Documentation Verification Report

Sifted

📁 Source: Mathlib/CategoryTheory/Limits/Sifted.lean

Statistics

MetricCount
DefinitionsIsSifted, IsSiftedOrEmpty
2
Theoremscolim_preservesBinaryProducts_of_isSifted, colim_preservesFiniteProducts_of_isSifted, colim_preservesLimitsOfShape_pempty_of_isSifted, colim_preservesLimits_pair_of_sSifted, colim_preservesTerminal_of_isSifted, factorization_prodComparison_colim, instIsConnected, instIsIsoObjFunctorTypeColimTensorObjProdComparison, instIsSiftedOrEmptyOfHasBinaryCoproducts, isSiftedOrEmpty_of_colim_preservesBinaryProducts, isSiftedOrEmpty_of_colim_preservesFiniteProducts, isSifted_iff_asSmallIsSifted, isSifted_of_equiv, isSifted_of_hasBinaryCoproducts_and_nonempty, nonempty, nonempty_of_colim_preservesLimitsOfShapeFinZero, of_colim_preservesFiniteProducts, of_final_functor_from_sifted, of_final_functor_from_sifted', toFinal, instFinalProdProd'
21
Total23

CategoryTheory

Definitions

NameCategoryTheorems
IsSifted 📖CompData
7 mathmath: IsSifted.of_final_functor_from_sifted, IsSifted.of_final_functor_from_sifted', IsSifted.isSifted_of_equiv, IsFiltered.isSifted, IsSifted.isSifted_of_hasBinaryCoproducts_and_nonempty, IsSifted.isSifted_iff_asSmallIsSifted, IsSifted.of_colim_preservesFiniteProducts
IsSiftedOrEmpty 📖MathDef
4 mathmath: IsSifted.instIsSiftedOrEmptyOfHasBinaryCoproducts, IsSifted.isSiftedOrEmpty_of_colim_preservesFiniteProducts, IsFilteredOrEmpty.isSiftedOrEmpty, IsSifted.isSiftedOrEmpty_of_colim_preservesBinaryProducts

Theorems

NameKindAssumesProvesValidatesDepends On
instFinalProdProd' 📖mathematicalFunctor.Final
prod'
Functor.prod'
Functor.final_comp
instFinalProdProd

