Documentation Verification Report

CalculusOfFractions

πŸ“ Source: Mathlib/CategoryTheory/Localization/CalculusOfFractions.lean

Statistics

MetricCount
DefinitionsHasLeftCalculusOfFractions, HasRightCalculusOfFractions, LeftFraction, comp, map, mk, Q, Qinv, Qiso, homMk, instCategory, strictUniversalPropertyFixedTarget, Y', comp, compβ‚€, f, map, ofHom, ofInv, op, rightFraction, s, unop, LeftFractionRel, RightFraction, X', f, leftFraction, map, ofHom, ofInv, op, s, unop, RightFractionRel
35
TheoremsessSurj_mapArrow, essSurj_mapArrow_of_hasRightCalculusOfFractions, exists_leftFraction, exists_rightFraction, exists_leftFraction, ext, toIsMultiplicative, exists_rightFraction, ext, toIsMultiplicative, comp_eq, map_mk, mk_surjective, Q_map, Q_map_comp_Qinv, Q_obj, Qiso_hom, Qiso_hom_inv_id, Qiso_hom_inv_id_assoc, Qiso_inv, Qiso_inv_hom_id, Qiso_inv_hom_id_assoc, fac, inverts, uniq, homMk_comp_homMk, homMk_eq, homMk_eq_hom_mk, homMk_eq_iff_leftFractionRel, homMk_eq_of_leftFractionRel, instIsIsoQinv, instIsLocalizationQ, map_eq_iff, comp_eq, compβ‚€_rel, exists_rightFraction, hs, map_comp_map_eq_map, map_comp_map_s, map_comp_map_s_assoc, map_compatibility, map_eq, map_eq_iff, map_eq_of_map_eq, map_hom_ofInv_id, map_hom_ofInv_id_assoc, map_ofHom, map_ofInv_hom_id, map_ofInv_hom_id_assoc, ofHom_Y', ofHom_f, ofHom_s, ofInv_Y', ofInv_f, ofInv_s, op_X', op_f, op_map, op_s, rightFraction_fac, rightFraction_fac_assoc, unop_X', unop_f, unop_s, op, refl, trans, unop, exists_leftFraction, hs, leftFraction_fac, leftFraction_fac_assoc, map_eq_iff, map_hom_ofInv_id, map_hom_ofInv_id_assoc, map_ofHom, map_ofInv_hom_id, map_ofInv_hom_id_assoc, map_s_comp_map, map_s_comp_map_assoc, ofHom_X', ofHom_f, ofHom_s, ofInv_X', ofInv_f, ofInv_s, op_Y', op_f, op_map, op_s, unop_Y', unop_f, unop_s, op, refl, trans, unop, equivalenceLeftFractionRel, equivalenceRightFractionRel, instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions, instHasLeftCalculusOfFractionsUnopOfHasRightCalculusOfFractionsOpposite, instHasRightCalculusOfFractionsOppositeOpOfHasLeftCalculusOfFractions, instHasRightCalculusOfFractionsUnopOfHasLeftCalculusOfFractionsOpposite, leftFractionRel_op_iff, map_eq_iff_postcomp, map_eq_iff_precomp, rightFractionRel_op_iff
107
Total142

CategoryTheory.Localization

Theorems

NameKindAssumesProvesValidatesDepends On
essSurj_mapArrow πŸ“–mathematicalβ€”CategoryTheory.Functor.EssSurj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.mapArrow
β€”essSurj
inverts
exists_leftFraction
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.MorphismProperty.LeftFraction.map_comp_map_s
essSurj_mapArrow_of_hasRightCalculusOfFractions πŸ“–mathematicalβ€”CategoryTheory.Functor.EssSurj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.mapArrow
β€”essSurj_mapArrow
CategoryTheory.Functor.IsLocalization.op
CategoryTheory.MorphismProperty.instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions
CategoryTheory.CommaMorphism.w
exists_leftFraction πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFraction.map
inverts
β€”CategoryTheory.MorphismProperty.LeftFraction.Localization.instIsLocalizationQ
inverts
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Functor.map_surjective
CategoryTheory.Equivalence.full_functor
CategoryTheory.MorphismProperty.LeftFraction.Localization.Hom.mk_surjective
CategoryTheory.MorphismProperty.LeftFraction.Localization.homMk_eq
CategoryTheory.MorphismProperty.LeftFraction.map_compatibility
exists_rightFraction πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RightFraction.map
inverts
β€”inverts
CategoryTheory.Functor.IsLocalization.op
exists_leftFraction
CategoryTheory.MorphismProperty.instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions
CategoryTheory.MorphismProperty.IsInvertedBy.op
CategoryTheory.MorphismProperty.RightFraction.op_map

