Documentation Verification Report

Resolution

📁 Source: Mathlib/CategoryTheory/Localization/Resolution.lean

Statistics

MetricCount
DefinitionsHasLeftResolutions, HasRightResolutions, comp, f, id, X₁, instCategory, op, opEquivalence, opFunctor, unop, w, RightResolution, comp, f, id, X₁, instCategory, op, unop, unopFunctor, w
22
Theoremscomm, comm_assoc, comp_f, ext, ext_iff, id_f, comp_f, comp_f_assoc, hom_ext, hom_ext_iff, hw, id_f, mk_surjective, opEquivalence_counitIso, opEquivalence_functor, opEquivalence_inverse, opEquivalence_unitIso, opFunctor_map_f, opFunctor_obj, op_X₁, op_w, unop_X₁, unop_w, comm, comm_assoc, comp_f, ext, ext_iff, id_f, comp_f, comp_f_assoc, hom_ext, hom_ext_iff, hw, id_f, mk_surjective, op_X₁, op_w, unopFunctor_map_f, unopFunctor_obj, unop_X₁, unop_w, essSurj_of_hasLeftResolutions, essSurj_of_hasRightResolutions, hasLeftResolutions_iff_op, hasRightResolutions_iff_op, instHasLeftResolutionsOppositeOpOpOfHasRightResolutions, instHasRightResolutionsOppositeOpOpOfHasLeftResolutions, isIso_iff_of_hasLeftResolutions, isIso_iff_of_hasRightResolutions, nonempty_leftResolution_iff_op, nonempty_rightResolution_iff_op
52
Total74

CategoryTheory.LocalizerMorphism

Definitions

NameCategoryTheorems
HasLeftResolutions 📖MathDef
6 mathmath: hasLeftResolutions_iff_op, instHasLeftResolutionsOppositeOpOpOfHasRightResolutions, HomotopicalAlgebra.CofibrantObject.instHasLeftResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism, IsLeftDerivabilityStructure.hasLeftResolutions, instHasLeftResolutionsIdOfContainsIdentities, hasRightResolutions_iff_op
HasRightResolutions 📖MathDef
7 mathmath: IsRightDerivabilityStructure.hasRightResolutions, hasRightResolutions_arrow_of_functorial_resolutions, hasLeftResolutions_iff_op, HomotopicalAlgebra.FibrantObject.instHasRightResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism, instHasRightResolutionsIdOfContainsIdentities, hasRightResolutions_iff_op, instHasRightResolutionsOppositeOpOpOfHasLeftResolutions
RightResolution 📖CompData
17 mathmath: LeftResolution.opFunctor_map_f, IsRightDerivabilityStructure.Constructor.fromRightResolution_map, RightResolution.comp_f_assoc, LeftResolution.opEquivalence_unitIso, nonempty_rightResolution_iff_op, LeftResolution.opEquivalence_inverse, LeftResolution.opFunctor_obj, HomotopicalAlgebra.FibrantObject.instIsConnectedRightResolutionWeakEquivalencesLocalizerMorphism, RightResolution.id_f, RightResolution.unopFunctor_obj, RightResolution.comp_f, isConnected_rightResolution_of_functorial_resolutions, nonempty_leftResolution_iff_op, RightResolution.unopFunctor_map_f, LeftResolution.opEquivalence_counitIso, IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, LeftResolution.opEquivalence_functor

Theorems

NameKindAssumesProvesValidatesDepends On
essSurj_of_hasLeftResolutions 📖mathematicalHasLeftResolutionsCategoryTheory.Functor.EssSurj
CategoryTheory.Functor.comp
functor
CategoryTheory.Localization.essSurj
LeftResolution.hw
essSurj_of_hasRightResolutions 📖mathematicalHasRightResolutionsCategoryTheory.Functor.EssSurj
CategoryTheory.Functor.comp
functor
CategoryTheory.Localization.essSurj
RightResolution.hw
hasLeftResolutions_iff_op 📖mathematicalHasLeftResolutions
HasRightResolutions
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
op
hasRightResolutions_iff_op 📖mathematicalHasRightResolutions
HasLeftResolutions
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
op
instHasLeftResolutionsOppositeOpOpOfHasRightResolutions 📖mathematicalHasRightResolutionsHasLeftResolutions
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
op
hasRightResolutions_iff_op
instHasRightResolutionsOppositeOpOpOfHasLeftResolutions 📖mathematicalHasLeftResolutionsHasRightResolutions
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
op
hasLeftResolutions_iff_op
isIso_iff_of_hasLeftResolutions 📖mathematicalHasLeftResolutionsCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
functor
CategoryTheory.NatTrans.app
CategoryTheory.NatIso.isIso_app_of_isIso
essSurj_of_hasLeftResolutions
CategoryTheory.NatTrans.isIso_app_iff_of_iso
CategoryTheory.NatIso.isIso_of_isIso_app
isIso_iff_of_hasRightResolutions 📖mathematicalHasRightResolutionsCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
functor
CategoryTheory.NatTrans.app
CategoryTheory.NatIso.isIso_app_of_isIso
essSurj_of_hasRightResolutions
CategoryTheory.NatTrans.isIso_app_iff_of_iso
CategoryTheory.NatIso.isIso_of_isIso_app
nonempty_leftResolution_iff_op 📖mathematicalLeftResolution
RightResolution
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
op
Opposite.op
Equiv.nonempty_congr
nonempty_rightResolution_iff_op 📖mathematicalRightResolution
LeftResolution
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
op
Opposite.op
Equiv.nonempty_congr

