.KernelFork.app_one, CategoryTheory.ShortComplex.RightHomologyData.ι_g'_assoc, CategoryTheory.Functor.whiskerRight_zero, CategoryTheory.Limits.kernel.ι_zero_isIso, CategoryTheory.NonPreadditiveAbelian.neg_add_cancel, CategoryTheory.Limits.isKernelCompMono_lift, CategoryTheory.ShortComplex.LeftHomologyMapData.zero_φK, CategoryTheory.Preadditive.coforkOfCokernelCofork_π, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁_assoc, CategoryTheory.Limits.biprod.inrCokernelCofork_π, CategoryTheory.Limits.Pi.ι_π_assoc, CategoryTheory.Limits.isoZeroOfMonoZero_inv, CategoryTheory.ShortComplex.ShortExact.δ_comp_assoc, CochainComplex.HomComplex.Cocycle.fromSingleMk_zero, HomologicalComplex.zero_f_apply, CategoryTheory.ProjectiveResolution.extMk_zero, HomologicalComplex.toCycles_eq_zero, CategoryTheory.Monad.algebraPreadditive_homGroup_zero_f, CochainComplex.mappingCone.inr_f_fst_v_assoc, CategoryTheory.IsPullback.of_hasBinaryBiproduct, CategoryTheory.IsPushout.inl_snd, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, CategoryTheory.IsPullback.of_is_bilimit', ChainComplex.mk'_d, HomologicalComplex.singleMapHomologicalComplex_inv_app_ne, CategoryTheory.ShortComplex.HasLeftHomology.of_hasKernel, HomologicalComplex.dgoToHomologicalComplex_map_f, CategoryTheory.Limits.BinaryBicone.inrCokernelCofork_π, CategoryTheory.Limits.pullbackZeroZeroIso_hom_fst, CategoryTheory.Limits.isIso_kernelSubobject_zero_arrow, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.f, HomologicalComplex.cyclesMap_zero, CategoryTheory.Limits.unop_zero, CategoryTheory.Pretriangulated.binaryBiproductTriangle_mor₃, CategoryTheory.Limits.HasZeroObject.zeroIsoInitial_inv, HomologicalComplex.homologyMap_zero, CategoryTheory.ShortComplex.opcyclesMap_zero, CategoryTheory.Subobject.bot_arrow, CategoryTheory.Limits.IsZero.iff_isSplitEpi_eq_zero, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, HomologicalComplex.toCycles_comp_homologyπ, CochainComplex.ConnectData.d_comp_d_assoc, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_snd, HomologicalComplex₂.D₂_D₂_assoc, CategoryTheory.Pretriangulated.Triangle.isZero₂_iff, CategoryTheory.IsPullback.inl_snd', CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂_assoc, HomologicalComplex.xPrevIsoSelf_comp_dTo_assoc, CategoryTheory.HomOrthogonal.matrixDecompositionAddEquiv_symm_apply, HomologicalComplex.mapBifunctor₁₂.d₃_eq_zero, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φQ, CochainComplex.toSingle₀Equiv_symm_apply_f_succ, CategoryTheory.Limits.zero_of_source_iso_zero', CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, CategoryTheory.Limits.IsZero.eq_zero_of_tgt, CategoryTheory.Adjunction.homAddEquiv_zero, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_iff_epi₂, CategoryTheory.Biprod.unipotentUpper_inv, CategoryTheory.IsPullback.of_has_biproduct, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, CategoryTheory.Limits.PreservesKernel.of_iso_comparison, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι_assoc, HomologicalComplex.extend_d_from_eq_zero, CategoryTheory.NonPreadditiveAbelian.lift_map_assoc, CategoryTheory.Subobject.bot_eq_zero, Homotopy.extend.hom_eq_zero₂, CategoryTheory.ShortComplex.zero, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, CategoryTheory.ShortComplex.LeftHomologyData.liftK_π_eq_zero_of_boundary, HomologicalComplex.toCycles_comp_homologyπ_assoc, CategoryTheory.ShortComplex.exact_and_mono_f_iff_f_is_kernel, CategoryTheory.Limits.CokernelCofork.condition_assoc, AlgebraicTopology.DoldKan.hσ'_eq_zero, CategoryTheory.NormalMono.w, HomologicalComplex₂.shape_f, CategoryTheory.Pretriangulated.Triangle.zero_hom₃, CategoryTheory.MonoidalPreadditive.zero_tensor, CategoryTheory.Limits.fst_of_isColimit, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, CategoryTheory.Limits.coprod.inr_fst_assoc, CategoryTheory.Limits.inr_pushoutZeroZeroIso_inv, CategoryTheory.Limits.Bicone.