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
HasLeftCalculusOfFractions πŸ“–CompData
6 mathmath: CategoryTheory.Adjunction.hasLeftCalculusOfFractions', instHasLeftCalculusOfFractionsUnopOfHasRightCalculusOfFractionsOpposite, instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions, DerivedCategory.instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso, CategoryTheory.Adjunction.hasLeftCalculusOfFractions, CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
HasRightCalculusOfFractions πŸ“–CompData
6 mathmath: CategoryTheory.ObjectProperty.instHasRightCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated, CategoryTheory.Adjunction.hasRightCalculusOfFractions, instHasRightCalculusOfFractionsUnopOfHasLeftCalculusOfFractionsOpposite, CategoryTheory.Adjunction.hasRightCalculusOfFractions', instHasRightCalculusOfFractionsOppositeOpOfHasLeftCalculusOfFractions, DerivedCategory.instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso
LeftFraction πŸ“–CompData
1 mathmath: equivalenceLeftFractionRel
LeftFractionRel πŸ“–MathDef
12 mathmath: RightFractionRel.unop, LeftFractionβ‚‚Rel.snd, LeftFraction.Localization.homMk_eq_iff_leftFractionRel, RightFractionRel.op, LeftFraction.map_eq_iff, rightFractionRel_op_iff, LeftFractionRel.refl, LeftFractionβ‚‚Rel.fst, equivalenceLeftFractionRel, LeftFraction.compβ‚€_rel, leftFractionRel_op_iff, LeftFraction.Localization.map_eq_iff
RightFraction πŸ“–CompData
1 mathmath: equivalenceRightFractionRel
RightFractionRel πŸ“–MathDef
7 mathmath: LeftFractionRel.unop, equivalenceRightFractionRel, rightFractionRel_op_iff, RightFraction.map_eq_iff, leftFractionRel_op_iff, RightFractionRel.refl, LeftFractionRel.op

Theorems

NameKindAssumesProvesValidatesDepends On
equivalenceLeftFractionRel πŸ“–mathematicalβ€”LeftFraction
LeftFractionRel
β€”LeftFractionRel.refl
LeftFractionRel.symm
LeftFractionRel.trans
equivalenceRightFractionRel πŸ“–mathematicalβ€”RightFraction
RightFractionRel
β€”RightFractionRel.refl
RightFractionRel.symm
RightFractionRel.trans
instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions πŸ“–mathematicalβ€”HasLeftCalculusOfFractions
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
β€”IsMultiplicative.op
HasRightCalculusOfFractions.toIsMultiplicative
HasRightCalculusOfFractions.exists_rightFraction
HasRightCalculusOfFractions.ext
instHasLeftCalculusOfFractionsUnopOfHasRightCalculusOfFractionsOpposite πŸ“–mathematicalβ€”HasLeftCalculusOfFractions
unop
CategoryTheory.Category.toCategoryStruct
β€”IsMultiplicative.unop
HasRightCalculusOfFractions.toIsMultiplicative
HasRightCalculusOfFractions.exists_rightFraction
HasRightCalculusOfFractions.ext
instHasRightCalculusOfFractionsOppositeOpOfHasLeftCalculusOfFractions πŸ“–mathematicalβ€”HasRightCalculusOfFractions
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
β€”IsMultiplicative.op
HasLeftCalculusOfFractions.toIsMultiplicative
HasLeftCalculusOfFractions.exists_leftFraction
HasLeftCalculusOfFractions.ext
instHasRightCalculusOfFractionsUnopOfHasLeftCalculusOfFractionsOpposite πŸ“–mathematicalβ€”HasRightCalculusOfFractions
unop
CategoryTheory.Category.toCategoryStruct
β€”IsMultiplicative.unop
HasLeftCalculusOfFractions.toIsMultiplicative
HasLeftCalculusOfFractions.exists_leftFraction
HasLeftCalculusOfFractions.ext
leftFractionRel_op_iff πŸ“–mathematicalβ€”LeftFractionRel
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
Opposite.op
RightFraction.op
RightFractionRel
β€”LeftFractionRel.unop
RightFractionRel.op
map_eq_iff_postcomp πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”IsMultiplicative.toContainsIdentities
HasLeftCalculusOfFractions.toIsMultiplicative
CategoryTheory.Localization.inverts
LeftFraction.map_eq_iff
LeftFraction.map_ofHom
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Functor.map_comp
map_eq_iff_precomp πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”IsMultiplicative.toContainsIdentities
HasRightCalculusOfFractions.toIsMultiplicative
CategoryTheory.Localization.inverts
RightFraction.map_eq_iff
RightFraction.map_ofHom
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Functor.map_comp
rightFractionRel_op_iff πŸ“–mathematicalβ€”RightFractionRel
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
Opposite.op
LeftFraction.op
LeftFractionRel
β€”RightFractionRel.unop
LeftFractionRel.op

CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions

Theorems

NameKindAssumesProvesValidatesDepends On
exists_leftFraction πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.RightFraction.X'
CategoryTheory.MorphismProperty.LeftFraction.Y'
CategoryTheory.MorphismProperty.RightFraction.f
CategoryTheory.MorphismProperty.LeftFraction.s
CategoryTheory.MorphismProperty.RightFraction.s
CategoryTheory.MorphismProperty.LeftFraction.f
β€”β€”
ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”β€”
toIsMultiplicative πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsMultiplicativeβ€”β€”

CategoryTheory.MorphismProperty.HasRightCalculusOfFractions

Theorems

NameKindAssumesProvesValidatesDepends On
exists_rightFraction πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.RightFraction.X'
CategoryTheory.MorphismProperty.LeftFraction.Y'
CategoryTheory.MorphismProperty.RightFraction.s
CategoryTheory.MorphismProperty.LeftFraction.f
CategoryTheory.MorphismProperty.RightFraction.f
CategoryTheory.MorphismProperty.LeftFraction.s
β€”β€”
ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”β€”
toIsMultiplicative πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsMultiplicativeβ€”β€”

CategoryTheory.MorphismProperty.LeftFraction

Definitions

NameCategoryTheorems
Y' πŸ“–CompOp
22 mathmath: hs, op_X', CategoryTheory.MorphismProperty.RightFraction.leftFraction_fac, rightFraction_fac, ofHom_Y', unop_X', unop_f, op_f, op_s, unop_s, CategoryTheory.MorphismProperty.RightFraction.leftFraction_fac_assoc, CategoryTheory.MorphismProperty.RightFraction.exists_leftFraction, exists_rightFraction, CategoryTheory.MorphismProperty.HasRightCalculusOfFractions.exists_rightFraction, rightFraction_fac_assoc, map_comp_map_s, map_comp_map_s_assoc, CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction, CategoryTheory.MorphismProperty.RightFraction.unop_Y', ofInv_Y', CategoryTheory.MorphismProperty.RightFraction.op_Y', map_eq
comp πŸ“–CompOp
2 mathmath: Localization.Hom.comp_eq, comp_eq
compβ‚€ πŸ“–CompOp
4 mathmath: Localization.homMk_comp_homMk, comp_eq, map_comp_map_eq_map, compβ‚€_rel
f πŸ“–CompOp
17 mathmath: ofInv_f, CategoryTheory.MorphismProperty.RightFraction.leftFraction_fac, rightFraction_fac, unop_f, op_f, CategoryTheory.MorphismProperty.RightFraction.op_f, CategoryTheory.MorphismProperty.RightFraction.unop_f, CategoryTheory.MorphismProperty.RightFraction.leftFraction_fac_assoc, CategoryTheory.MorphismProperty.RightFraction.exists_leftFraction, exists_rightFraction, CategoryTheory.MorphismProperty.HasRightCalculusOfFractions.exists_rightFraction, rightFraction_fac_assoc, map_comp_map_s, ofHom_f, map_comp_map_s_assoc, CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction, map_eq
map πŸ“–CompOp
21 mathmath: map_compatibility, op_map, CategoryTheory.MorphismProperty.LeftFractionβ‚‚.map_add, Localization.Hom.map_mk, map_ofHom, CategoryTheory.MorphismProperty.LeftFractionβ‚‚.map_eq_iff, CategoryTheory.Localization.exists_leftFractionβ‚‚, map_hom_ofInv_id_assoc, map_eq_iff, CategoryTheory.MorphismProperty.RightFraction.op_map, Localization.homMk_eq, map_ofInv_hom_id_assoc, map_hom_ofInv_id, CategoryTheory.Localization.exists_leftFraction, map_comp_map_eq_map, map_comp_map_s, CategoryTheory.Localization.exists_leftFraction₃, map_ofInv_hom_id, map_comp_map_s_assoc, Localization.map_eq_iff, map_eq
ofHom πŸ“–CompOp
5 mathmath: ofHom_Y', map_ofHom, Localization.Q_map, ofHom_f, ofHom_s
ofInv πŸ“–CompOp
7 mathmath: ofInv_f, map_hom_ofInv_id_assoc, map_ofInv_hom_id_assoc, map_hom_ofInv_id, map_ofInv_hom_id, ofInv_s, ofInv_Y'
op πŸ“–CompOp
6 mathmath: op_map, op_X', op_f, op_s, CategoryTheory.MorphismProperty.rightFractionRel_op_iff, CategoryTheory.MorphismProperty.LeftFractionRel.op
rightFraction πŸ“–CompOp
2 mathmath: rightFraction_fac, rightFraction_fac_assoc
s πŸ“–CompOp
18 mathmath: hs, CategoryTheory.MorphismProperty.RightFraction.leftFraction_fac, rightFraction_fac, CategoryTheory.MorphismProperty.RightFraction.unop_s, op_s, unop_s, CategoryTheory.MorphismProperty.RightFraction.leftFraction_fac_assoc, CategoryTheory.MorphismProperty.RightFraction.exists_leftFraction, exists_rightFraction, CategoryTheory.MorphismProperty.HasRightCalculusOfFractions.exists_rightFraction, rightFraction_fac_assoc, map_comp_map_s, map_comp_map_s_assoc, ofHom_s, CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction, CategoryTheory.MorphismProperty.RightFraction.op_s, ofInv_s, map_eq
unop πŸ“–CompOp
4 mathmath: CategoryTheory.MorphismProperty.LeftFractionRel.unop, unop_X', unop_f, unop_s

