Documentation Verification Report

Construction

πŸ“ Source: Mathlib/CategoryTheory/Localization/Construction.lean

Statistics

MetricCount
DefinitionsLocQuiver, obj, app, counitIso, functor, inverse, unitIso, instQuiverLocQuiver, liftToPathCategory, natTransExtension, objEquiv, relations, wInv, wIso, whiskeringLeftEquivalence, ΞΉPaths, Οˆβ‚, Οˆβ‚‚, Q, instCategoryLocalization
20
Theoremsapp_eq, counitIso_hom, counitIso_inv, functor_map_hom_app, functor_obj_obj_map, functor_obj_obj_obj, inverse_map_app, inverse_obj_map, inverse_obj_obj, unitIso_hom, unitIso_inv, fac, liftToPathCategory_map, liftToPathCategory_obj, lift_map, lift_obj, morphismProperty_eq_top, morphismProperty_eq_top', morphismProperty_is_top, morphismProperty_is_top', natTransExtension_app, natTransExtension_hcomp, natTrans_hcomp_injective, objEquiv_apply, objEquiv_symm_apply, uniq, whiskerLeft_natTransExtension, Q_inverts
28
Total48

CategoryTheory.Localization.Construction

Definitions

NameCategoryTheorems
LocQuiver πŸ“–CompData
7 mathmath: lift_obj, lift_map, WhiskeringLeftEquivalence.inverse_obj_map, WhiskeringLeftEquivalence.inverse_obj_obj, liftToPathCategory_map, objEquiv_symm_apply, liftToPathCategory_obj
instQuiverLocQuiver πŸ“–CompOp
7 mathmath: lift_obj, lift_map, WhiskeringLeftEquivalence.inverse_obj_map, WhiskeringLeftEquivalence.inverse_obj_obj, liftToPathCategory_map, objEquiv_symm_apply, liftToPathCategory_obj
liftToPathCategory πŸ“–CompOp
4 mathmath: lift_map, WhiskeringLeftEquivalence.inverse_obj_map, liftToPathCategory_map, liftToPathCategory_obj
natTransExtension πŸ“–CompOp
3 mathmath: natTransExtension_hcomp, whiskerLeft_natTransExtension, natTransExtension_app
objEquiv πŸ“–CompOp
2 mathmath: objEquiv_apply, objEquiv_symm_apply
relations πŸ“–CompData
5 mathmath: lift_obj, lift_map, WhiskeringLeftEquivalence.inverse_obj_map, WhiskeringLeftEquivalence.inverse_obj_obj, objEquiv_symm_apply
wInv πŸ“–CompOp
1 mathmath: wInv_eq_isoOfHom_inv
wIso πŸ“–CompOp
1 mathmath: wIso_eq_isoOfHom
whiskeringLeftEquivalence πŸ“–CompOpβ€”
ΞΉPaths πŸ“–CompOpβ€”
Οˆβ‚ πŸ“–CompOpβ€”
Οˆβ‚‚ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
fac πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
lift
β€”CategoryTheory.Functor.ext
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.composePath_toPath
liftToPathCategory_map πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.Functor.map
CategoryTheory.Paths
LocQuiver
CategoryTheory.Paths.categoryPaths
instQuiverLocQuiver
liftToPathCategory
CategoryTheory.composePath
CategoryTheory.Functor.obj
LocQuiver.obj
Prefunctor.mapPath
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.inv
β€”β€”
liftToPathCategory_obj πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.Functor.obj
CategoryTheory.Paths
LocQuiver
CategoryTheory.Paths.categoryPaths
instQuiverLocQuiver
liftToPathCategory
LocQuiver.obj
β€”β€”
lift_map πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.Functor.map
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
lift
Quiver.Hom
CategoryTheory.Paths
LocQuiver
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Paths.categoryPaths
instQuiverLocQuiver
CategoryTheory.Quotient.as
relations
CategoryTheory.Functor.obj
LocQuiver.obj
CategoryTheory.HomRel.CompClosure
CategoryTheory.composePath
Prefunctor.mapPath
CategoryTheory.inv
liftToPathCategory
β€”β€”
lift_obj πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
lift
LocQuiver.obj
CategoryTheory.Quotient.as
CategoryTheory.Paths
LocQuiver
CategoryTheory.Paths.categoryPaths
instQuiverLocQuiver
relations
β€”β€”
morphismProperty_eq_top πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
CategoryTheory.Functor.map
wInv
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
β€”CategoryTheory.MorphismProperty.top_apply
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.Quotient.full_functor
CategoryTheory.Functor.map_preimage
morphismProperty_eq_top' πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
β€”morphismProperty_eq_top
morphismProperty_is_top πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
CategoryTheory.Functor.map
wInv
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
β€”morphismProperty_eq_top
morphismProperty_is_top' πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
β€”morphismProperty_eq_top'
natTransExtension_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
natTransExtension
NatTransExtension.app
β€”β€”
natTransExtension_hcomp πŸ“–mathematicalβ€”CategoryTheory.NatTrans.hcomp
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
natTransExtension
β€”CategoryTheory.Functor.id_hcomp
whiskerLeft_natTransExtension
natTrans_hcomp_injective πŸ“–β€”CategoryTheory.NatTrans.hcomp
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
β€”β€”CategoryTheory.NatTrans.ext'
Equiv.right_inv
CategoryTheory.NatTrans.id_hcomp_app
objEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.MorphismProperty.Localization
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
β€”β€”
objEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.MorphismProperty.Localization
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
objEquiv
LocQuiver.obj
CategoryTheory.Quotient.as
CategoryTheory.Paths
LocQuiver
CategoryTheory.Paths.categoryPaths
instQuiverLocQuiver
relations
β€”β€”
uniq πŸ“–β€”CategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
β€”β€”CategoryTheory.Paths.ext_functor
CategoryTheory.Functor.congr_obj
CategoryTheory.Functor.congr_hom
CategoryTheory.Functor.congr_inv_of_congr_hom
CategoryTheory.Functor.ext
whiskerLeft_natTransExtension πŸ“–mathematicalβ€”CategoryTheory.Functor.whiskerLeft
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
natTransExtension
β€”CategoryTheory.NatTrans.ext'
NatTransExtension.app_eq

