Documentation Verification Report

OfAdjunction

📁 Source: Mathlib/CategoryTheory/Localization/CalculusOfFractions/OfAdjunction.lean

Statistics

MetricCount
Definitions0
TheoremsfunctorCategory_inverseImage_isomorphisms_counit, functorCategory_inverseImage_isomorphisms_unit, hasLeftCalculusOfFractions, hasLeftCalculusOfFractions', hasRightCalculusOfFractions, hasRightCalculusOfFractions', isLocalization_leftAdjoint, isLocalization_leftAdjoint', isLocalization_rightAdjoint, isLocalization_rightAdjoint'
10
Total10

CategoryTheory.Adjunction

Theorems

NameKindAssumesProvesValidatesDepends On
functorCategory_inverseImage_isomorphisms_counit 📖mathematicalCategoryTheory.MorphismProperty.functorCategory
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
instIsIsoMapAppCounitOfFaithfulOfFull
functorCategory_inverseImage_isomorphisms_unit 📖mathematicalCategoryTheory.MorphismProperty.functorCategory
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
instIsIsoMapAppUnitOfFaithfulOfFull
hasLeftCalculusOfFractions 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.functorCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractionsCategoryTheory.MorphismProperty.RightFraction.cases
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.hom_inv_id_assoc
unit_naturality
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Functor.map_comp
hasLeftCalculusOfFractions' 📖mathematicalCategoryTheory.MorphismProperty.HasLeftCalculusOfFractions
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
hasLeftCalculusOfFractions
CategoryTheory.MorphismProperty.IsMultiplicative.instInverseImage
CategoryTheory.MorphismProperty.IsMultiplicative.instIsomorphisms
functorCategory_inverseImage_isomorphisms_unit
hasRightCalculusOfFractions 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.functorCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.MorphismProperty.HasRightCalculusOfFractionshasLeftCalculusOfFractions
CategoryTheory.MorphismProperty.IsMultiplicative.op
CategoryTheory.MorphismProperty.IsInvertedBy.op
CategoryTheory.MorphismProperty.instHasRightCalculusOfFractionsUnopOfHasLeftCalculusOfFractionsOpposite
hasRightCalculusOfFractions' 📖mathematicalCategoryTheory.MorphismProperty.HasRightCalculusOfFractions
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
hasRightCalculusOfFractions
CategoryTheory.MorphismProperty.IsMultiplicative.instInverseImage
CategoryTheory.MorphismProperty.IsMultiplicative.instIsomorphisms
functorCategory_inverseImage_isomorphisms_counit
isLocalization_leftAdjoint 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.functorCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.IsLocalizationCategoryTheory.Functor.q_isLocalization
CategoryTheory.NatTrans.isIso_iff_isIso_app
CategoryTheory.Localization.inverts
CategoryTheory.Functor.IsLocalization.of_equivalence_target
counit_isIso_of_R_fully_faithful
isLocalization_leftAdjoint' 📖mathematicalCategoryTheory.Functor.IsLocalization
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
isLocalization_leftAdjoint
functorCategory_inverseImage_isomorphisms_unit
isLocalization_rightAdjoint 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.functorCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Functor.IsLocalizationisLocalization_leftAdjoint
CategoryTheory.Functor.instFullOppositeOp
CategoryTheory.Functor.instFaithfulOppositeOp
CategoryTheory.MorphismProperty.IsInvertedBy.op
isLocalization_rightAdjoint' 📖mathematicalCategoryTheory.Functor.IsLocalization
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
isLocalization_rightAdjoint
functorCategory_inverseImage_isomorphisms_counit

---

← Back to Index