Documentation Verification Report

VanKampen

📁 Source: Mathlib/CategoryTheory/Limits/VanKampen.lean

Statistics

MetricCount
DefinitionsIsUniversalColimit, isColimit, IsVanKampenColimit, isColimit
4
TheoremsisPullback_initial_to_of_isVanKampen, isVanKampen_iff, isVanKampen_mk, mono_inr_of_isVanKampen, isVanKampenColimit, isPullback_of_isColimit_left, isPullback_of_isColimit_right, isPullback_prod_of_isColimit, map_reflective, nonempty_isColimit_of_isPullback_left, nonempty_isColimit_of_isPullback_right, nonempty_isColimit_of_pullbackCone_left, nonempty_isColimit_of_pullbackCone_right, nonempty_isColimit_prod_of_isPullback, nonempty_isColimit_prod_of_pullbackCone, of_iso, of_mapCocone, precompose_isIso, whiskerEquivalence, whiskerEquivalence_iff, isUniversal, mapCocone_iff, map_reflective, of_iso, of_mapCocone, precompose_isIso, precompose_isIso_iff, whiskerEquivalence, whiskerEquivalence_iff, hasStrictInitial_of_isUniversal, isPullback_initial_to_of_cofan_isVanKampen, isPullback_of_cofan_isVanKampen, isUniversalColimit_extendCofan, isVanKampenColimit_extendCofan, isVanKampenColimit_of_evaluation, isVanKampenColimit_of_isEmpty, mono_of_cofan_isVanKampen
37
Total41

CategoryTheory

Definitions

NameCategoryTheorems
IsUniversalColimit 📖MathDef
5 mathmath: FinitaryPreExtensive.isUniversal_finiteCoproducts_Fin, IsVanKampenColimit.isUniversal, FinitaryPreExtensive.isUniversal_finiteCoproducts, IsUniversalColimit.whiskerEquivalence_iff, FinitaryPreExtensive.universal'
IsVanKampenColimit 📖MathDef
13 mathmath: finitaryExtensive_iff_of_isTerminal, isVanKampenColimit_of_isEmpty, BinaryCofan.isVanKampen_iff, FinitaryExtensive.van_kampen', IsInitial.isVanKampenColimit, FinitaryExtensive.isVanKampen_finiteCoproducts_Fin, FinitaryExtensive.vanKampen, FinitaryExtensive.isVanKampen_finiteCoproducts, BinaryCofan.isVanKampen_mk, IsVanKampenColimit.precompose_isIso_iff, IsVanKampenColimit.whiskerEquivalence_iff, IsVanKampenColimit.mapCocone_iff, IsPushout.isVanKampen_iff