ι_π, CategoryTheory.Limits.biprod.inr_fst_assoc, CategoryTheory.ShortComplex.rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, HomologicalComplex.extend.comp_d_eq_zero_iff, CategoryTheory.Abelian.Pseudoelement.zero_eq_zero, CategoryTheory.shift_zero_eq_zero, CategoryTheory.Limits.BinaryBicone.inlCokernelCofork_π, CategoryTheory.IsPullback.zero_bot, CategoryTheory.Limits.Sigma.ι_π_of_ne_assoc, CategoryTheory.Limits.CokernelCofork.map_condition, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁_assoc, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, CategoryTheory.ShortComplex.homologyι_comp_fromOpcycles, CategoryTheory.epi_from_simple_zero_of_not_iso, CategoryTheory.Abelian.coimage.comp_π_eq_zero, CategoryTheory.Limits.zero_of_target_iso_zero, CochainComplex.ConnectData.shape, CategoryTheory.Triangulated.TStructure.zero', CategoryTheory.IsPullback.zero_right, AlgebraicTopology.DoldKan.σ_comp_PInfty, CochainComplex.HomComplex.Cochain.toSingleMk_zero, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.Limits.kernelZeroIsoSource_hom, CategoryTheory.Pretriangulated.contractibleTriangle_mor₃, CategoryTheory.ShortComplex.ShortExact.δ_comp, CategoryTheory.Preadditive.isLimitForkOfKernelFork_lift, CategoryTheory.Preadditive.epi_iff_isZero_cokernel', CategoryTheory.Limits.CokernelCofork.map_π, CategoryTheory.ShortComplex.homologyι_descOpcycles_eq_zero_of_boundary_assoc, HomologicalComplex.homologyι_descOpcycles_eq_zero_of_boundary_assoc, Homotopy.prevD_zero_cochainComplex, CategoryTheory.Limits.MonoFactorisation.kernel_ι_comp, CategoryTheory.HomOrthogonal.eq_zero, CategoryTheory.Mat_.isoBiproductEmbedding_inv, CategoryTheory.Limits.biproduct.toSubtype_eq_desc, CategoryTheory.Abelian.Ext.mk₀_eq_zero_iff, CategoryTheory.Limits.Bicone.ofColimitCocone_π, CategoryTheory.kernelCokernelCompSequence.φ_π, CochainComplex.ConnectData.d₀_comp_assoc, CategoryTheory.Limits.isoZeroOfEpiZero_inv, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, CategoryTheory.Limits.kernel.condition_assoc, CategoryTheory.Limits.cokernelBiprodInlIso_hom, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles, CategoryTheory.Limits.biproduct.ι_π, HomologicalComplex.d_comp_d, ChainComplex.mk_congr_succ_d₂, CategoryTheory.Abelian.image.ι_comp_eq_zero, CategoryTheory.IsPushout.of_hasBinaryBiproduct, HomologicalComplex.mapBifunctor.d₂_eq_zero, CategoryTheory.ShortComplex.Splitting.s_r, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_fst, ChainComplex.chainComplex_d_succ_succ_zero, CategoryTheory.Limits.Pi.