Documentation Verification Report

Bousfield

📁 Source: Mathlib/CategoryTheory/Localization/Bousfield.lean

Statistics

MetricCount
DefinitionshomEquiv, isColocal, homEquiv, isLocal, homEquiv
5
TheoremsW_adj_unit_app, W_eq_inverseImage_isomorphisms, W_iff_isIso, W_iff_isIso_map, W_isoClosure, W_of_isIso, galoisConnection, isLocalization, le_W_iff, le_isColocal_isColocal, le_isLocal_isLocal, le_leftBousfieldW_isLocal, galoisConnection_isColocal, galoisConnection_isLocal, instHasTwoOutOfThreePropertyIsColocal, instHasTwoOutOfThreePropertyIsLocal, instIsMultiplicativeIsColocal, instIsMultiplicativeIsLocal, instRespectsIsoIsColocal, instRespectsIsoIsLocal, homEquiv_apply, isColocal_adj_counit_app, isColocal_eq_inverseImage_isomorphisms, isColocal_iff_isIso, isColocal_iff_isIso_map, isColocal_of_isIso, homEquiv_apply, isLocal_adj_unit_app, isLocal_eq_inverseImage_isomorphisms, isLocal_iff_isIso, isLocal_iff_isIso_map, isLocal_of_isIso, isLocalization_isColocal, isLocalization_isLocal, isoClosure_isColocal, isoClosure_isLocal, le_isColocal_iff, le_isColocal_isColocal, le_isLocal_W, le_isLocal_iff, le_isLocal_isLocal
41
Total46

CategoryTheory.Localization.LeftBousfield

Theorems

NameKindAssumesProvesValidatesDepends On
W_adj_unit_app 📖mathematicalCategoryTheory.ObjectProperty.isLocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.ObjectProperty.isLocal_adj_unit_app
W_eq_inverseImage_isomorphisms 📖mathematicalCategoryTheory.ObjectProperty.isLocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.ObjectProperty.isLocal_eq_inverseImage_isomorphisms
W_iff_isIso 📖mathematicalCategoryTheory.ObjectProperty.isLocal
CategoryTheory.IsIso
CategoryTheory.ObjectProperty.isLocal_iff_isIso
W_iff_isIso_map 📖mathematicalCategoryTheory.ObjectProperty.isLocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.IsIso
CategoryTheory.Functor.map
CategoryTheory.ObjectProperty.isLocal_iff_isIso_map
W_isoClosure 📖mathematicalCategoryTheory.ObjectProperty.isLocal
CategoryTheory.ObjectProperty.isoClosure
CategoryTheory.ObjectProperty.isoClosure_isLocal
W_of_isIso 📖mathematicalCategoryTheory.ObjectProperty.isLocalCategoryTheory.ObjectProperty.isLocal_of_isIso
galoisConnection 📖mathematicalGaloisConnection
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
OrderDual
CategoryTheory.MorphismProperty
Pi.preorder
PartialOrder.toPreorder
Prop.partialOrder
OrderDual.instPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
CategoryTheory.ObjectProperty.isLocal
CategoryTheory.MorphismProperty.isLocal
OrderDual.ofDual
CategoryTheory.ObjectProperty.galoisConnection_isLocal
isLocalization 📖mathematicalCategoryTheory.Functor.IsLocalization
CategoryTheory.ObjectProperty.isLocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.ObjectProperty.isLocalization_isLocal
le_W_iff 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.ObjectProperty.isLocal
CategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
CategoryTheory.MorphismProperty.isLocal
CategoryTheory.ObjectProperty.le_isLocal_iff

CategoryTheory.Localization.LeftBousfield.W

Definitions

NameCategoryTheorems
homEquiv 📖CompOp

CategoryTheory.MorphismProperty

Theorems

NameKindAssumesProvesValidatesDepends On
le_isColocal_isColocal 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
CategoryTheory.ObjectProperty.isColocal
isColocal
CategoryTheory.ObjectProperty.le_isColocal_iff
le_refl
le_isLocal_isLocal 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
CategoryTheory.ObjectProperty.isLocal
isLocal
CategoryTheory.ObjectProperty.le_isLocal_iff
le_refl
le_leftBousfieldW_isLocal 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
CategoryTheory.ObjectProperty.isLocal
isLocal
le_isLocal_isLocal