Theorems

NameKindAssumesProvesValidatesDepends On
hasStrictInitial_of_isUniversal 📖mathematicalIsUniversalColimit
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.initial
CategoryStruct.id
Category.toCategoryStruct
Limits.HasStrictInitialObjectsLimits.hasStrictInitialObjects_of_initial_is_strict
NatTrans.ext'
Category.comp_id
Category.id_comp
NatTrans.Equifibered.of_discrete
IsPullback.of_horiz_isIso
IsIso.id
Limits.IsInitial.hom_ext
isPullback_initial_to_of_cofan_isVanKampen 📖mathematicalIsVanKampenColimit
Discrete
discreteCategory
IsPullback
Limits.initial
Functor.obj
Functor
Functor.category
Functor.const
Limits.Cocone.pt
Limits.initial.to
NatTrans.app
Limits.Cocone.ι
Functor.hext
Discrete.functor_map_id
Unique.instSubsingleton
Discrete.ext
Lean.Meta.FastSubsingleton.helim
isPullback_of_cofan_isVanKampen
isPullback_of_cofan_isVanKampen 📖mathematicalIsVanKampenColimit
Discrete
discreteCategory
Discrete.functor
IsPullback
Limits.initial
Limits.Cocone.pt
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
eqToHom
CategoryStruct.comp
Limits.initial.to
NatTrans.ext'
Category.assoc
Limits.initial.to_comp
NatTrans.Equifibered.of_discrete
instIsIsoEqToHom
IsIso.eq_inv_comp
Limits.IsInitial.hom_ext
eqToHom_trans_assoc
Category.id_comp
isUniversalColimit_extendCofan 📖mathematicalIsUniversalColimit
Discrete
discreteCategory
Discrete.functor
Limits.WalkingPair
Limits.pair
Limits.Cocone.pt
Limits.HasPullback
Functor.obj
Limits.WalkingPair.right
Functor
Functor.category
Functor.const
Limits.BinaryCofan.inr
extendCofanFunctor.hext
Discrete.functor_map_id
Category.assoc
congr_app
NatTrans.ext'
Limits.limit.lift_π
NatTrans.Equifibered.of_discrete
IsPullback.of_right
IsPullback.flip
IsPullback.of_hasPullback
Limits.pullback.condition
Category.comp_id
isVanKampenColimit_extendCofan 📖mathematicalIsVanKampenColimit
Discrete
discreteCategory
Discrete.functor
Limits.WalkingPair
Limits.pair
Limits.Cocone.pt
Limits.HasPullback
Functor.obj
Limits.WalkingPair.right
Functor
Functor.category
Functor.const
Limits.BinaryCofan.inr
extendCofanLimits.hasColimitOfHasColimitsOfShape
Limits.hasColimitsOfShape_discrete
Finite.of_fintype
NatTrans.ext'
congr_app
Limits.Sigma.hom_ext
Limits.colimit.ι_desc_assoc
Category.assoc
NatTrans.Equifibered.of_discrete
Functor.hext
Discrete.functor_map_id
Limits.IsColimit.fac
Limits.IsColimit.uniq
Limits.colimit.ι_desc
IsPullback.paste_horiz
isUniversalColimit_extendCofan
IsVanKampenColimit.isUniversal
isVanKampenColimit_of_evaluation 📖IsVanKampenColimit
Functor.comp
Functor
Functor.category
Functor.obj
evaluation
Functor.mapCocone
NatTrans.ext'
NatTrans.congr_app
NatTrans.Equifibered.whiskerRight
Limits.evaluation_preservesLimit
Limits.hasLimitOfHasLimitsOfShape
CommSq.w
Limits.evaluation_preservesColimit
Limits.hasColimitOfHasColimitsOfShape
IsPullback.map
isVanKampenColimit_of_isEmpty 📖mathematicalIsVanKampenColimitinstIsEmptyDiscrete
PEmpty.instIsEmpty
IsInitial.isVanKampenColimit
IsVanKampenColimit.whiskerEquivalence_iff
IsVanKampenColimit.of_iso
IsVanKampenColimit.precompose_isIso
Iso.isIso_hom
Category.comp_id
mono_of_cofan_isVanKampen 📖mathematicalIsVanKampenColimit
Discrete
discreteCategory
Mono
Functor.obj
Functor
Functor.category
Functor.const
Limits.Cocone.pt
NatTrans.app
Limits.Cocone.ι
Functor.hext
Discrete.functor_map_id
Limits.PullbackCone.mono_of_isLimitMkIdId
Category.id_comp
eqToHom_trans
IsPullback.paste_vert
IsPullback.of_vert_isIso
instIsIsoEqToHom
IsIso.id
Category.comp_id
isPullback_of_cofan_isVanKampen