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y'
f
s
comp
compβ‚€
β€”hs
compβ‚€_rel
CategoryTheory.MorphismProperty.RightFraction.leftFraction_fac
compβ‚€_rel πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y'
f
s
CategoryTheory.MorphismProperty.LeftFractionRel
compβ‚€
β€”hs
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.ext
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
exists_rightFraction πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.RightFraction.X'
Y'
CategoryTheory.MorphismProperty.RightFraction.s
f
CategoryTheory.MorphismProperty.RightFraction.f
s
β€”CategoryTheory.MorphismProperty.HasRightCalculusOfFractions.exists_rightFraction
hs πŸ“–mathematicalβ€”Y'
s
β€”β€”
map_comp_map_eq_map πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y'
f
s
CategoryTheory.Functor.obj
map
CategoryTheory.Localization.inverts
compβ‚€
β€”CategoryTheory.Localization.inverts
hs
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
map_comp_map_s
CategoryTheory.Category.assoc
map_comp_map_s_assoc
map_comp_map_s πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Y'
map
CategoryTheory.Functor.map
s
f
β€”CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
map_comp_map_s_assoc πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
map
Y'
CategoryTheory.Functor.map
s
f
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp_map_s
map_compatibility πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Equivalence.functor
CategoryTheory.Localization.uniq
CategoryTheory.Functor.obj
map
CategoryTheory.Localization.inverts
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Localization.compUniqFunctor
CategoryTheory.Iso.inv
β€”CategoryTheory.Localization.inverts
hs
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
map_comp_map_s
CategoryTheory.NatTrans.naturality
map_eq πŸ“–mathematicalβ€”map
CategoryTheory.Localization.inverts
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Y'
CategoryTheory.Functor.map
f
CategoryTheory.Iso.inv
CategoryTheory.Localization.isoOfHom
s
hs
β€”CategoryTheory.Localization.inverts
map_eq_iff πŸ“–mathematicalβ€”map
CategoryTheory.Localization.inverts
CategoryTheory.MorphismProperty.LeftFractionRel
β€”CategoryTheory.Localization.inverts
Localization.instIsLocalizationQ
Localization.map_eq_iff
map_eq_of_map_eq
map_eq_of_map_eq πŸ“–β€”map
CategoryTheory.Localization.inverts
β€”β€”CategoryTheory.Localization.inverts
CategoryTheory.Functor.map_injective
CategoryTheory.Equivalence.faithful_functor
map_compatibility
map_hom_ofInv_id πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
ofInv
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.IsIso.hom_inv_id
map_hom_ofInv_id_assoc πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
ofInv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_hom_ofInv_id
map_ofHom πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedBymap
ofHom
CategoryTheory.Functor.map
β€”CategoryTheory.Functor.map_id
CategoryTheory.inv.congr_simp
CategoryTheory.IsIso.inv_id
CategoryTheory.Category.comp_id
map_ofInv_hom_id πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
map
ofInv
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.IsIso.inv_hom_id
map_ofInv_hom_id_assoc πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
map
ofInv
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_ofInv_hom_id
ofHom_Y' πŸ“–mathematicalβ€”Y'
ofHom
β€”β€”
ofHom_f πŸ“–mathematicalβ€”f
ofHom
β€”β€”
ofHom_s πŸ“–mathematicalβ€”s
ofHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
ofInv_Y' πŸ“–mathematicalβ€”Y'
ofInv
β€”β€”
ofInv_f πŸ“–mathematicalβ€”f
ofInv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
ofInv_s πŸ“–mathematicalβ€”s
ofInv
β€”β€”
op_X' πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RightFraction.X'
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
op
Y'
β€”β€”
op_f πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RightFraction.f
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
Y'
f
β€”β€”
op_map πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
map
CategoryTheory.MorphismProperty.RightFraction.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
Opposite.op
op
CategoryTheory.Functor.op
CategoryTheory.MorphismProperty.IsInvertedBy.op
β€”CategoryTheory.MorphismProperty.IsInvertedBy.op
CategoryTheory.isIso_op
CategoryTheory.op_inv
op_s πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RightFraction.s
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
Y'
s
β€”β€”
rightFraction_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.RightFraction.X'
rightFraction
Y'
CategoryTheory.MorphismProperty.RightFraction.s
f
CategoryTheory.MorphismProperty.RightFraction.f
s
β€”exists_rightFraction
rightFraction_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.RightFraction.X'
rightFraction
CategoryTheory.MorphismProperty.RightFraction.s
Y'
f
CategoryTheory.MorphismProperty.RightFraction.f
s
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightFraction_fac
unop_X' πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RightFraction.X'
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
Opposite.unop
unop
Y'
Opposite
CategoryTheory.Category.opposite
β€”β€”
unop_f πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RightFraction.f
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
Opposite.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
Y'
Opposite
CategoryTheory.Category.opposite
f
β€”β€”
unop_s πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RightFraction.s
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
Opposite.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
Y'
Opposite
CategoryTheory.Category.opposite
s
β€”β€”