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
isColocal 📖CompOp
14 mathmath: instRespectsIsoIsColocal, isLocalization_isColocal, isColocal_eq_inverseImage_isomorphisms, isoClosure_isColocal, galoisConnection_isColocal, isColocal_iff_isIso, isColocal_adj_counit_app, le_isColocal_iff, instIsMultiplicativeIsColocal, isColocal_of_isIso, isColocal_iff_isIso_map, instHasTwoOutOfThreePropertyIsColocal, CategoryTheory.MorphismProperty.le_isColocal_isColocal, le_isColocal_isColocal
isLocal 📖CompOp
34 mathmath: isLocal_of_isIso, CategoryTheory.Localization.LeftBousfield.galoisConnection, CategoryTheory.Abelian.isoModSerre_kernel_eq_isLocal_of_rightAdjoint, CategoryTheory.Localization.LeftBousfield.W_eq_inverseImage_isomorphisms, CategoryTheory.Localization.LeftBousfield.W_adj_unit_app, CategoryTheory.Localization.LeftBousfield.le_W_iff, instHasTwoOutOfThreePropertyIsLocal, CategoryTheory.OrthogonalReflection.isLocal_isLocal_reflection, CategoryTheory.OrthogonalReflection.leftBousfieldW_isLocal_toSucc, isLocalization_isLocal, isLocal_iff_isIso, CategoryTheory.MorphismProperty.le_isLocal_isLocal, instIsStableUnderTransfiniteCompositionIsLocal, CategoryTheory.OrthogonalReflection.isLocal_isLocal_toSucc, le_isLocal_iff, le_isLocal_isLocal, CategoryTheory.Abelian.isoModSerre_kernel_eq_leftBousfield_W_of_rightAdjoint, instIsMultiplicativeIsLocal, CategoryTheory.Localization.LeftBousfield.W_iff_isIso, CategoryTheory.MorphismProperty.le_leftBousfieldW_isLocal, isLocal_iff_isIso_map, CategoryTheory.Localization.LeftBousfield.W_isoClosure, instIsStableUnderTransfiniteCompositionOfShapeIsLocal, isLocal_adj_unit_app, CategoryTheory.Localization.LeftBousfield.W_of_isIso, CategoryTheory.GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj, galoisConnection_isLocal, CategoryTheory.GrothendieckTopology.W_eq_W_range_sheafToPresheaf_obj, instRespectsIsoIsLocal, le_isLocal_W, CategoryTheory.Localization.LeftBousfield.isLocalization, CategoryTheory.Localization.LeftBousfield.W_iff_isIso_map, isoClosure_isLocal, isLocal_eq_inverseImage_isomorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
galoisConnection_isColocal 📖mathematicalGaloisConnection
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
OrderDual
CategoryTheory.MorphismProperty
Pi.preorder
PartialOrder.toPreorder
Prop.partialOrder
OrderDual.instPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
isColocal
CategoryTheory.MorphismProperty.isColocal
OrderDual.ofDual
le_isColocal_iff
galoisConnection_isLocal 📖mathematicalGaloisConnection
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
OrderDual
CategoryTheory.MorphismProperty
Pi.preorder
PartialOrder.toPreorder
Prop.partialOrder
OrderDual.instPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
isLocal
CategoryTheory.MorphismProperty.isLocal
OrderDual.ofDual
le_isLocal_iff
instHasTwoOutOfThreePropertyIsColocal 📖mathematicalCategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty
isColocal
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeIsColocal
Function.Bijective.of_comp_iff'
CategoryTheory.Category.assoc
Function.Bijective.of_comp_iff
instHasTwoOutOfThreePropertyIsLocal 📖mathematicalCategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty
isLocal
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeIsLocal
Function.Bijective.of_comp_iff
CategoryTheory.Category.assoc
Function.Bijective.of_comp_iff'
instIsMultiplicativeIsColocal 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
isColocal
CategoryTheory.Category.comp_id
Function.bijective_id
CategoryTheory.Category.assoc
Function.Bijective.comp
instIsMultiplicativeIsLocal 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
isLocal
CategoryTheory.Category.id_comp
Function.bijective_id
CategoryTheory.Category.assoc
Function.Bijective.comp
instRespectsIsoIsColocal 📖mathematicalCategoryTheory.MorphismProperty.RespectsIso
isColocal
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
instHasTwoOutOfThreePropertyIsColocal
isColocal_of_isIso
instRespectsIsoIsLocal 📖mathematicalCategoryTheory.MorphismProperty.RespectsIso
isLocal
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
instHasTwoOutOfThreePropertyIsLocal
isLocal_of_isIso
isColocal_adj_counit_app 📖mathematicalisColocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
CategoryTheory.Functor.FullyFaithful.map_preimage
Equiv.bijective
isColocal_eq_inverseImage_isomorphisms 📖mathematicalisColocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.MorphismProperty.ext
isColocal_iff_isIso_map