CategoryTheory.BinaryCofan

Theorems

NameKindAssumesProvesValidatesDepends On
isPullback_initial_to_of_isVanKampen 📖mathematicalCategoryTheory.IsVanKampenColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.IsPullback
CategoryTheory.Limits.initial
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.initial.to
CategoryTheory.Limits.BinaryCofan.inl
CategoryTheory.Limits.BinaryCofan.inr
CategoryTheory.IsPullback.flip
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.initial.to_comp
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.Equifibered.of_discrete
CategoryTheory.Limits.BinaryCofan.isColimit_iff_isIso_inr
CategoryTheory.IsIso.id
isVanKampen_iff 📖mathematicalCategoryTheory.IsVanKampenColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.IsColimit
CategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inl
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Limits.BinaryCofan.inr
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.Equifibered.of_discrete
CategoryTheory.Functor.hext
CategoryTheory.Discrete.functor_map_id
CategoryTheory.NatTrans.congr_app
isVanKampen_mk 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inl
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Limits.BinaryCofan.inr
CategoryTheory.IsVanKampenColimitisVanKampen_iff
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
CategoryTheory.IsPullback.paste_vert
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.IsIso.id
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
mono_inr_of_isVanKampen 📖mathematicalCategoryTheory.IsVanKampenColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inr
CategoryTheory.Limits.PullbackCone.mono_of_isLimitMkIdId
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.initial.to_comp
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.Equifibered.of_discrete
CategoryTheory.Limits.BinaryCofan.isColimit_iff_isIso_inr
CategoryTheory.IsIso.id

CategoryTheory.IsInitial

Theorems

NameKindAssumesProvesValidatesDepends On
isVanKampenColimit 📖mathematicalCategoryTheory.IsVanKampenColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Limits.asEmptyCocone
CategoryTheory.Functor.hext
CategoryTheory.Limits.IsInitial.isIso_to