CategoryTheory.Localization.Construction.LocQuiver

Definitions

NameCategoryTheorems
obj πŸ“–CompOp
7 mathmath: CategoryTheory.Localization.Construction.lift_obj, CategoryTheory.Localization.Construction.lift_map, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_obj, CategoryTheory.Localization.Construction.liftToPathCategory_map, CategoryTheory.Localization.Construction.objEquiv_symm_apply, CategoryTheory.Localization.Construction.liftToPathCategory_obj

CategoryTheory.Localization.Construction.NatTransExtension

Definitions

NameCategoryTheorems
app πŸ“–CompOp
3 mathmath: app_eq, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_map_app, CategoryTheory.Localization.Construction.natTransExtension_app

Theorems

NameKindAssumesProvesValidatesDepends On
app_eq πŸ“–mathematicalβ€”app
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence

Definitions

NameCategoryTheorems
counitIso πŸ“–CompOp
2 mathmath: counitIso_inv, counitIso_hom
functor πŸ“–CompOp
7 mathmath: functor_obj_obj_map, functor_obj_obj_obj, functor_map_hom_app, unitIso_inv, counitIso_inv, unitIso_hom, counitIso_hom
inverse πŸ“–CompOp
7 mathmath: inverse_map_app, inverse_obj_map, inverse_obj_obj, unitIso_inv, counitIso_inv, unitIso_hom, counitIso_hom
unitIso πŸ“–CompOp
2 mathmath: unitIso_inv, unitIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
counitIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
inverse
functor
CategoryTheory.Functor.id
counitIso
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
β€”β€”
counitIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
inverse
functor
CategoryTheory.Functor.id
counitIso
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
β€”β€”
functor_map_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.MorphismProperty.Q
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.map
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
functor
β€”β€”
functor_obj_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
functor
CategoryTheory.MorphismProperty.Q
β€”β€”
functor_obj_obj_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
functor
CategoryTheory.MorphismProperty.Q
β€”β€”
inverse_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.Localization.Construction.lift
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Functor.map
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
inverse
CategoryTheory.Localization.Construction.NatTransExtension.app
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.Q
CategoryTheory.eqToHom
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”β€”
inverse_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
CategoryTheory.Functor
CategoryTheory.Functor.category
inverse
Quiver.Hom
CategoryTheory.Paths
CategoryTheory.Localization.Construction.LocQuiver
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Paths.categoryPaths
CategoryTheory.Localization.Construction.instQuiverLocQuiver
CategoryTheory.Quotient.as
CategoryTheory.Localization.Construction.relations
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Localization.Construction.LocQuiver.obj
CategoryTheory.HomRel.CompClosure
CategoryTheory.composePath
Prefunctor.mapPath
CategoryTheory.inv
CategoryTheory.Localization.Construction.liftToPathCategory
β€”β€”
inverse_obj_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
CategoryTheory.Functor
CategoryTheory.Functor.category
inverse
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Localization.Construction.LocQuiver.obj
CategoryTheory.Quotient.as
CategoryTheory.Paths
CategoryTheory.Localization.Construction.LocQuiver
CategoryTheory.Paths.categoryPaths
CategoryTheory.Localization.Construction.instQuiverLocQuiver
CategoryTheory.Localization.Construction.relations
β€”β€”
unitIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
functor
inverse
unitIso
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
β€”β€”
unitIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
functor
inverse
unitIso
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
β€”β€”

