| Name | Category | Theorems |
LocQuiver π | CompData | 7 mathmath: lift_obj, lift_map, WhiskeringLeftEquivalence.inverse_obj_map, WhiskeringLeftEquivalence.inverse_obj_obj, liftToPathCategory_map, objEquiv_symm_apply, liftToPathCategory_obj
|
instQuiverLocQuiver π | CompOp | 7 mathmath: lift_obj, lift_map, WhiskeringLeftEquivalence.inverse_obj_map, WhiskeringLeftEquivalence.inverse_obj_obj, liftToPathCategory_map, objEquiv_symm_apply, liftToPathCategory_obj
|
liftToPathCategory π | CompOp | 4 mathmath: lift_map, WhiskeringLeftEquivalence.inverse_obj_map, liftToPathCategory_map, liftToPathCategory_obj
|
natTransExtension π | CompOp | 3 mathmath: natTransExtension_hcomp, whiskerLeft_natTransExtension, natTransExtension_app
|
objEquiv π | CompOp | 2 mathmath: objEquiv_apply, objEquiv_symm_apply
|
relations π | CompData | 5 mathmath: lift_obj, lift_map, WhiskeringLeftEquivalence.inverse_obj_map, WhiskeringLeftEquivalence.inverse_obj_obj, objEquiv_symm_apply
|
wInv π | CompOp | 1 mathmath: wInv_eq_isoOfHom_inv
|
wIso π | CompOp | 1 mathmath: wIso_eq_isoOfHom
|
whiskeringLeftEquivalence π | CompOp | β |
ΞΉPaths π | CompOp | β |
Οβ π | CompOp | β |
Οβ π | CompOp | β |