ι_π_of_ne_assoc, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_iff_epi₃, AlgebraicTopology.DoldKan.N₂_obj_X_d, CategoryTheory.BicartesianSq.of_is_biproduct₂, CategoryTheory.Triangulated.instNonemptyOctahedron, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero_assoc, CategoryTheory.Limits.pullbackZeroZeroIso_inv_snd, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_hom, CategoryTheory.BicartesianSq.of_has_biproduct₁, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zero_f, CategoryTheory.Limits.kernelZeroIsoSource_inv, CochainComplex.cm5b.I_d, CategoryTheory.ShortComplex.Homotopy.ofEq_h₁, CategoryTheory.IsPullback.of_isBilimit, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', CategoryTheory.Limits.HasZeroObject.zeroIsoIsInitial_hom, CategoryTheory.Limits.kernelBiprodSndIso_inv, CategoryTheory.Limits.inl_pushoutZeroZeroIso_inv, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_iff_mono₂, AlgebraicGeometry.tilde.map_zero, CochainComplex.ConnectData.comp_d₀, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_snd, CategoryTheory.MonoidalPreadditive.zero_whiskerRight, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.Limits.KernelFork.map_condition, HomologicalComplex.opcyclesToCycles_homologyπ_assoc, CochainComplex.mappingCone.inl_v_descShortComplex_f, CategoryTheory.Limits.Sigma.ι_π_of_ne, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty, HomologicalComplex.mapBifunctor₁₂.d₁_eq_zero, CategoryTheory.Limits.kernelSubobject_arrow_comp_assoc, CategoryTheory.IsPushout.zero_right, CategoryTheory.Limits.ker.condition_assoc, CategoryTheory.Localization.Preadditive.add'_zero, CategoryTheory.Limits.coprod.inr_fst, HomologicalComplex.mapBifunctor.d₂_eq_zero', CategoryTheory.Limits.zero_app, CategoryTheory.Limits.isoZeroOfMonoZero_hom, CategoryTheory.Limits.BinaryBicone.fstKernelFork_ι, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero, CochainComplex.HomComplex.Cochain.single_v_eq_zero', HomologicalComplex.homologyι_opcyclesToCycles, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_of_epi₃, CategoryTheory.Preadditive.forkOfKernelFork_ι, CategoryTheory.Mat_.id_apply, CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, CochainComplex.cochainComplex_d_succ_succ_zero, CategoryTheory.Abelian.tfae_mono, CategoryTheory.ShortComplex.Homotopy.g_h₃, CategoryTheory.IsPushout.of_has_biproduct, CategoryTheory.Preadditive.isCoseparator_iff, CategoryTheory.Limits.KernelFork.map_ι, CategoryTheory.Limits.zero_comp, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, CategoryTheory.MonoOver.initialTo_b_eq_zero, CategoryTheory.Pretriangulated.Triangle.isZero₃_iff, HomologicalComplex.mapBifunctor.d₁_eq_zero', CategoryTheory.ShortComplex.Homotopy.ofEq_h₃, CategoryTheory.NonPreadditiveAbelian.diag_σ_assoc, CategoryTheory.Limits.biproduct.ι_toSubtype, CochainComplex.mappingCone.inl_v_snd_v, CategoryTheory.ShortComplex.RightHomologyData.ι_descQ_eq_zero_of_boundary, HomologicalComplex.unit_tensor_d₁, CategoryTheory.Limits.IsZero.eq_zero_of_src, CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_rightAdd, CategoryTheory.DifferentialObject.d_squared_assoc, CategoryTheory.Limits.biproduct.ι_toSubtype_assoc, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom_assoc, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, CategoryTheory.Limits.HasZeroObject.zeroIsoIsTerminal_inv, CochainComplex.ConnectData.comp_d₀_assoc, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f, CategoryTheory.ShortComplex.HasRightHomology.of_zeros, CategoryTheory.Limits.IsZero.iff_id_eq_zero, CategoryTheory.ShortComplex.zero_τ₁, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_p, CategoryTheory.Limits.cokernel.