Documentation Verification Report

Predicate

πŸ“ Source: Mathlib/CategoryTheory/Localization/Predicate.lean

Statistics

MetricCount
DefinitionsAreEqualizedByLocalization, compLeft, compRight, id, iso, iso', ofIsos, StrictUniversalPropertyFixedTarget, compEquivalenceFromModelInverseIso, compUniqFunctor, compUniqInverse, equivalenceFromModel, fac, functorEquivalence, groupoid, instInhabitedStrictUniversalPropertyFixedTargetLocalizationQ, instLiftingFunctorUniq, instLiftingInverseUniq, isoOfHom, isoUniqFunctor, liftNatIso, liftNatTrans, liftingConstructionLift, liftingLift, qCompEquivalenceFromModelFunctorIso, strictUniversalPropertyFixedTargetId, strictUniversalPropertyFixedTargetQ, uniq, whiskeringLeftFunctor, whiskeringLeftFunctor'
30
Theoremsmap_eq, map_eq_of_isInvertedBy, mk, for_id, instCompOfIsEquivalence, inverts, isEquivalence, mk', of_equivalence_target, of_isEquivalence, of_iso, q_isLocalization, wInv_eq_isoOfHom_inv, wIso_eq_isoOfHom, compLeft_iso, compRight_iso, id_iso, ofIsos_iso, fac, inverts, uniq, comp_liftNatTrans, comp_liftNatTrans_assoc, essSurj, faithful_whiskeringLeft, full_whiskeringLeft, instFaithfulFunctorWhiskeringLeftFunctor', instFullFunctorWhiskeringLeftFunctor', instIsEquivalenceFunctorFunctorsInvertingWhiskeringLeftFunctor, instIsEquivalenceLocalizationLift, instIsGroupoidLocalizationTopMorphismProperty, inverts, isGroupoid, isoOfHom_hom, isoOfHom_hom_inv_id, isoOfHom_hom_inv_id_assoc, isoOfHom_id_inv, isoOfHom_inv_hom_id, isoOfHom_inv_hom_id_assoc, liftNatIso_hom, liftNatIso_inv, liftNatTrans_app, liftNatTrans_id, morphismProperty_eq_top, natTrans_ext, strictUniversalPropertyFixedTargetId_lift, strictUniversalPropertyFixedTargetQ_lift, uniq_symm, whiskeringLeftFunctor'_eq, whiskeringLeftFunctor'_obj, areEqualizedByLocalization_iff
51
Total81

CategoryTheory

Definitions

NameCategoryTheorems
AreEqualizedByLocalization πŸ“–MathDef
3 mathmath: areEqualizedByLocalization_iff, ComplexShape.QFactorsThroughHomotopy.areEqualizedByLocalization, AreEqualizedByLocalization.mk

Theorems

NameKindAssumesProvesValidatesDepends On
areEqualizedByLocalization_iff πŸ“–mathematicalβ€”AreEqualizedByLocalization
Functor.map
β€”Functor.q_isLocalization
NatIso.naturality_1

CategoryTheory.AreEqualizedByLocalization

Theorems

NameKindAssumesProvesValidatesDepends On
map_eq πŸ“–mathematicalCategoryTheory.AreEqualizedByLocalizationCategoryTheory.Functor.mapβ€”CategoryTheory.areEqualizedByLocalization_iff
map_eq_of_isInvertedBy πŸ“–mathematicalCategoryTheory.AreEqualizedByLocalization
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Functor.mapβ€”CategoryTheory.Functor.q_isLocalization
CategoryTheory.NatIso.naturality_1
map_eq
mk πŸ“–mathematicalCategoryTheory.Functor.mapCategoryTheory.AreEqualizedByLocalizationβ€”CategoryTheory.areEqualizedByLocalization_iff

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
q_isLocalization πŸ“–mathematicalβ€”IsLocalization
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
β€”CategoryTheory.MorphismProperty.Q_inverts
CategoryTheory.Localization.Construction.uniq
CategoryTheory.Localization.Construction.fac
isEquivalence_refl

