Documentation Verification Report

Fractions

📁 Source: Mathlib/CategoryTheory/Localization/CalculusOfFractions/Fractions.lean

Statistics

MetricCount
DefinitionsLeftFraction₂, Y', f, f', fst, s, snd, LeftFraction₂Rel, LeftFraction₃, Y', f, f', f'', forgetFst, forgetSnd, forgetThd, fst, s, snd, thd, RightFraction₂, X', f, f', fst, s, snd
27
Theoremsexists_leftFraction₂, exists_leftFraction₃, hs, map_eq_iff, fst, snd, hs, exists_leftFraction₂, hs
9
Total36

CategoryTheory.Localization

Theorems

NameKindAssumesProvesValidatesDepends On
exists_leftFraction₂ 📖mathematical—CategoryTheory.MorphismProperty.LeftFraction.map
CategoryTheory.MorphismProperty.LeftFraction₂.fst
inverts
CategoryTheory.MorphismProperty.LeftFraction₂.snd
—inverts
exists_leftFraction
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.MorphismProperty.RightFraction.exists_leftFraction
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.MorphismProperty.LeftFraction.map_comp_map_s
CategoryTheory.MorphismProperty.LeftFraction.map_comp_map_s_assoc
exists_leftFraction₃ 📖mathematical—CategoryTheory.MorphismProperty.LeftFraction.map
CategoryTheory.MorphismProperty.LeftFraction₃.fst
inverts
CategoryTheory.MorphismProperty.LeftFraction₃.snd
CategoryTheory.MorphismProperty.LeftFraction₃.thd
—inverts
exists_leftFraction₂
exists_leftFraction
CategoryTheory.MorphismProperty.LeftFraction₂.hs
CategoryTheory.MorphismProperty.RightFraction.exists_leftFraction
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.MorphismProperty.LeftFraction.map_comp_map_s
CategoryTheory.MorphismProperty.LeftFraction.map_comp_map_s_assoc

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
LeftFraction₂ 📖CompData—
LeftFraction₂Rel 📖MathDef
1 mathmath: LeftFraction₂.map_eq_iff
LeftFraction₃ 📖CompData—
RightFraction₂ 📖CompData—

CategoryTheory.MorphismProperty.LeftFraction₂

Definitions

NameCategoryTheorems
Y' 📖CompOp
2 mathmath: hs, CategoryTheory.MorphismProperty.RightFraction₂.exists_leftFraction₂
f 📖CompOp
1 mathmath: CategoryTheory.MorphismProperty.RightFraction₂.exists_leftFraction₂
f' 📖CompOp
1 mathmath: CategoryTheory.MorphismProperty.RightFraction₂.exists_leftFraction₂
fst 📖CompOp
4 mathmath: map_add, map_eq_iff, CategoryTheory.Localization.exists_leftFraction₂, CategoryTheory.MorphismProperty.LeftFraction₂Rel.fst
s 📖CompOp
2 mathmath: hs, CategoryTheory.MorphismProperty.RightFraction₂.exists_leftFraction₂
snd 📖CompOp
4 mathmath: map_add, CategoryTheory.MorphismProperty.LeftFraction₂Rel.snd, map_eq_iff, CategoryTheory.Localization.exists_leftFraction₂

Theorems

NameKindAssumesProvesValidatesDepends On
hs 📖mathematical—Y'
s
——
map_eq_iff 📖mathematical—CategoryTheory.MorphismProperty.LeftFraction.map
fst
CategoryTheory.Localization.inverts
snd
CategoryTheory.MorphismProperty.LeftFraction₂Rel
—CategoryTheory.Localization.inverts
CategoryTheory.MorphismProperty.LeftFraction.map_eq_iff
CategoryTheory.MorphismProperty.RightFraction.exists_leftFraction
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.ext
hs
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.MorphismProperty.LeftFraction₂Rel.fst
CategoryTheory.MorphismProperty.LeftFraction₂Rel.snd

CategoryTheory.MorphismProperty.LeftFraction₂Rel

Theorems

NameKindAssumesProvesValidatesDepends On
fst 📖mathematicalCategoryTheory.MorphismProperty.LeftFraction₂RelCategoryTheory.MorphismProperty.LeftFractionRel
CategoryTheory.MorphismProperty.LeftFraction₂.fst
——
snd 📖mathematicalCategoryTheory.MorphismProperty.LeftFraction₂RelCategoryTheory.MorphismProperty.LeftFractionRel
CategoryTheory.MorphismProperty.LeftFraction₂.snd
——

CategoryTheory.MorphismProperty.LeftFraction₃

Definitions

NameCategoryTheorems
Y' 📖CompOp
1 mathmath: hs
f 📖CompOp—
f' 📖CompOp—
f'' 📖CompOp—
forgetFst 📖CompOp—
forgetSnd 📖CompOp—
forgetThd 📖CompOp—
fst 📖CompOp
1 mathmath: CategoryTheory.Localization.exists_leftFraction₃
s 📖CompOp
1 mathmath: hs
snd 📖CompOp
1 mathmath: CategoryTheory.Localization.exists_leftFraction₃
thd 📖CompOp
1 mathmath: CategoryTheory.Localization.exists_leftFraction₃

Theorems

NameKindAssumesProvesValidatesDepends On
hs 📖mathematical—Y'
s
——

CategoryTheory.MorphismProperty.RightFraction₂

Definitions

NameCategoryTheorems
X' 📖CompOp
2 mathmath: hs, exists_leftFraction₂
f 📖CompOp
1 mathmath: exists_leftFraction₂
f' 📖CompOp
1 mathmath: exists_leftFraction₂
fst 📖CompOp—
s 📖CompOp
2 mathmath: hs, exists_leftFraction₂
snd 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
exists_leftFraction₂ 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X'
CategoryTheory.MorphismProperty.LeftFraction₂.Y'
f
CategoryTheory.MorphismProperty.LeftFraction₂.s
s
CategoryTheory.MorphismProperty.LeftFraction₂.f
f'
CategoryTheory.MorphismProperty.LeftFraction₂.f'
—CategoryTheory.MorphismProperty.RightFraction.exists_leftFraction
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions.toIsMultiplicative
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hs 📖mathematical—X'
s
——

---

← Back to Index