π_of_epi, CategoryTheory.ShiftedHom.map_zero, CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_of_mono₁, CategoryTheory.ShortComplex.exact_iff_of_forks, CategoryTheory.Functor.PreservesHomology.preservesCokernel, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, CategoryTheory.Limits.BinaryBicone.inl_snd, CategoryTheory.ShortComplex.liftCycles_homologyπ_eq_zero_of_boundary, CategoryTheory.HomOrthogonal.matrixDecomposition_symm_apply, CategoryTheory.NonPreadditiveAbelian.lift_map, HomologicalComplex.homologyι_descOpcycles_eq_zero_of_boundary, CategoryTheory.Limits.IsZero.iff_isSplitMono_eq_zero, HomologicalComplex.fromOpcycles_d, HomologicalComplex.iCycles_d_assoc, CategoryTheory.Limits.op_zero, CategoryTheory.ShortComplex.rightHomologyι_comp_fromOpcycles, SheafOfModules.Presentation.IsFinite.finite_relations, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃, CategoryTheory.ObjectProperty.rightOrthogonal_iff, CategoryTheory.Preadditive.one_def, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_iff_mono₃, CategoryTheory.Mat_.id_def, CategoryTheory.DifferentialObject.d_squared_apply_assoc, CategoryTheory.Limits.biproduct.toSubtype_fromSubtype_assoc, CochainComplex.HomComplex.Cochain.equivHomotopy_symm_apply_hom, CategoryTheory.Limits.CokernelCofork.map_condition_assoc, CategoryTheory.Limits.hasPullback_over_zero, HomologicalComplex.extendMap_f_eq_zero, CategoryTheory.ShortComplex.Exact.isZero_X₂_iff, AlgebraicTopology.DoldKan.σ_comp_P_eq_zero, CategoryTheory.NonPreadditiveAbelian.add_neg_cancel, CategoryTheory.Subobject.factors_zero, CategoryTheory.IsPullback.inr_fst', CategoryTheory.ShortComplex.LeftHomologyData.wi_assoc, CategoryTheory.Pretriangulated.Triangle.isZero₁_iff, HomologicalComplex₂.ιTotalOrZero_eq_zero, HomologicalComplex.double_d_eq_zero₁, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁, CategoryTheory.ShortComplex.Exact.epi_f_iff, HomologicalComplex.truncGE'.homologyι_truncGE'XIsoOpcycles_inv_d, CategoryTheory.Limits.CokernelCofork.π_eq_zero, CategoryTheory.Limits.bicone_ι_π_ne, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, CategoryTheory.NonPreadditiveAbelian.lift_σ, CategoryTheory.Mat_.id_apply_of_ne, CategoryTheory.Limits.hasPushout_over_zero, CategoryTheory.NonPreadditiveAbelian.lift_σ_assoc, HomologicalComplex.opcyclesMap_zero, imageToKernel_epi_of_epi_of_zero, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f_assoc, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_iff_mono₁, CategoryTheory.Abelian.Pseudoelement.eq_zero_iff, HomologicalComplex.shortComplexTruncLE_shortExact_δ_eq_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.Limits.BinaryBicone.inr_fst, CategoryTheory.Limits.cokernelZeroIsoTarget_hom, DerivedCategory.HomologySequence.δ_comp_assoc, CategoryTheory.Limits.CokernelCofork.IsColimit.isZero_of_epi, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_cocone, DerivedCategory.HomologySequence.δ_comp, HomologicalComplex.biprod_inr_fst_f_assoc, CategoryTheory.Limits.kernelSubobject_arrow_comp, CategoryTheory.NonPreadditiveAbelian.neg_def, TopModuleCat.kerι_comp, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_i, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂_assoc, HomologicalComplex.extend.mapX_none, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, CategoryTheory.Limits.biproduct.