Documentation Verification Report

HomEquiv

📁 Source: Mathlib/CategoryTheory/Localization/HomEquiv.lean

Statistics

MetricCount
DefinitionsHomEquiv, homEquiv, homMap
3
TheoremshomEquiv_apply, homEquiv_comp, homEquiv_eq, homEquiv_id, homEquiv_isoOfHom_inv, homEquiv_map, homEquiv_refl, homEquiv_symm_apply, homEquiv_trans, homMap_apply, homMap_apply_assoc, homMap_comp, homMap_comp_assoc, homMap_homMap, homMap_id, homMap_map, id_homMap
17
Total20

CategoryTheory.FreeMonoidalCategory

Definitions

NameCategoryTheorems
HomEquiv 📖CompData

CategoryTheory.Localization

Definitions

NameCategoryTheorems
homEquiv 📖CompOp
11 mathmath: homEquiv_eq, homEquiv_comp, homEquiv_symm_apply, homEquiv_apply, homEquiv_refl, homEquiv_trans, structuredArrowEquiv_symm_apply, homEquiv_map, homEquiv_isoOfHom_inv, homEquiv_id, structuredArrowEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.LocalizerMorphism.homMap
CategoryTheory.LocalizerMorphism.id
homEquiv_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.LocalizerMorphism.homMap_comp
homEquiv_eq 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
homEquiv_apply
CategoryTheory.LocalizerMorphism.homMap_apply
CategoryTheory.Iso.symm_hom
CategoryTheory.Iso.symm_inv
homEquiv_id 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.LocalizerMorphism.homMap_id
homEquiv_isoOfHom_inv 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Iso.inv
isoOfHom
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.inv_hom_id
isoOfHom_hom
homEquiv_map
homEquiv_comp
isoOfHom_inv_hom_id
homEquiv_id
homEquiv_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.map
CategoryTheory.LocalizerMorphism.homMap_map
homEquiv_refl 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.LocalizerMorphism.id_homMap
homEquiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
homEquiv_trans 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.LocalizerMorphism.homMap_homMap

CategoryTheory.LocalizerMorphism

Definitions

NameCategoryTheorems
homMap 📖CompOp
9 mathmath: homMap_map, homMap_id, homMap_apply, homMap_apply_assoc, homMap_comp, CategoryTheory.Localization.homEquiv_apply, homMap_comp_assoc, id_homMap, homMap_homMap

Theorems

NameKindAssumesProvesValidatesDepends On
homMap_apply 📖mathematicalhomMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
functor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Localization.liftNatTrans_app
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.assoc
homMap_apply_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
homMap
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homMap_apply
homMap_comp 📖mathematicalhomMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app_assoc
homMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
homMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homMap_comp
homMap_homMap 📖mathematicalhomMap
CategoryTheory.Functor.obj
functor
comp
homMap_apply
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homMap_id 📖mathematicalhomMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
homMap.congr_simp
CategoryTheory.Functor.map_id
homMap_map
homMap_map 📖mathematicalhomMap
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
functor
CategoryTheory.CatCommSq.iso_inv_naturality
CategoryTheory.Iso.hom_inv_id_app_assoc
id_homMap 📖mathematicalhomMap
id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homMap_apply

---

← Back to Index