CategoryTheory.MorphismProperty.LeftFraction.Localization

Definitions

NameCategoryTheorems
Q πŸ“–CompOp
16 mathmath: StrictUniversalPropertyFixedTarget.fac, homMk_comp_homMk, Qiso_hom_inv_id, StrictUniversalPropertyFixedTarget.inverts, Qiso_inv_hom_id_assoc, instIsLocalizationQ, Qiso_hom_inv_id_assoc, homMk_eq, instIsIsoQinv, Qiso_hom, Qiso_inv, Q_map, Qiso_inv_hom_id, Q_obj, map_eq_iff, Q_map_comp_Qinv
Qinv πŸ“–CompOp
7 mathmath: Qiso_hom_inv_id, Qiso_inv_hom_id_assoc, Qiso_hom_inv_id_assoc, instIsIsoQinv, Qiso_inv, Qiso_inv_hom_id, Q_map_comp_Qinv
Qiso πŸ“–CompOp
2 mathmath: Qiso_hom, Qiso_inv
homMk πŸ“–CompOp
7 mathmath: homMk_comp_homMk, homMk_eq_iff_leftFractionRel, homMk_eq_of_leftFractionRel, homMk_eq, Q_map, homMk_eq_hom_mk, Q_map_comp_Qinv
instCategory πŸ“–CompOp
16 mathmath: StrictUniversalPropertyFixedTarget.fac, homMk_comp_homMk, Qiso_hom_inv_id, StrictUniversalPropertyFixedTarget.inverts, Qiso_inv_hom_id_assoc, instIsLocalizationQ, Qiso_hom_inv_id_assoc, homMk_eq, instIsIsoQinv, Qiso_hom, Qiso_inv, Q_map, Qiso_inv_hom_id, Q_obj, map_eq_iff, Q_map_comp_Qinv
strictUniversalPropertyFixedTarget πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
Q_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
Q
homMk
CategoryTheory.MorphismProperty.LeftFraction.ofHom
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
β€”β€”
Q_map_comp_Qinv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.MorphismProperty.LeftFraction.Localization
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
Q
CategoryTheory.Functor.map
Qinv
homMk
β€”CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
homMk_comp_homMk
CategoryTheory.Category.comp_id
Q_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
Q
β€”β€”
Qiso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
CategoryTheory.Functor.obj
Q
Qiso
CategoryTheory.Functor.map
β€”β€”
Qiso_hom_inv_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.MorphismProperty.LeftFraction.Localization
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
Q
CategoryTheory.Functor.map
Qinv
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.hom_inv_id
Qiso_hom_inv_id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.MorphismProperty.LeftFraction.Localization
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
Q
CategoryTheory.Functor.map
Qinv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
Qiso_hom_inv_id
Qiso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
CategoryTheory.Functor.obj
Q
Qiso
Qinv
β€”β€”
Qiso_inv_hom_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.MorphismProperty.LeftFraction.Localization
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
Q
Qinv
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.inv_hom_id
Qiso_inv_hom_id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.MorphismProperty.LeftFraction.Localization
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
Q
Qinv
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
Qiso_inv_hom_id
homMk_comp_homMk πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.LeftFraction.Y'
CategoryTheory.MorphismProperty.LeftFraction.f
CategoryTheory.MorphismProperty.LeftFraction.s
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
CategoryTheory.Functor.obj
Q
homMk
CategoryTheory.MorphismProperty.LeftFraction.compβ‚€
β€”Hom.comp_eq
CategoryTheory.MorphismProperty.LeftFraction.comp_eq
homMk_eq πŸ“–mathematicalβ€”homMk
CategoryTheory.MorphismProperty.LeftFraction.map
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
Q
CategoryTheory.Localization.inverts
instIsLocalizationQ
β€”CategoryTheory.Localization.inverts
instIsLocalizationQ
CategoryTheory.MorphismProperty.LeftFraction.hs
Q_map_comp_Qinv
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Category.assoc
Qiso_inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.MorphismProperty.LeftFraction.map_comp_map_s
homMk_eq_hom_mk πŸ“–mathematicalβ€”homMkβ€”β€”
homMk_eq_iff_leftFractionRel πŸ“–mathematicalβ€”homMk
CategoryTheory.MorphismProperty.LeftFractionRel
β€”Equivalence.quot_mk_eq_iff
CategoryTheory.MorphismProperty.equivalenceLeftFractionRel
homMk_eq_of_leftFractionRel πŸ“–mathematicalCategoryTheory.MorphismProperty.LeftFractionRelhomMkβ€”β€”
instIsIsoQinv πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
CategoryTheory.Functor.obj
Q
Qinv
β€”CategoryTheory.Iso.isIso_inv
instIsLocalizationQ πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocalization
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
Q
β€”CategoryTheory.Functor.IsLocalization.mk'
map_eq_iff πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFraction.map
CategoryTheory.MorphismProperty.LeftFraction.Localization
instCategory
Q
CategoryTheory.Localization.inverts
instIsLocalizationQ
CategoryTheory.MorphismProperty.LeftFractionRel
β€”CategoryTheory.Localization.inverts
instIsLocalizationQ
homMk_eq_iff_leftFractionRel
homMk_eq