ι_π_ne_assoc, CategoryTheory.ShortComplex.leftHomologyMap_zero, CategoryTheory.Limits.cokernelZeroIsoTarget_inv, HomologicalComplex.shape, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, Homotopy.refl_hom, CochainComplex.HomComplex.Cochain.ofHoms_zero, CategoryTheory.ShortComplex.liftCycles_leftHomologyπ_eq_zero_of_boundary, CategoryTheory.Pretriangulated.contractible_distinguished₁, HomologicalComplex.mapBifunctor₂₃.d₁_eq_zero, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, CategoryTheory.Limits.coprod.inl_snd_assoc, CategoryTheory.Localization.Preadditive.zero_add', dNext_eq_zero, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Localization.Preadditive.neg'_add'_self, CategoryTheory.ComposableArrows.IsComplex.zero, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv, CategoryTheory.ShortComplex.leftHomologyMap'_zero, CategoryTheory.Limits.prod.inr_fst, CategoryTheory.injective_iff_rlp_monomorphisms_zero, CategoryTheory.ShortComplex.rightHomologyMap'_zero, HomologicalComplex.biprod_inl_snd_f, CategoryTheory.Limits.preservesCokernel_zero, Homotopy.mkInductiveAux₂_zero, CategoryTheory.Functor.mapZeroObject_hom, ChainComplex.alternatingConst_map_f, CategoryTheory.Functor.homologySequenceδ_comp, ChainComplex.fromSingle₀Equiv_symm_apply_f_succ, CategoryTheory.Limits.kernelForkBiproductToSubtype_isLimit, CategoryTheory.Limits.hasImage_zero, CategoryTheory.Limits.kernelBiproductToSubtypeIso_inv, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom, HomologicalComplex.dFrom_comp_xNextIsoSelf_assoc, comp_zero, CategoryTheory.NonPreadditiveAbelian.sub_self, CategoryTheory.ShortComplex.Homotopy.h₀_f, CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, ChainComplex.alternatingConst_obj, CategoryTheory.GradedObject.ιMapObjOrZero_eq_zero, CategoryTheory.Preadditive.mono_iff_cancel_zero, CategoryTheory.Limits.inl_pushoutZeroZeroIso_hom, CategoryTheory.Functor.PreservesHomology.preservesKernel, Homotopy.nullHomotopy'_hom, CategoryTheory.Abelian.Pseudoelement.zero_apply, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, CategoryTheory.Limits.HasZeroObject.zeroIsoInitial_hom, CategoryTheory.cokernel_zero_of_nonzero_to_simple, CategoryTheory.ShortComplex.zero_τ₂, CategoryTheory.Functor.PreservesZeroMorphisms.map_zero, Rep.FiniteCyclicGroup.resolution.π_f, CategoryTheory.Functor.comp_homologySequenceδ_assoc, CategoryTheory.ShortComplex.LeftHomologyData.liftK_π_eq_zero_of_boundary_assoc, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inr, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.ComposableArrows.IsComplex.zero', CategoryTheory.DifferentialObject.zero_f, CategoryTheory.Limits.isCokernelEpiComp_desc, CategoryTheory.ShortComplex.hasHomology_of_hasKernel, HomologicalComplex.mapBifunctor₂₃.d₂_eq_zero, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, CategoryTheory.ObjectProperty.leftOrthogonal_iff, CategoryTheory.kernelCokernelCompSequence.ι_φ_assoc, CategoryTheory.Preadditive.coforkOfCokernelCofork_pt, CategoryTheory.Pretriangulated.Triangle.zero_hom₂, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_fst, CategoryTheory.ShortComplex.f_pOpcycles, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι, CategoryTheory.ShortComplex.Splitting.s_r_assoc, CategoryTheory.ShortComplex.opcyclesMap'_zero, CategoryTheory.kernelCokernelCompSequence.φ_π_assoc, HomologicalComplex.liftCycles_homologyπ_eq_zero_of_boundary_assoc, CategoryTheory.mono_to_simple_zero_of_not_iso, CategoryTheory.ShortComplex.f_pOpcycles_assoc, CategoryTheory.ShortComplex.ShortExact.comp_δ_assoc, CochainComplex.HomComplex.Cochain.single_v_eq_zero, CategoryTheory.Limits.cokernel.condition_apply, CategoryTheory.Limits.KernelFork.map_condition_assoc, CategoryTheory.Limits.kernelSubobject_zero, CategoryTheory.Limits.Bicone.ι_of_isLimit