isColocal_iff_isIso 📖mathematicalisColocal
CategoryTheory.IsIso
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
isColocal_of_isIso
isColocal_iff_isIso_map 📖mathematicalisColocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.IsIso
CategoryTheory.Functor.map
CategoryTheory.NatTrans.naturality
CategoryTheory.MorphismProperty.precomp_iff
CategoryTheory.MorphismProperty.Respects.toRespectsLeft
CategoryTheory.MorphismProperty.instRespectsOfIsStableUnderComposition
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
instHasTwoOutOfThreePropertyIsColocal
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toHasOfPrecompProperty
isColocal_adj_counit_app
CategoryTheory.MorphismProperty.postcomp_iff
CategoryTheory.MorphismProperty.Respects.toRespectsRight
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toHasOfPostcompProperty
isColocal_iff_isIso
CategoryTheory.isIso_of_fully_faithful
CategoryTheory.Functor.map_isIso
isColocal_of_isIso 📖mathematicalisColocalCategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
isLocal_adj_unit_app 📖mathematicalisLocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.FullyFaithful.map_preimage
Equiv.bijective
isLocal_eq_inverseImage_isomorphisms 📖mathematicalisLocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.MorphismProperty.ext
isLocal_iff_isIso_map
isLocal_iff_isIso 📖mathematicalisLocal
CategoryTheory.IsIso
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Category.comp_id
isLocal_of_isIso
isLocal_iff_isIso_map 📖mathematicalisLocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
CategoryTheory.IsIso
CategoryTheory.Functor.map
CategoryTheory.NatTrans.naturality
CategoryTheory.MorphismProperty.postcomp_iff
CategoryTheory.MorphismProperty.Respects.toRespectsRight
CategoryTheory.MorphismProperty.instRespectsOfIsStableUnderComposition
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
instHasTwoOutOfThreePropertyIsLocal
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toHasOfPostcompProperty
isLocal_adj_unit_app
CategoryTheory.MorphismProperty.precomp_iff
CategoryTheory.MorphismProperty.Respects.toRespectsLeft
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toHasOfPrecompProperty
isLocal_iff_isIso
CategoryTheory.isIso_of_fully_faithful
CategoryTheory.Functor.map_isIso
isLocal_of_isIso 📖mathematicalisLocalCategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.IsIso.hom_inv_id_assoc
isLocalization_isColocal 📖mathematicalCategoryTheory.Functor.IsLocalization
isColocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
isColocal_eq_inverseImage_isomorphisms
CategoryTheory.Adjunction.isLocalization'
isLocalization_isLocal 📖mathematicalCategoryTheory.Functor.IsLocalization
isLocal
Set
Set.instMembership
Set.range
CategoryTheory.Functor.obj
isLocal_eq_inverseImage_isomorphisms
CategoryTheory.Adjunction.isLocalization
isoClosure_isColocal 📖mathematicalisColocal
isoClosure
CategoryTheory.MorphismProperty.ext
le_isoClosure
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
isoClosure_isLocal 📖mathematicalisLocal
isoClosure
CategoryTheory.MorphismProperty.ext
le_isoClosure
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
le_isColocal_iff 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
isColocal
CategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
CategoryTheory.MorphismProperty.isColocal
le_isColocal_isColocal 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.MorphismProperty.isColocal
isColocal
le_isColocal_iff
le_refl
le_isLocal_W 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.MorphismProperty.isLocal
isLocal
le_isLocal_isLocal
le_isLocal_iff 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
isLocal
CategoryTheory.ObjectProperty
Pi.hasLe
Prop.le
CategoryTheory.MorphismProperty.isLocal
le_isLocal_isLocal 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.MorphismProperty.isLocal
isLocal
le_isLocal_iff
le_refl

CategoryTheory.ObjectProperty.isColocal

Definitions

NameCategoryTheorems
homEquiv 📖CompOp
1 mathmath: homEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_apply 📖mathematicalCategoryTheory.ObjectProperty.isColocalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp

CategoryTheory.ObjectProperty.isLocal

Definitions

NameCategoryTheorems
homEquiv 📖CompOp
2 mathmath: PresheafOfModules.homEquivOfIsLocallyBijective_symm_apply, homEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_apply 📖mathematicalCategoryTheory.ObjectProperty.isLocalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp

---

← Back to Index