CategoryTheory.MorphismProperty.LeftFraction.Localization.Hom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
1 mathmath: comp_eq
map πŸ“–CompOp
1 mathmath: map_mk
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq πŸ“–mathematicalβ€”comp
CategoryTheory.MorphismProperty.LeftFraction.comp
β€”β€”
map_mk πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedBymap
CategoryTheory.MorphismProperty.LeftFraction.map
β€”β€”
mk_surjective πŸ“–β€”β€”β€”β€”β€”

CategoryTheory.MorphismProperty.LeftFraction.Localization.StrictUniversalPropertyFixedTarget

Theorems

NameKindAssumesProvesValidatesDepends On
fac πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.LeftFraction.Localization
CategoryTheory.MorphismProperty.LeftFraction.Localization.instCategory
CategoryTheory.MorphismProperty.LeftFraction.Localization.Q
lift
β€”CategoryTheory.Functor.ext
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
CategoryTheory.MorphismProperty.LeftFraction.Localization.Q_map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.MorphismProperty.LeftFraction.map_ofHom
inverts πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.LeftFraction.Localization
CategoryTheory.MorphismProperty.LeftFraction.Localization.instCategory
CategoryTheory.MorphismProperty.LeftFraction.Localization.Q
β€”CategoryTheory.Iso.isIso_hom
uniq πŸ“–β€”CategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.LeftFraction.Localization
CategoryTheory.MorphismProperty.LeftFraction.Localization.instCategory
CategoryTheory.MorphismProperty.LeftFraction.Localization.Q
β€”β€”CategoryTheory.Functor.ext
CategoryTheory.Functor.congr_obj
CategoryTheory.MorphismProperty.LeftFraction.Localization.Hom.mk_surjective
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.MorphismProperty.LeftFraction.Localization.Q_map_comp_Qinv
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.congr_hom
inverts
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.instIsSplitEpiMap
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.MorphismProperty.LeftFraction.Localization.Qiso_hom_inv_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.eqToHom_refl
CategoryTheory.Category.comp_id