Theorems

NameKindAssumesProvesValidatesDepends On
comp_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
zero
ext 📖zero_comp
comp_zero
instSubsingleton 📖mathematicalCategoryTheory.Limits.HasZeroMorphismsext
zero_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
zero

CategoryTheory.Limits.HasZeroObject

Definitions

NameCategoryTheorems
zeroMorphismsOfZeroObject 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instFunctor 📖mathematicalCategoryTheory.Limits.HasZeroObject
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.IsZero.hasZeroObject
CategoryTheory.Functor.isZero
CategoryTheory.Limits.isZero_zero
zeroIsoInitial_hom 📖mathematicalCategoryTheory.Iso.hom
zero'
CategoryTheory.Limits.initial
zeroIsoInitial
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
from_zero_ext
zeroIsoInitial_inv 📖mathematicalCategoryTheory.Iso.inv
zero'
CategoryTheory.Limits.initial
zeroIsoInitial
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.initial.hom_ext
zeroIsoIsInitial_hom 📖mathematicalCategoryTheory.Iso.hom
zero'
zeroIsoIsInitial
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
from_zero_ext
zeroIsoIsInitial_inv 📖mathematicalCategoryTheory.Iso.inv
zero'
zeroIsoIsInitial
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
to_zero_ext
zeroIsoIsTerminal_hom 📖mathematicalCategoryTheory.Iso.hom
zero'
zeroIsoIsTerminal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
from_zero_ext
zeroIsoIsTerminal_inv 📖mathematicalCategoryTheory.Iso.inv
zero'
zeroIsoIsTerminal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
to_zero_ext
zeroIsoTerminal_hom 📖mathematicalCategoryTheory.Iso.hom
zero'
CategoryTheory.Limits.terminal
zeroIsoTerminal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
from_zero_ext
zeroIsoTerminal_inv 📖mathematicalCategoryTheory.Iso.inv
zero'
CategoryTheory.Limits.terminal
zeroIsoTerminal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
to_zero_ext

CategoryTheory.Limits.IsColimit

Definitions

NameCategoryTheorems
ofIsZero 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isZero_pt 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.Cocone.ptCategoryTheory.Limits.IsZero.of_iso
CategoryTheory.Limits.isZero_zero

CategoryTheory.Limits.IsInitial

Theorems

NameKindAssumesProvesValidatesDepends On
isZero 📖mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Limits.IsZero.iff_id_eq_zero
hom_ext

CategoryTheory.Limits.IsLimit

Definitions

NameCategoryTheorems
ofIsZero 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isZero_pt 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.Cone.ptCategoryTheory.Limits.IsZero.of_iso
CategoryTheory.Limits.isZero_zero

CategoryTheory.Limits.IsTerminal

Theorems

NameKindAssumesProvesValidatesDepends On
isZero 📖mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Limits.IsZero.iff_id_eq_zero
hom_ext

CategoryTheory.Limits.IsZero

Definitions

NameCategoryTheorems
hasZeroMorphisms 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_src 📖mathematicalCategoryTheory.Limits.IsZeroQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
eq_of_src
eq_zero_of_tgt 📖mathematicalCategoryTheory.Limits.IsZeroQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
eq_of_tgt
iff_id_eq_zero 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
eq_of_src
CategoryTheory.Category.id_comp
CategoryTheory.Limits.zero_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.comp_zero
iff_isSplitEpi_eq_zero 📖mathematicalCategoryTheory.Limits.IsZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
iff_id_eq_zero
CategoryTheory.Category.comp_id
CategoryTheory.Limits.comp_zero
CategoryTheory.IsSplitEpi.id
CategoryTheory.section_.congr_simp
iff_isSplitMono_eq_zero 📖mathematicalCategoryTheory.Limits.IsZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
iff_id_eq_zero
CategoryTheory.Category.id_comp
CategoryTheory.Limits.zero_comp
CategoryTheory.IsSplitMono.id
CategoryTheory.retraction.congr_simp
map 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.HasZeroMorphisms.zero
eq_of_src
obj
of_epi 📖CategoryTheory.Limits.IsZeroeq_zero_of_src
of_epi_zero
of_epi_eq_zero 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.IsZeroof_epi_zero
of_epi_zero 📖mathematicalCategoryTheory.Limits.IsZeroiff_id_eq_zero
CategoryTheory.cancel_epi
CategoryTheory.Category.comp_id
CategoryTheory.Limits.comp_zero
of_mono 📖CategoryTheory.Limits.IsZeroeq_zero_of_tgt
of_mono_zero
of_mono_eq_zero 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.IsZeroof_mono_zero
of_mono_zero 📖mathematicalCategoryTheory.Limits.IsZeroiff_id_eq_zero
CategoryTheory.cancel_mono
CategoryTheory.Limits.comp_zero