CategoryTheory.Functor.IsLocalization

Theorems

NameKindAssumesProvesValidatesDepends On
for_id πŸ“–mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Functor.IsLocalization
CategoryTheory.Functor.id
β€”mk'
instCompOfIsEquivalence πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocalization
CategoryTheory.Functor.comp
β€”of_equivalence_target
inverts πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsInvertedByβ€”β€”
isEquivalence πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.Localization.Construction.lift
inverts
β€”β€”
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocalizationβ€”CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.inverts
CategoryTheory.Functor.IsEquivalence.mk'
CategoryTheory.MorphismProperty.Q_inverts
CategoryTheory.Localization.Construction.uniq
CategoryTheory.Localization.Construction.fac
CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.fac
CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.uniq
of_equivalence_target πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocalizationβ€”CategoryTheory.MorphismProperty.IsInvertedBy.iff_of_iso
CategoryTheory.MorphismProperty.IsInvertedBy.of_comp
CategoryTheory.Localization.inverts
CategoryTheory.Functor.q_isLocalization
CategoryTheory.Functor.isEquivalence_of_iso
CategoryTheory.Functor.isEquivalence_trans
CategoryTheory.Localization.instIsEquivalenceLocalizationLift
CategoryTheory.Equivalence.isEquivalence_functor
of_isEquivalence πŸ“–mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.Functor.IsLocalizationβ€”of_equivalence_target
for_id
of_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocalizationβ€”CategoryTheory.Localization.inverts
CategoryTheory.MorphismProperty.IsInvertedBy.iff_of_iso
CategoryTheory.Functor.isEquivalence_of_iso
CategoryTheory.Functor.q_isLocalization
CategoryTheory.Localization.instIsEquivalenceLocalizationLift

CategoryTheory.Localization

Definitions

NameCategoryTheorems
StrictUniversalPropertyFixedTarget πŸ“–CompDataβ€”
compEquivalenceFromModelInverseIso πŸ“–CompOpβ€”
compUniqFunctor πŸ“–CompOp
1 mathmath: CategoryTheory.MorphismProperty.LeftFraction.map_compatibility
compUniqInverse πŸ“–CompOpβ€”
equivalenceFromModel πŸ“–CompOpβ€”
fac πŸ“–CompOp
2 mathmath: CategoryTheory.Functor.instIsRightDerivedFunctorLiftInvFac, CategoryTheory.Functor.instIsLeftDerivedFunctorLiftHomFac
functorEquivalence πŸ“–CompOpβ€”
groupoid πŸ“–CompOpβ€”
instInhabitedStrictUniversalPropertyFixedTargetLocalizationQ πŸ“–CompOpβ€”
instLiftingFunctorUniq πŸ“–CompOpβ€”
instLiftingInverseUniq πŸ“–CompOpβ€”
isoOfHom πŸ“–CompOp
16 mathmath: CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, isoOfHom_unop, isoOfHom_inv_hom_id, Construction.wInv_eq_isoOfHom_inv, isoOfHom_op_inv, SmallHom.equiv_mkInv, isoOfHom_hom, isoOfHom_hom_inv_id, isoOfHom_hom_inv_id_assoc, SmallShiftedHom.equiv_mkβ‚€Inv, isoOfHom_inv_hom_id_assoc, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, homEquiv_isoOfHom_inv, Construction.wIso_eq_isoOfHom, CategoryTheory.MorphismProperty.LeftFraction.map_eq, isoOfHom_id_inv
isoUniqFunctor πŸ“–CompOpβ€”
liftNatIso πŸ“–CompOp
2 mathmath: liftNatIso_inv, liftNatIso_hom
liftNatTrans πŸ“–CompOp
8 mathmath: liftNatTrans_add, liftNatTrans_zero, comp_liftNatTrans, liftNatIso_inv, liftNatTrans_app, comp_liftNatTrans_assoc, liftNatTrans_id, liftNatIso_hom
liftingConstructionLift πŸ“–CompOpβ€”
liftingLift πŸ“–CompOpβ€”
qCompEquivalenceFromModelFunctorIso πŸ“–CompOpβ€”
strictUniversalPropertyFixedTargetId πŸ“–CompOp
1 mathmath: strictUniversalPropertyFixedTargetId_lift
strictUniversalPropertyFixedTargetQ πŸ“–CompOp
1 mathmath: strictUniversalPropertyFixedTargetQ_lift
uniq πŸ“–CompOp
2 mathmath: CategoryTheory.MorphismProperty.LeftFraction.map_compatibility, uniq_symm
whiskeringLeftFunctor πŸ“–CompOp
2 mathmath: whiskeringLeftFunctor'_eq, instIsEquivalenceFunctorFunctorsInvertingWhiskeringLeftFunctor
whiskeringLeftFunctor' πŸ“–CompOp
4 mathmath: instFullFunctorWhiskeringLeftFunctor', instFaithfulFunctorWhiskeringLeftFunctor', whiskeringLeftFunctor'_eq, whiskeringLeftFunctor'_obj