CategoryTheory.MorphismProperty.LeftFractionRel

Theorems

NameKindAssumesProvesValidatesDepends On
op πŸ“–mathematicalCategoryTheory.MorphismProperty.LeftFractionRelCategoryTheory.MorphismProperty.RightFractionRel
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.MorphismProperty.LeftFraction.op
β€”β€”
refl πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFractionRelβ€”CategoryTheory.Category.comp_id
CategoryTheory.MorphismProperty.LeftFraction.hs
trans πŸ“–β€”CategoryTheory.MorphismProperty.LeftFractionRelβ€”β€”CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.ext
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
unop πŸ“–mathematicalCategoryTheory.MorphismProperty.LeftFractionRel
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.RightFractionRel
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.MorphismProperty.LeftFraction.unop
β€”β€”

CategoryTheory.MorphismProperty.RightFraction

Definitions

NameCategoryTheorems
X' πŸ“–CompOp
21 mathmath: CategoryTheory.MorphismProperty.LeftFraction.op_X', leftFraction_fac, CategoryTheory.MorphismProperty.LeftFraction.rightFraction_fac, map_s_comp_map_assoc, CategoryTheory.MorphismProperty.LeftFraction.unop_X', unop_s, map_s_comp_map, ofHom_X', op_f, ofInv_X', unop_f, leftFraction_fac_assoc, exists_leftFraction, CategoryTheory.MorphismProperty.LeftFraction.exists_rightFraction, CategoryTheory.MorphismProperty.HasRightCalculusOfFractions.exists_rightFraction, CategoryTheory.MorphismProperty.LeftFraction.rightFraction_fac_assoc, hs, CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction, unop_Y', op_s, op_Y'
f πŸ“–CompOp
16 mathmath: leftFraction_fac, CategoryTheory.MorphismProperty.LeftFraction.rightFraction_fac, map_s_comp_map_assoc, map_s_comp_map, CategoryTheory.MorphismProperty.LeftFraction.unop_f, CategoryTheory.MorphismProperty.LeftFraction.op_f, op_f, unop_f, leftFraction_fac_assoc, exists_leftFraction, CategoryTheory.MorphismProperty.LeftFraction.exists_rightFraction, CategoryTheory.MorphismProperty.HasRightCalculusOfFractions.exists_rightFraction, CategoryTheory.MorphismProperty.LeftFraction.rightFraction_fac_assoc, ofInv_f, ofHom_f, CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction
leftFraction πŸ“–CompOp
2 mathmath: leftFraction_fac, leftFraction_fac_assoc
map πŸ“–CompOp
11 mathmath: CategoryTheory.Localization.exists_rightFraction, CategoryTheory.MorphismProperty.LeftFraction.op_map, map_ofInv_hom_id, map_s_comp_map_assoc, map_hom_ofInv_id, map_hom_ofInv_id_assoc, map_s_comp_map, map_ofInv_hom_id_assoc, op_map, map_eq_iff, map_ofHom
ofHom πŸ“–CompOp
4 mathmath: ofHom_s, ofHom_X', map_ofHom, ofHom_f
ofInv πŸ“–CompOp
7 mathmath: map_ofInv_hom_id, ofInv_s, map_hom_ofInv_id, map_hom_ofInv_id_assoc, map_ofInv_hom_id_assoc, ofInv_X', ofInv_f
op πŸ“–CompOp
6 mathmath: CategoryTheory.MorphismProperty.RightFractionRel.op, op_f, op_map, CategoryTheory.MorphismProperty.leftFractionRel_op_iff, op_s, op_Y'
s πŸ“–CompOp
17 mathmath: leftFraction_fac, CategoryTheory.MorphismProperty.LeftFraction.rightFraction_fac, ofInv_s, map_s_comp_map_assoc, ofHom_s, unop_s, map_s_comp_map, CategoryTheory.MorphismProperty.LeftFraction.op_s, CategoryTheory.MorphismProperty.LeftFraction.unop_s, leftFraction_fac_assoc, exists_leftFraction, CategoryTheory.MorphismProperty.LeftFraction.exists_rightFraction, CategoryTheory.MorphismProperty.HasRightCalculusOfFractions.exists_rightFraction, CategoryTheory.MorphismProperty.LeftFraction.rightFraction_fac_assoc, hs, CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction, op_s
unop πŸ“–CompOp
4 mathmath: CategoryTheory.MorphismProperty.RightFractionRel.unop, unop_s, unop_f, unop_Y'