CategoryTheory.IsSifted

Theorems

NameKindAssumesProvesValidatesDepends On
colim_preservesBinaryProducts_of_isSifted 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.colim
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.preservesLimit_of_iso_diagram
colim_preservesLimits_pair_of_sSifted
colim_preservesFiniteProducts_of_isSifted 📖mathematicalCategoryTheory.Limits.PreservesFiniteProducts
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Limits.colim
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.PreservesFiniteProducts.of_preserves_binary_and_terminal
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
colim_preservesBinaryProducts_of_isSifted
colim_preservesLimitsOfShape_pempty_of_isSifted
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
colim_preservesLimitsOfShape_pempty_of_isSifted 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.colim
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.preservesLimitsOfShape_pempty_of_preservesTerminal
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
colim_preservesTerminal_of_isSifted
colim_preservesLimits_pair_of_sSifted 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.colim
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.CartesianMonoidalCategory.preservesLimit_pair_of_isIso_prodComparison
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
instIsIsoObjFunctorTypeColimTensorObjProdComparison
colim_preservesTerminal_of_isSifted 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Limits.colim
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.preservesTerminal_of_iso
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.Types.instHasColimitConstPUnitFunctor
instIsConnected
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
factorization_prodComparison_colim 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Limits.colimit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.externalProductBifunctor
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.diag
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Iso.hom
CategoryTheory.Limits.HasColimit.isoOfNatIso
CategoryTheory.Iso.symm
CategoryTheory.Iso.app
CategoryTheory.MonoidalCategory.externalProductCompDiagIso
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Limits.instHasColimitProd
CategoryTheory.Limits.Types.hasColimitsOfShape
CategoryTheory.Functor.curry
CategoryTheory.Limits.colim
CategoryTheory.Limits.colimit.pre
CategoryTheory.Functor.uncurry
CategoryTheory.Functor.whiskeringLeft₂
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.Limits.PreservesColimit₂.of_preservesColimits_in_each_variable
CategoryTheory.MonoidalCategory.Limits.preservesColimit_of_braided_and_preservesColimit_tensor_left
CategoryTheory.instBraidedCategoryType
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.instIsLeftAdjointTensorLeft
CategoryTheory.Limits.PreservesColimit₂.isoColimitUncurryWhiskeringLeft₂
CategoryTheory.CartesianMonoidalCategory.prodComparison
CategoryTheory.Functor.cartesianMonoidalCategory
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.instHasColimitProd
CategoryTheory.Limits.Types.hasColimitsOfShape
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.Limits.PreservesColimit₂.of_preservesColimits_in_each_variable
CategoryTheory.MonoidalCategory.Limits.preservesColimit_of_braided_and_preservesColimit_tensor_left
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.instIsLeftAdjointTensorLeft
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom_assoc
CategoryTheory.Limits.colimit.ι_pre_assoc
CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom
CategoryTheory.Category.id_comp
CategoryTheory.CartesianMonoidalCategory.comp_lift
CategoryTheory.Limits.ι_colimMap
CategoryTheory.CartesianMonoidalCategory.lift_fst_comp_snd_comp
instIsConnected 📖mathematicalCategoryTheory.IsConnectedCategoryTheory.isConnected_of_zigzag
nonempty
CategoryTheory.IsConnected.is_nonempty
CategoryTheory.Functor.Final.out
toFinal
CategoryTheory.Zag.of_hom
CategoryTheory.Zag.of_inv
instIsIsoObjFunctorTypeColimTensorObjProdComparison 📖mathematicalCategoryTheory.IsIso
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.colim
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.cartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.prodComparison
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.Limits.instHasColimitProd
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂
CategoryTheory.Limits.PreservesColimit₂.of_preservesColimits_in_each_variable
CategoryTheory.MonoidalCategory.Limits.preservesColimit_of_braided_and_preservesColimit_tensor_left
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.instIsLeftAdjointTensorLeft
factorization_prodComparison_colim
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Functor.Final.colimit_pre_isIso
toFinal
instIsSiftedOrEmptyOfHasBinaryCoproducts 📖mathematicalCategoryTheory.IsSiftedOrEmptyCategoryTheory.isConnected_of_zigzag
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Zag.of_inv
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Zag.of_hom
isSiftedOrEmpty_of_colim_preservesBinaryProducts 📖mathematicalCategoryTheory.IsSiftedOrEmptyCategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Functor.final_of_colimit_comp_coyoneda_iso_pUnit
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
isSiftedOrEmpty_of_colim_preservesFiniteProducts 📖mathematicalCategoryTheory.IsSiftedOrEmptyCategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
isSiftedOrEmpty_of_colim_preservesBinaryProducts
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
isSifted_iff_asSmallIsSifted 📖mathematicalCategoryTheory.IsSifted
CategoryTheory.AsSmall
CategoryTheory.instSmallCategoryAsSmall
isSifted_of_equiv
isSifted_of_equiv 📖mathematicalCategoryTheory.IsSiftedCategoryTheory.Equivalence.fun_inv_map
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Functor.final_iff_comp_equivalence
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Functor.final_iff_final_comp
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.final_of_natIso
toFinal
nonempty
isSifted_of_hasBinaryCoproducts_and_nonempty 📖mathematicalCategoryTheory.IsSiftedinstIsSiftedOrEmptyOfHasBinaryCoproducts
nonempty 📖
nonempty_of_colim_preservesLimitsOfShapeFinZero 📖CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimit
univLE_of_max
CategoryTheory.Limits.Types.isConnected_iff_colimit_constPUnitFunctor_iso_pUnit
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.preservesLimitsOfShape_of_equiv
CategoryTheory.IsConnected.is_nonempty
of_colim_preservesFiniteProducts 📖mathematicalCategoryTheory.IsSiftedCategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
isSiftedOrEmpty_of_colim_preservesFiniteProducts
nonempty_of_colim_preservesLimitsOfShapeFinZero
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
of_final_functor_from_sifted 📖mathematicalCategoryTheory.IsSiftedisSifted_iff_asSmallIsSifted
of_final_functor_from_sifted'
CategoryTheory.Functor.final_comp
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Equivalence.isEquivalence_functor
of_final_functor_from_sifted' 📖mathematicalCategoryTheory.IsSiftedCategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.preservesLimitsOfShape_of_natIso
CategoryTheory.Limits.comp_preservesLimitsOfShape
CategoryTheory.whiskeringLeft_preservesLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
colim_preservesFiniteProducts_of_isSifted
of_colim_preservesFiniteProducts
toFinal 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.uniformProd
CategoryTheory.Functor.diag

---

← Back to Index