Documentation Verification Report

ComposableArrows

📁 Source: Mathlib/CategoryTheory/Localization/CalculusOfFractions/ComposableArrows.lean

Statistics

MetricCount
DefinitionsComposableArrows
1
TheoremsessSurj_mapComposableArrows, essSurj_mapComposableArrows_of_hasRightCalculusOfFractions
2
Total3

CategoryTheory

Definitions

NameCategoryTheorems
ComposableArrows 📖CompOp
111 mathmath: Triangulated.SpectralObject.Hom.comm, HomotopyCategory.spectralObjectMappingCone_δ'_app, nerve.edgeMk_edge, ComposableArrows.opEquivalence_counitIso_inv_app_app, Functor.mapComposableArrowsObjMk₂Iso_inv_app, ComposableArrows.isoMk₁_hom_app, ComposableArrows.sc'MapIso_inv, ComposableArrows.isIso_iff₂, Triangulated.SpectralObject.ω₂_obj_distinguished, nerve.functorOfNerveMap_map, Functor.mapComposableArrowsObjMk₁Iso_inv_app, nerve.homEquiv_edgeMk_map_nerveMap, Triangulated.SpectralObject.ω₂_obj_mor₃, nerve.homEquiv_apply, nerve.edgeMk_id, nerve.right_edge, nerve.homEquiv_edgeMk, Localization.essSurj_mapComposableArrows_of_hasRightCalculusOfFractions, ComposableArrows.opEquivalence_unitIso_inv_app, nerve.nonempty_compStruct_iff, ComposableArrows.isoMk₅_inv, Triangulated.SpectralObject.ω₂_map_hom₁, ComposableArrows.whiskerLeftFunctor_obj_map, nerve.homEquiv_comp, Triangulated.SpectralObject.triangle_obj₂, nerve.left_edge, nerve.mk₁_homEquiv_apply, ComposableArrows.isoMk₄_hom, ShortComplex.SnakeInput.composableArrowsFunctor_map, ComposableArrows.opEquivalence_functor_obj_map, ComposableArrows.δ₀Functor_obj_map, ComposableArrows.whiskerLeftFunctor_obj_obj, ComposableArrows.opEquivalence_functor_map_app, Functor.mapComposableArrowsObjMk₂Iso_hom_app, ComposableArrows.sc'MapIso_hom, ComposableArrows.opEquivalence_inverse_obj, HomotopyCategory.composableArrowsFunctor_obj, ComposableArrows.arrowEquiv_symm_apply, ComposableArrows.scMapIso_inv, ComposableArrows.opEquivalence_unitIso_hom_app, ComposableArrows.mapFunctorArrows_app, ShortComplex.mapToComposableArrows_comp, Functor.mapComposableArrowsObjMk₁Iso_hom_app, Functor.mapComposableArrows_obj_map, ComposableArrows.isoMk₂_inv, Triangulated.SpectralObject.mapTriangulatedFunctor_ω₁, Triangulated.SpectralObject.triangle_mor₂, nerve.homEquiv_id, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, ComposableArrows.isoMk_inv, Triangulated.SpectralObject.Hom.comm_assoc, Triangulated.SpectralObject.ω₂_obj_mor₂, Triangulated.SpectralObject.id_hom, ComposableArrows.δlastFunctor_obj_obj, ComposableArrows.scMapIso_hom, ComposableArrows.opEquivalence_functor_obj_obj, Triangulated.SpectralObject.distinguished', Triangulated.SpectralObject.triangle_mor₁, ComposableArrows.isoMk₃_hom, ComposableArrows.whiskerLeftFunctor_map_app, ComposableArrows.δlastFunctor_map_app, HomotopyCategory.composableArrowsFunctor_map, Triangulated.SpectralObject.mapTriangulatedFunctor_δ, ComposableArrows.instIsIsoOfNatNatTwoδ₁Toδ₀, nerve_obj, ComposableArrows.isoMk₅_hom, nerve.σ_zero_nerveEquiv_symm, ComposableArrows.isoMk₀_inv_app, Triangulated.SpectralObject.comp_hom, ComposableArrows.isoMk_hom, ComposableArrows.isIso_iff₀, Triangulated.SpectralObject.mapTriangulatedFunctor_δ', ShortComplex.SnakeInput.composableArrowsFunctor_obj, ComposableArrows.isoMk₂_hom, ComposableArrows.isoMk₃_inv, HomotopyCategory.spectralObjectMappingCone_ω₁, ComposableArrows.opEquivalence_inverse_map, Functor.mapComposableArrows_obj_obj, ComposableArrows.arrowEquiv_apply, ComposableArrows.δ₀Functor_obj_obj, ComposableArrows.isoMk₁_inv_app, Triangulated.SpectralObject.ω₂_map_hom₂, SSet.OneTruncation₂.nerveHomEquiv_apply, Triangulated.SpectralObject.triangle_obj₃, ComposableArrows.isoMk₄_inv, Triangulated.SpectralObject.comp_hom_assoc, HomologicalComplex.HomologySequence.composableArrows₃Functor_map, Triangulated.SpectralObject.ω₂_obj_obj₂, SSet.Truncated.HomotopyCategory.homToNerveMk_app_zero, Triangulated.SpectralObject.triangle_obj₁, ComposableArrows.δ₀Functor_map_app, HomologicalComplex.HomologySequence.composableArrows₃Functor_obj, ComposableArrows.isoMk₀_hom_app, ComposableArrows.functorArrows_map, nerveMap_app, Triangulated.SpectralObject.ω₂_obj_mor₁, nerve.functorOfNerveMap_obj, Triangulated.SpectralObject.ω₂_map_hom₃, ComposableArrows.instIsIsoOfNatNatTwoδ₂Toδ₁, ComposableArrows.opEquivalence_counitIso_hom_app_app, ComposableArrows.functorArrows_obj, SSet.Truncated.HomotopyCategory.descOfTruncation_obj_mk, ShortComplex.mapToComposableArrows_id, Triangulated.SpectralObject.ω₂_obj_obj₁, Localization.essSurj_mapComposableArrows, ComposableArrows.isIso_iff₁, nerve.edgeMk_surjective, Triangulated.SpectralObject.ω₂_obj_obj₃, ComposableArrows.δlastFunctor_obj_map, nerve.homEquiv_symm_apply, Functor.mapComposableArrows_map_app