CategoryTheory.IsUniversalColimit

Definitions

NameCategoryTheorems
isColimit 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isPullback_of_isColimit_left 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.IsPullback
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cofan.IsColimit.desc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.Category.assoc
nonempty_isColimit_of_isPullback_left
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.Category.id_comp
CategoryTheory.Limits.limit.lift_π
CategoryTheory.IsPullback.of_iso
CategoryTheory.Limits.Cofan.IsColimit.hom_ext
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_hom_desc
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.Limits.pullback.lift_snd
isPullback_of_isColimit_right 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.IsPullback
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cofan.IsColimit.desc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.assoc
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
nonempty_isColimit_of_isPullback_right
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.Category.id_comp
CategoryTheory.Limits.limit.lift_π
CategoryTheory.IsPullback.of_iso
CategoryTheory.Limits.Cofan.IsColimit.hom_ext
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_hom_desc
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.Limits.pullback.lift_snd
isPullback_prod_of_isColimit 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.HasPullback
CategoryTheory.Limits.Cocone.pt
CategoryTheory.IsPullback
CategoryTheory.Limits.Cofan.IsColimit.desc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.assoc
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
nonempty_isColimit_prod_of_isPullback
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.Category.id_comp
CategoryTheory.Limits.limit.lift_π
CategoryTheory.IsPullback.of_iso
CategoryTheory.Limits.Cofan.IsColimit.hom_ext
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_hom_desc
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.Limits.pullback.lift_snd
map_reflective 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Functor.comp
CategoryTheory.Limits.HasPullback
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.mapCoconeCategoryTheory.Adjunction.rightAdjoint_preservesLimits
CategoryTheory.Adjunction.leftAdjoint_preservesColimits
CategoryTheory.Limits.pullback.condition
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.NatTrans.Equifibered.comp
CategoryTheory.NatTrans.Equifibered.of_isIso
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Functor.isIso_whiskerLeft
CategoryTheory.Adjunction.counit_isIso_of_R_fully_faithful
CategoryTheory.Adjunction.instIsIsoAppCounitOfFullOfFaithful
CategoryTheory.IsIso.eq_inv_of_inv_hom_id
CategoryTheory.Adjunction.left_triangle_components
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.Adjunction.counit_naturality_assoc
CategoryTheory.NatTrans.congr_app
CategoryTheory.Adjunction.unit_naturality
CategoryTheory.Adjunction.right_triangle_components_assoc
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Limits.pullback.lift.congr_simp
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.Limits.Cocone.w
CategoryTheory.Limits.pullback.lift_snd
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Limits.PreservesPullback.iso_hom_fst
CategoryTheory.IsIso.comp_inv_eq
CategoryTheory.Limits.PreservesPullback.iso_hom_snd
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.pullback.lift_fst_assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Limits.Cocones.cocone_iso_of_hom_iso
CategoryTheory.Limits.pullback_fst_iso_of_right_iso
CategoryTheory.IsIso.inv_isIso
CategoryTheory.IsIso.eq_comp_inv
CategoryTheory.IsIso.id
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.Equifibered.whiskerRight
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.IsPullback.of_right
CategoryTheory.IsPullback.paste_vert
CategoryTheory.IsPullback.map
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Adjunction.right_triangle_components
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
nonempty_isColimit_of_isPullback_left 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.IsPullback
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.IsColimitnonempty_isColimit_of_pullbackCone_left
nonempty_isColimit_of_isPullback_right 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.IsPullback
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.IsColimitnonempty_isColimit_of_pullbackCone_right
nonempty_isColimit_of_pullbackCone_left 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.IsColimit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.Category.assoc
CategoryTheory.Limits.PullbackCone.IsLimit.hom_ext
CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst
CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd
Equiv.nonempty_congr
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.Equifibered.of_discrete
CategoryTheory.IsPullback.of_right
CategoryTheory.IsPullback.of_isLimit
nonempty_isColimit_of_pullbackCone_right 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.IsColimit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Category.assoc
CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.Limits.PullbackCone.IsLimit.hom_ext
CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst
CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd
Equiv.nonempty_congr
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.Equifibered.of_discrete
CategoryTheory.IsPullback.of_right
CategoryTheory.IsPullback.flip
CategoryTheory.IsPullback.of_isLimit
nonempty_isColimit_prod_of_isPullback 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.HasPullback
CategoryTheory.Limits.Cocone.pt
CategoryTheory.IsPullback
CategoryTheory.Limits.IsColimitnonempty_isColimit_prod_of_pullbackCone
nonempty_isColimit_prod_of_pullbackCone 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.HasPullback
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.IsColimit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.PullbackCone.IsLimit.hom_ext
CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst
CategoryTheory.Limits.limit.lift_π_assoc
CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd
CategoryTheory.Limits.limit.lift_π
Equiv.nonempty_congr
nonempty_isColimit_of_pullbackCone_left
CategoryTheory.Category.id_comp
nonempty_isColimit_of_pullbackCone_right
of_iso 📖CategoryTheory.IsUniversalColimitCategoryTheory.NatTrans.ext'
CategoryTheory.Limits.CoconeMorphism.w
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.paste_vert
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.IsIso.id
CategoryTheory.Limits.instIsIsoHomInvCocone
CategoryTheory.Category.id_comp
of_mapCocone 📖CategoryTheory.IsUniversalColimit
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapCocone
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.congr_map
CategoryTheory.NatTrans.congr_app
CategoryTheory.NatTrans.Equifibered.whiskerRight
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.IsPullback.map
CategoryTheory.Limits.reflectsColimit_of_reflectsColimitsOfShape
precompose_isIso 📖mathematicalCategoryTheory.IsUniversalColimitCategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.Equifibered.comp
CategoryTheory.NatTrans.Equifibered.of_isIso
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.paste_vert
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.IsIso.id
whiskerEquivalence 📖mathematicalCategoryTheory.IsUniversalColimitCategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.whisker
Equiv.nonempty_congr
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.invFunIdAssoc_hom_app
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.Equifibered.comp
CategoryTheory.NatTrans.Equifibered.whiskerLeft
CategoryTheory.NatTrans.Equifibered.of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsPullback.paste_vert
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.IsIso.id
whiskerEquivalence_iff 📖mathematicalCategoryTheory.IsUniversalColimit
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.whisker
of_iso
precompose_isIso
CategoryTheory.Iso.isIso_inv
whiskerEquivalence
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.Equivalence.invFunIdAssoc_inv_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality

CategoryTheory.IsVanKampenColimit

Definitions

NameCategoryTheorems
isColimit 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isUniversal 📖mathematicalCategoryTheory.IsVanKampenColimitCategoryTheory.IsUniversalColimit
mapCocone_iff 📖mathematicalCategoryTheory.IsVanKampenColimit
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapCocone
of_mapCocone
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Limits.ReflectsFiniteLimits.reflects
CategoryTheory.Limits.instReflectsFiniteLimitsOfReflectsLimits
CategoryTheory.Limits.fullyFaithful_reflectsLimits
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Limits.reflectsColimitsOfShape_of_reflectsColimits
CategoryTheory.Limits.fullyFaithful_reflectsColimits
CategoryTheory.Functor.isEquivalence_inv
precompose_isIso_iff
CategoryTheory.Iso.isIso_inv
of_iso
CategoryTheory.Functor.id_hcomp
CategoryTheory.Functor.inv_fun_map
CategoryTheory.Iso.hom_inv_id_app_assoc
map_reflective 📖mathematicalCategoryTheory.IsVanKampenColimit
CategoryTheory.Functor.comp
CategoryTheory.Limits.HasPullback
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Functor.mapCoconeCategoryTheory.Adjunction.rightAdjoint_preservesLimits
CategoryTheory.Adjunction.leftAdjoint_preservesColimits
CategoryTheory.NatTrans.Equifibered.comp
CategoryTheory.NatTrans.Equifibered.of_isIso
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Functor.isIso_whiskerLeft
CategoryTheory.Adjunction.counit_isIso_of_R_fully_faithful
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Adjunction.instIsIsoAppCounitOfFullOfFaithful
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.Adjunction.counit_naturality_assoc
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatIso.isIso_inv_app
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Functor.mapCocone_ι_app
CategoryTheory.Limits.colimit.cocone_ι
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.NatTrans.congr_app
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_hom_desc
CategoryTheory.IsPullback.map
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.Equifibered.whiskerRight
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.IsPullback.paste_vert
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.IsIso.inv_comp_eq
CategoryTheory.NatIso.inv_inv_app
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
CategoryTheory.IsUniversalColimit.map_reflective
isUniversal
of_iso 📖CategoryTheory.IsVanKampenColimitCategoryTheory.NatTrans.ext'
CategoryTheory.Limits.CoconeMorphism.w
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.paste_vert_iff
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.IsIso.id
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.congr_app
of_mapCocone 📖CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
CategoryTheory.IsVanKampenColimit
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapCocone
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.reflectsColimit_of_reflectsColimitsOfShape
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.congr_map
CategoryTheory.NatTrans.congr_app
CategoryTheory.NatTrans.Equifibered.whiskerRight
CategoryTheory.IsPullback.map_iff
CategoryTheory.Limits.reflectsLimit_of_reflectsLimitsOfShape
precompose_isIso 📖mathematicalCategoryTheory.IsVanKampenColimitCategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.Equifibered.comp
CategoryTheory.NatTrans.Equifibered.of_isIso
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.paste_vert_iff
CategoryTheory.congr_app
precompose_isIso_iff 📖mathematicalCategoryTheory.IsVanKampenColimit
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
of_iso
precompose_isIso
CategoryTheory.IsIso.inv_isIso
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.Category.comp_id
whiskerEquivalence 📖mathematicalCategoryTheory.IsVanKampenColimitCategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.whisker
Equiv.nonempty_congr
CategoryTheory.Equivalence.invFunIdAssoc_hom_app
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.paste_vert
CategoryTheory.IsIso.id
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.NatTrans.naturality
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Equivalence.functor_unit_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.assoc
CategoryTheory.congr_app
CategoryTheory.NatTrans.Equifibered.comp
CategoryTheory.NatTrans.Equifibered.whiskerLeft
CategoryTheory.NatTrans.Equifibered.of_isIso
CategoryTheory.Iso.isIso_hom
whiskerEquivalence_iff 📖mathematicalCategoryTheory.IsVanKampenColimit
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocone.whisker
of_iso
precompose_isIso
CategoryTheory.Iso.isIso_inv
whiskerEquivalence
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.Equivalence.invFunIdAssoc_inv_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality

---

← Back to Index