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
Q πŸ“–CompOp
31 mathmath: CategoryTheory.Localization.isLocalization_op, CategoryTheory.Functor.HasPointwiseLeftDerivedFunctorAt.hasLimit', CategoryTheory.Localization.Construction.natTransExtension_hcomp, CategoryTheory.Localization.Construction.prodIsLocalization, CategoryTheory.Localization.Construction.wInv_eq_isoOfHom_inv, CategoryTheory.Localization.instAdditiveLocalizationQ, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_map, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_obj, CategoryTheory.Localization.Construction.NatTransExtension.app_eq, CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_fac, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_map_app, CategoryTheory.Functor.HasLeftDerivedFunctor.hasRightKanExtension', CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_facβ‚‚, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_map_hom_app, CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_fac₁, CategoryTheory.Localization.strictUniversalPropertyFixedTargetQ_lift, CategoryTheory.Functor.HasRightDerivedFunctor.hasLeftKanExtension', CategoryTheory.LocalizerMorphism.IsLocalizedEquivalence.isEquivalence, CategoryTheory.Localization.Construction.fac, CategoryTheory.Localization.Construction.whiskerLeft_natTransExtension, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.guitartExact', CategoryTheory.Localization.instLinearLocalizationQ, CategoryTheory.Localization.Construction.objEquiv_apply, CategoryTheory.Functor.q_isLocalization, CategoryTheory.Functor.HasPointwiseRightDerivedFunctorAt.hasColimit', CategoryTheory.LocalizerMorphism.instCommShiftLocalizationHomFunctorIsoFunctorQLocalizedFunctor, Q_inverts, CategoryTheory.Localization.HasSmallLocalizedHom.small, CategoryTheory.Localization.Construction.wIso_eq_isoOfHom, CategoryTheory.LocalizerMorphism.IsLeftDerivabilityStructure.guitartExact', CategoryTheory.Localization.instPreservesFiniteProductsLocalizationQ
instCategoryLocalization πŸ“–CompOp
48 mathmath: CategoryTheory.Localization.isLocalization_op, CategoryTheory.Functor.HasPointwiseLeftDerivedFunctorAt.hasLimit', CategoryTheory.Localization.instIsEquivalenceLocalizationLift, CategoryTheory.Localization.Construction.lift_obj, CategoryTheory.Localization.Construction.natTransExtension_hcomp, CategoryTheory.Localization.Construction.prodIsLocalization, CategoryTheory.Localization.Construction.wInv_eq_isoOfHom_inv, CategoryTheory.Localization.instAdditiveLocalizationQ, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_map, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_obj_obj_obj, CategoryTheory.Localization.Construction.NatTransExtension.app_eq, CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_fac, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_map_app, CategoryTheory.Localization.Construction.lift_map, CategoryTheory.Functor.HasLeftDerivedFunctor.hasRightKanExtension', CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_facβ‚‚, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_map_hom_app, CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_fac₁, CategoryTheory.Shift.instLinearLocalizationShiftFunctorOfCommShiftOfQ, CategoryTheory.Triangulated.Localization.instAdditiveLocalizationShiftFunctorInt, CategoryTheory.Localization.strictUniversalPropertyFixedTargetQ_lift, CategoryTheory.Functor.HasRightDerivedFunctor.hasLeftKanExtension', CategoryTheory.Triangulated.Localization.instIsTriangulatedLocalization, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, CategoryTheory.LocalizerMorphism.IsLocalizedEquivalence.isEquivalence, CategoryTheory.Localization.Construction.fac, CategoryTheory.Localization.Construction.whiskerLeft_natTransExtension, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_obj, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.guitartExact', CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.unitIso_inv, CategoryTheory.Localization.instLinearLocalizationQ, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.counitIso_inv, CategoryTheory.Localization.Construction.objEquiv_apply, CategoryTheory.Localization.instHasZeroObjectLocalization, CategoryTheory.Functor.q_isLocalization, CategoryTheory.Functor.HasPointwiseRightDerivedFunctorAt.hasColimit', CategoryTheory.LocalizerMorphism.instCommShiftLocalizationHomFunctorIsoFunctorQLocalizedFunctor, Q_inverts, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.unitIso_hom, CategoryTheory.Functor.IsLocalization.isEquivalence, CategoryTheory.Localization.Construction.natTransExtension_app, CategoryTheory.Localization.instHasFiniteProductsLocalization, CategoryTheory.Localization.HasSmallLocalizedHom.small, CategoryTheory.Localization.Construction.wIso_eq_isoOfHom, CategoryTheory.Localization.instIsGroupoidLocalizationTopMorphismProperty, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.counitIso_hom, CategoryTheory.LocalizerMorphism.IsLeftDerivabilityStructure.guitartExact', CategoryTheory.Localization.instPreservesFiniteProductsLocalizationQ

Theorems

NameKindAssumesProvesValidatesDepends On
Q_inverts πŸ“–mathematicalβ€”IsInvertedBy
Localization
instCategoryLocalization
Q
β€”CategoryTheory.Iso.isIso_hom

---

← Back to Index