CategoryTheory.Localization

Theorems

NameKindAssumesProvesValidatesDepends On
essSurj_mapComposableArrows 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.mapComposableArrows
essSurj_mapComposableArrows_of_hasRightCalculusOfFractions
CategoryTheory.Functor.IsLocalization.op
CategoryTheory.MorphismProperty.instHasRightCalculusOfFractionsOppositeOpOfHasLeftCalculusOfFractions
CategoryTheory.Functor.essSurj_of_iso
CategoryTheory.Functor.essSurj_comp
CategoryTheory.Functor.instEssSurjOppositeRightOp
CategoryTheory.Equivalence.essSurj_functor
CategoryTheory.Functor.instEssSurjOppositeOp
CategoryTheory.Functor.essSurj_of_comp_fully_faithful
CategoryTheory.Functor.rightOp_faithful
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.Functor.rightOp_full
CategoryTheory.Equivalence.full_functor
essSurj_mapComposableArrows_of_hasRightCalculusOfFractions 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.mapComposableArrows
essSurj
CategoryTheory.ComposableArrows.mk₀_surjective
CategoryTheory.Functor.EssSurj.mem_essImage
CategoryTheory.ComposableArrows.precomp_surjective
inverts
exists_rightFraction
CategoryTheory.MorphismProperty.RightFraction.hs
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
CategoryTheory.MorphismProperty.RightFraction.map_s_comp_map

---

← Back to Index