Theorems

NameKindAssumesProvesValidatesDepends On
exists_leftFraction πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X'
CategoryTheory.MorphismProperty.LeftFraction.Y'
f
CategoryTheory.MorphismProperty.LeftFraction.s
s
CategoryTheory.MorphismProperty.LeftFraction.f
β€”CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.exists_leftFraction
hs πŸ“–mathematicalβ€”X'
s
β€”β€”
leftFraction_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X'
CategoryTheory.MorphismProperty.LeftFraction.Y'
leftFraction
f
CategoryTheory.MorphismProperty.LeftFraction.s
s
CategoryTheory.MorphismProperty.LeftFraction.f
β€”exists_leftFraction
leftFraction_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X'
f
CategoryTheory.MorphismProperty.LeftFraction.Y'
leftFraction
CategoryTheory.MorphismProperty.LeftFraction.s
s
CategoryTheory.MorphismProperty.LeftFraction.f
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftFraction_fac
map_eq_iff πŸ“–mathematicalβ€”map
CategoryTheory.Localization.inverts
CategoryTheory.MorphismProperty.RightFractionRel
β€”CategoryTheory.Localization.inverts
CategoryTheory.MorphismProperty.leftFractionRel_op_iff
CategoryTheory.Functor.IsLocalization.op
CategoryTheory.MorphismProperty.LeftFraction.map_eq_iff
CategoryTheory.MorphismProperty.instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions
CategoryTheory.MorphismProperty.IsInvertedBy.op
op_map
map_hom_ofInv_id πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
ofInv
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.hom_inv_id
map_hom_ofInv_id_assoc πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
ofInv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_hom_ofInv_id
map_ofHom πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedBymap
ofHom
CategoryTheory.Functor.map
β€”CategoryTheory.Functor.map_id
CategoryTheory.inv.congr_simp
CategoryTheory.IsIso.inv_id
CategoryTheory.Category.id_comp
map_ofInv_hom_id πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
map
ofInv
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.inv_hom_id
map_ofInv_hom_id_assoc πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
map
ofInv
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_ofInv_hom_id
map_s_comp_map πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
X'
CategoryTheory.Functor.map
s
map
f
β€”CategoryTheory.IsIso.hom_inv_id_assoc
map_s_comp_map_assoc πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
X'
CategoryTheory.Functor.map
s
map
f
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_s_comp_map
ofHom_X' πŸ“–mathematicalβ€”X'
ofHom
β€”β€”
ofHom_f πŸ“–mathematicalβ€”f
ofHom
β€”β€”
ofHom_s πŸ“–mathematicalβ€”s
ofHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
ofInv_X' πŸ“–mathematicalβ€”X'
ofInv
β€”β€”
ofInv_f πŸ“–mathematicalβ€”f
ofInv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
ofInv_s πŸ“–mathematicalβ€”s
ofInv
β€”β€”
op_Y' πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFraction.Y'
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
op
X'
β€”β€”
op_f πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFraction.f
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
X'
f
β€”β€”
op_map πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
map
CategoryTheory.MorphismProperty.LeftFraction.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
Opposite.op
op
CategoryTheory.Functor.op
CategoryTheory.MorphismProperty.IsInvertedBy.op
β€”CategoryTheory.MorphismProperty.IsInvertedBy.op
CategoryTheory.isIso_op
CategoryTheory.op_inv
op_s πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFraction.s
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
X'
s
β€”β€”
unop_Y' πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFraction.Y'
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
Opposite.unop
unop
X'
Opposite
CategoryTheory.Category.opposite
β€”β€”
unop_f πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFraction.f
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
Opposite.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
X'
Opposite
CategoryTheory.Category.opposite
f
β€”β€”
unop_s πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.LeftFraction.s
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
Opposite.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
X'
Opposite
CategoryTheory.Category.opposite
s
β€”β€”

CategoryTheory.MorphismProperty.RightFractionRel

Theorems

NameKindAssumesProvesValidatesDepends On
op πŸ“–mathematicalCategoryTheory.MorphismProperty.RightFractionRelCategoryTheory.MorphismProperty.LeftFractionRel
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.MorphismProperty.RightFraction.op
β€”β€”
refl πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RightFractionRelβ€”CategoryTheory.MorphismProperty.LeftFractionRel.unop
CategoryTheory.MorphismProperty.LeftFractionRel.refl
trans πŸ“–β€”CategoryTheory.MorphismProperty.RightFractionRelβ€”β€”CategoryTheory.MorphismProperty.LeftFractionRel.unop
CategoryTheory.MorphismProperty.LeftFractionRel.trans
CategoryTheory.MorphismProperty.instHasLeftCalculusOfFractionsOppositeOpOfHasRightCalculusOfFractions
op
unop πŸ“–mathematicalCategoryTheory.MorphismProperty.RightFractionRel
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.LeftFractionRel
CategoryTheory.MorphismProperty.unop
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.MorphismProperty.RightFraction.unop
β€”β€”

---

← Back to Index