📁 Source: Mathlib/CategoryTheory/Localization/CalculusOfFractions/OfAdjunction.lean
functorCategory_inverseImage_isomorphisms_counit
functorCategory_inverseImage_isomorphisms_unit
hasLeftCalculusOfFractions
hasLeftCalculusOfFractions'
hasRightCalculusOfFractions
hasRightCalculusOfFractions'
isLocalization_leftAdjoint
isLocalization_leftAdjoint'
isLocalization_rightAdjoint
isLocalization_rightAdjoint'
CategoryTheory.MorphismProperty.functorCategory
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
instIsIsoMapAppCounitOfFaithfulOfFull
unit
instIsIsoMapAppUnitOfFaithfulOfFull
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions
CategoryTheory.MorphismProperty.RightFraction.cases
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.hom_inv_id_assoc
unit_naturality
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Functor.map_comp
CategoryTheory.MorphismProperty.IsMultiplicative.instInverseImage
CategoryTheory.MorphismProperty.IsMultiplicative.instIsomorphisms
CategoryTheory.MorphismProperty.HasRightCalculusOfFractions
CategoryTheory.MorphismProperty.IsMultiplicative.op
CategoryTheory.MorphismProperty.IsInvertedBy.op
CategoryTheory.MorphismProperty.instHasRightCalculusOfFractionsUnopOfHasLeftCalculusOfFractionsOpposite
CategoryTheory.Functor.IsLocalization
CategoryTheory.Functor.q_isLocalization
CategoryTheory.NatTrans.isIso_iff_isIso_app
CategoryTheory.Localization.inverts
CategoryTheory.Functor.IsLocalization.of_equivalence_target
counit_isIso_of_R_fully_faithful
CategoryTheory.Functor.instFullOppositeOp
CategoryTheory.Functor.instFaithfulOppositeOp
---
← Back to Index