CategoryTheory.Limits.Pi

Definitions

NameCategoryTheorems
ι 📖CompOp
8 mathmath: CategoryTheory.Limits.instMonoι_1, ι_π_eq_id, ι_π_of_ne, ι_π, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_π_app_eq_sum, ι_π_eq_id_assoc, ι_π_assoc, ι_π_of_ne_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
ι_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.eqToHom
CategoryTheory.Limits.HasZeroMorphisms.zero
ι_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.eqToHom
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_π
ι_π_eq_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
ι
π
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.limit.lift_π
Function.update_self
ι_π_eq_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
ι
π
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ι_π_eq_id
ι_π_of_ne 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.limit.lift_π
Function.update_of_ne
ι_π_of_ne_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_π_of_ne

CategoryTheory.Limits.Sigma

Definitions

NameCategoryTheorems
π 📖CompOp
8 mathmath: ι_π_assoc, CategoryTheory.Limits.instEpiπ, ι_π, ι_π_of_ne_assoc, ι_π_eq_id, ι_π_of_ne, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_ι_app_eq_sum, ι_π_eq_id_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
ι_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.eqToHom
CategoryTheory.Limits.HasZeroMorphisms.zero
ι_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.eqToHom
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_π
ι_π_eq_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
ι
π
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.colimit.ι_desc
Function.update_self
ι_π_eq_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
ι
π
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ι_π_eq_id
ι_π_of_ne 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.colimit.ι_desc
Function.update_of_ne
ι_π_of_ne_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
ι
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_π_of_ne

CategoryTheory.Limits.coprod

Definitions

NameCategoryTheorems
fst 📖CompOp
5 mathmath: inl_fst, CategoryTheory.Limits.instEpiFst, inl_fst_assoc, inr_fst_assoc, inr_fst
snd 📖CompOp
5 mathmath: inl_snd, inr_snd, inr_snd_assoc, CategoryTheory.Limits.instEpiSnd, inl_snd_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
inl_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
inl
fst
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.colimit.ι_desc
inl_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
inl
fst
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inl_fst
inl_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
inl
snd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.colimit.ι_desc
inl_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
inl
snd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_snd
inr_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
inr
fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.colimit.ι_desc
inr_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
inr
fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_fst
inr_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
inr
snd
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.colimit.ι_desc
inr_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
inr
snd
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inr_snd

CategoryTheory.Limits.image

Theorems

NameKindAssumesProvesValidatesDepends On
ι_zero 📖mathematicalι
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.image
lift_fac
CategoryTheory.Limits.comp_zero
ι_zero' 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
ι
CategoryTheory.Limits.image
CategoryTheory.Limits.hasImage_zero
eq_fac
ι_zero
CategoryTheory.Limits.comp_zero

CategoryTheory.Limits.prod

Definitions

NameCategoryTheorems
inl 📖CompOp
5 mathmath: inl_snd, inl_snd_assoc, inl_fst_assoc, CategoryTheory.Limits.instMonoInl, inl_fst
inr 📖CompOp
5 mathmath: inr_fst_assoc, inr_snd_assoc, CategoryTheory.Limits.instMonoInr, inr_snd, inr_fst

Theorems

NameKindAssumesProvesValidatesDepends On
inl_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
inl
fst
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.limit.lift_π
inl_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
inl
fst
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inl_fst
inl_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
inl
snd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.limit.lift_π
inl_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
inl
snd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_snd
inr_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
inr
fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.limit.lift_π
inr_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
inr
fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_fst
inr_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
inr
snd
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.limit.lift_π
inr_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
inr
snd
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inr_snd

---

← Back to Index