Theorems

NameKindAssumesProvesValidatesDepends On
comp_liftNatTrans πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
liftNatTrans
β€”natTrans_ext
liftNatTrans_app
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app_assoc
comp_liftNatTrans_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
liftNatTrans
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_liftNatTrans
essSurj πŸ“–mathematicalβ€”CategoryTheory.Functor.EssSurjβ€”β€”
faithful_whiskeringLeft πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
β€”instFaithfulFunctorWhiskeringLeftFunctor'
full_whiskeringLeft πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
β€”instFullFunctorWhiskeringLeftFunctor'
instFaithfulFunctorWhiskeringLeftFunctor' πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskeringLeftFunctor'
β€”whiskeringLeftFunctor'_eq
CategoryTheory.Functor.Faithful.comp
CategoryTheory.Functor.IsEquivalence.faithful
instIsEquivalenceFunctorFunctorsInvertingWhiskeringLeftFunctor
CategoryTheory.InducedCategory.faithful
instFullFunctorWhiskeringLeftFunctor' πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskeringLeftFunctor'
β€”whiskeringLeftFunctor'_eq
CategoryTheory.Functor.Full.comp
CategoryTheory.Functor.IsEquivalence.full
instIsEquivalenceFunctorFunctorsInvertingWhiskeringLeftFunctor
CategoryTheory.InducedCategory.full
instIsEquivalenceFunctorFunctorsInvertingWhiskeringLeftFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
whiskeringLeftFunctor
β€”CategoryTheory.MorphismProperty.FunctorsInverting.ext
inverts
Construction.fac
CategoryTheory.MorphismProperty.FunctorsInverting.hom_ext
CategoryTheory.ObjectProperty.eqToHom_hom
CategoryTheory.Functor.congr_obj
CategoryTheory.eqToHom_app
CategoryTheory.eqToHom_refl
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.isEquivalence_of_iso
CategoryTheory.Functor.isEquivalence_trans
CategoryTheory.Functor.instIsEquivalenceObjWhiskeringLeft
CategoryTheory.Equivalence.isEquivalence_functor
instIsEquivalenceLocalizationLift πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
Construction.lift
inverts
β€”CategoryTheory.Functor.IsLocalization.isEquivalence
instIsGroupoidLocalizationTopMorphismProperty πŸ“–mathematicalβ€”CategoryTheory.IsGroupoid
CategoryTheory.MorphismProperty.Localization
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.instCategoryLocalization
β€”isGroupoid
CategoryTheory.Functor.q_isLocalization
inverts πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsInvertedByβ€”CategoryTheory.Functor.IsLocalization.inverts
isGroupoid πŸ“–mathematicalβ€”CategoryTheory.IsGroupoidβ€”CategoryTheory.isGroupoid_iff_isomorphisms_eq_top
morphismProperty_eq_top
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
CategoryTheory.MorphismProperty.IsMultiplicative.instIsomorphisms
inverts
CategoryTheory.Iso.isIso_inv
isoOfHom_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
isoOfHom
CategoryTheory.Functor.map
β€”β€”
isoOfHom_hom_inv_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
isoOfHom
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.hom_inv_id
isoOfHom_hom_inv_id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
isoOfHom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfHom_hom_inv_id
isoOfHom_id_inv πŸ“–mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
isoOfHom
β€”CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.id_comp
isoOfHom_hom
CategoryTheory.Functor.map_id
isoOfHom_inv_hom_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
isoOfHom
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.inv_hom_id
isoOfHom_inv_hom_id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
isoOfHom
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfHom_inv_hom_id
liftNatIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
liftNatIso
liftNatTrans
β€”β€”
liftNatIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
liftNatIso
liftNatTrans
β€”β€”
liftNatTrans_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
liftNatTrans
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
Lifting.iso
CategoryTheory.Iso.inv
β€”CategoryTheory.congr_app
instFullFunctorWhiskeringLeftFunctor'
CategoryTheory.Functor.map_preimage
liftNatTrans_id πŸ“–mathematicalβ€”liftNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
β€”natTrans_ext
liftNatTrans_app
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id_app
morphismProperty_eq_top πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
isoOfHom
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
β€”CategoryTheory.Functor.q_isLocalization
Construction.morphismProperty_eq_top
CategoryTheory.MorphismProperty.IsStableUnderComposition.inverseImage
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
Construction.wInv_eq_isoOfHom_inv
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
isoOfHom_hom
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.comp_map
CategoryTheory.Functor.map_comp_assoc
isoOfHom_inv_hom_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.MorphismProperty.map_inverseImage_eq_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.MorphismProperty.map_top_eq_top_of_essSurj_of_full
CategoryTheory.Equivalence.essSurj_functor
CategoryTheory.Equivalence.full_functor
natTrans_ext πŸ“–β€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
β€”β€”CategoryTheory.NatTrans.ext'
essSurj
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.instIsSplitEpiMap
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.NatTrans.naturality
strictUniversalPropertyFixedTargetId_lift πŸ“–mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.MorphismProperty.IsInvertedBy
StrictUniversalPropertyFixedTarget.lift
CategoryTheory.Functor.id
strictUniversalPropertyFixedTargetId
β€”β€”
strictUniversalPropertyFixedTargetQ_lift πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByStrictUniversalPropertyFixedTarget.lift
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
strictUniversalPropertyFixedTargetQ
Construction.lift
β€”β€”
uniq_symm πŸ“–mathematicalβ€”CategoryTheory.Equivalence.symm
uniq
β€”CategoryTheory.Equivalence.ext
CategoryTheory.Functor.isoWhiskerRight_trans
CategoryTheory.Iso.trans_assoc
CategoryTheory.Equivalence.mk'.congr_simp
whiskeringLeftFunctor'_eq πŸ“–mathematicalβ€”whiskeringLeftFunctor'
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MorphismProperty.FunctorsInverting
CategoryTheory.MorphismProperty.instCategoryFunctorsInverting
whiskeringLeftFunctor
CategoryTheory.inducedFunctor
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
whiskeringLeftFunctor'_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskeringLeftFunctor'
CategoryTheory.Functor.comp
β€”β€”

CategoryTheory.Localization.Construction

Theorems

NameKindAssumesProvesValidatesDepends On
wInv_eq_isoOfHom_inv πŸ“–mathematicalβ€”wInv
CategoryTheory.Iso.inv
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Q
CategoryTheory.Localization.isoOfHom
CategoryTheory.Functor.q_isLocalization
β€”CategoryTheory.Functor.q_isLocalization
wIso_eq_isoOfHom
wIso_eq_isoOfHom πŸ“–mathematicalβ€”wIso
CategoryTheory.Localization.isoOfHom
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
CategoryTheory.Functor.q_isLocalization
β€”CategoryTheory.Iso.ext
CategoryTheory.Functor.q_isLocalization

CategoryTheory.Localization.Lifting

Definitions

NameCategoryTheorems
compLeft πŸ“–CompOp
1 mathmath: compLeft_iso
compRight πŸ“–CompOp
2 mathmath: CategoryTheory.Localization.equivalence_counitIso_app, compRight_iso
id πŸ“–CompOp
1 mathmath: id_iso
iso πŸ“–CompOp
27 mathmath: CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app, compLeft_iso, CategoryTheory.Localization.Monoidal.lifting_isMonoidal, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app', ofIsos_iso, CategoryTheory.Localization.equivalence_counitIso_app, compRight_iso, CategoryTheory.Functor.commShiftOfLocalization_iso_inv_app, CategoryTheory.Functor.commShiftOfLocalization.iso_inv_app, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ΞΌ, CategoryTheory.Localization.liftβ‚‚_iso_hom_app_appβ‚‚, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_Ξ΅, CategoryTheory.Localization.liftNatTrans_app, CategoryTheory.Functor.commShiftOfLocalization.iso_inv_app_assoc, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_Ξ΅_assoc, CategoryTheory.Localization.Monoidal.liftingβ‚‚CurriedTensorPost_iso, id_iso, CategoryTheory.Functor.commShiftOfLocalization.iso_hom_app, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_Ξ΅Iso_inv, CategoryTheory.Localization.Monoidal.liftingβ‚‚CurriedTensorPre_iso, CategoryTheory.Functor.commShiftOfLocalization_iso_hom_app, CategoryTheory.NatTrans.commShift_iso_hom_of_localization, CategoryTheory.Functor.commShiftOfLocalization.iso_hom_app_assoc, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app_assoc, CategoryTheory.Localization.liftβ‚‚_iso_hom_app_app₁, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ΞΌ_assoc, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_Ξ΅Iso_hom
iso' πŸ“–CompOpβ€”
ofIsos πŸ“–CompOp
1 mathmath: ofIsos_iso

Theorems

NameKindAssumesProvesValidatesDepends On
compLeft_iso πŸ“–mathematicalβ€”iso
CategoryTheory.Functor.comp
compLeft
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”β€”
compRight_iso πŸ“–mathematicalβ€”iso
CategoryTheory.Functor.comp
compRight
CategoryTheory.Functor.isoWhiskerRight
β€”β€”
id_iso πŸ“–mathematicalβ€”iso
CategoryTheory.Functor.id
id
CategoryTheory.Functor.rightUnitor
β€”β€”
ofIsos_iso πŸ“–mathematicalβ€”iso
ofIsos
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.symm
β€”β€”

CategoryTheory.Localization.StrictUniversalPropertyFixedTarget

Theorems

NameKindAssumesProvesValidatesDepends On
fac πŸ“–mathematicalCategoryTheory.MorphismProperty.IsInvertedByCategoryTheory.Functor.comp
lift
β€”β€”
inverts πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsInvertedByβ€”β€”
uniq πŸ“–β€”CategoryTheory.Functor.compβ€”β€”β€”

---

← Back to Index