CategoryTheory.LocalizerMorphism.LeftResolution

Definitions

NameCategoryTheorems
X₁ 📖CompOp
16 mathmath: opFunctor_map_f, id_f, CategoryTheory.LocalizerMorphism.RightResolution.op_X₁, Hom.id_f, unop_X₁, Hom.comm, CategoryTheory.LocalizerMorphism.RightResolution.unop_X₁, Hom.comp_f, unop_w, comp_f_assoc, comp_f, hw, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceWWeakEquivalences, op_w, op_X₁, Hom.comm_assoc
instCategory 📖CompOp
12 mathmath: opFunctor_map_f, id_f, opEquivalence_unitIso, opEquivalence_inverse, opFunctor_obj, HomotopicalAlgebra.CofibrantObject.instIsConnectedLeftResolutionWeakEquivalencesLocalizerMorphism, comp_f_assoc, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_obj, comp_f, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_map_f, opEquivalence_counitIso, opEquivalence_functor
op 📖CompOp
4 mathmath: opFunctor_map_f, opFunctor_obj, op_w, op_X₁
opEquivalence 📖CompOp
4 mathmath: opEquivalence_unitIso, opEquivalence_inverse, opEquivalence_counitIso, opEquivalence_functor
opFunctor 📖CompOp
4 mathmath: opFunctor_map_f, opFunctor_obj, opEquivalence_counitIso, opEquivalence_functor
unop 📖CompOp
2 mathmath: unop_X₁, unop_w
w 📖CompOp
8 mathmath: Hom.comm, unop_w, hw, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceWWeakEquivalences, CategoryTheory.LocalizerMorphism.RightResolution.unop_w, op_w, Hom.comm_assoc, CategoryTheory.LocalizerMorphism.RightResolution.op_w

Theorems

NameKindAssumesProvesValidatesDepends On
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.Category.toCategoryStruct
instCategory
X₁
comp_f_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
Hom.f
CategoryTheory.LocalizerMorphism.LeftResolution
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_f
hom_ext 📖Hom.fHom.ext
hom_ext_iff 📖mathematicalHom.fhom_ext
hw 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.LocalizerMorphism.functor
X₁
w
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.Category.toCategoryStruct
instCategory
X₁
mk_surjective 📖hw
opEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
Opposite
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
instCategory
CategoryTheory.LocalizerMorphism.RightResolution.instCategory
opEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.rightOp
Opposite.unop
CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor
opFunctor
opEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
Opposite
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
instCategory
CategoryTheory.LocalizerMorphism.RightResolution.instCategory
opEquivalence
opFunctor
opEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
Opposite
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
instCategory
CategoryTheory.LocalizerMorphism.RightResolution.instCategory
opEquivalence
CategoryTheory.Functor.rightOp
Opposite.unop
CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor
opEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
Opposite
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
instCategory
CategoryTheory.LocalizerMorphism.RightResolution.instCategory
opEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
opFunctor_map_f 📖mathematicalCategoryTheory.LocalizerMorphism.RightResolution.Hom.f
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
op
Opposite.unop
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.Functor.map
instCategory
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.LocalizerMorphism.RightResolution.instCategory
opFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
X₁
Hom.f
Quiver.Hom.unop
opFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.Category.opposite
instCategory
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
CategoryTheory.LocalizerMorphism.RightResolution.instCategory
opFunctor
op
Opposite.unop
op_X₁ 📖mathematicalCategoryTheory.LocalizerMorphism.RightResolution.X₁
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
op
X₁
op_w 📖mathematicalCategoryTheory.LocalizerMorphism.RightResolution.w
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.obj
CategoryTheory.LocalizerMorphism.functor
X₁
w
unop_X₁ 📖mathematicalCategoryTheory.LocalizerMorphism.RightResolution.X₁
Opposite.unop
unop
X₁
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
unop_w 📖mathematicalCategoryTheory.LocalizerMorphism.RightResolution.w
Opposite.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.LocalizerMorphism.functor
CategoryTheory.MorphismProperty.op
CategoryTheory.LocalizerMorphism.op
X₁
w

CategoryTheory.LocalizerMorphism.LeftResolution.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
1 mathmath: comp_f
f 📖CompOp
11 mathmath: CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_map_f, CategoryTheory.LocalizerMorphism.LeftResolution.id_f, id_f, comm, comp_f, CategoryTheory.LocalizerMorphism.LeftResolution.hom_ext_iff, CategoryTheory.LocalizerMorphism.LeftResolution.comp_f_assoc, CategoryTheory.LocalizerMorphism.LeftResolution.comp_f, ext_iff, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_map_f, comm_assoc
id 📖CompOp
1 mathmath: id_f

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.LocalizerMorphism.functor
CategoryTheory.LocalizerMorphism.LeftResolution.X₁
CategoryTheory.Functor.map
f
CategoryTheory.LocalizerMorphism.LeftResolution.w
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.LocalizerMorphism.functor
CategoryTheory.LocalizerMorphism.LeftResolution.X₁
CategoryTheory.Functor.map
f
CategoryTheory.LocalizerMorphism.LeftResolution.w
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
comp_f 📖mathematicalf
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.LeftResolution.X₁
ext 📖f
ext_iff 📖mathematicalfext
id_f 📖mathematicalf
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.LeftResolution.X₁

CategoryTheory.LocalizerMorphism.RightResolution

Definitions

NameCategoryTheorems
X₁ 📖CompOp
18 mathmath: CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, comp_f_assoc, op_X₁, CategoryTheory.LocalizerMorphism.LeftResolution.unop_X₁, unop_X₁, Hom.id_f, id_f, comp_f, Hom.comm, HomotopicalAlgebra.FibrantObject.instWeakEquivalenceWWeakEquivalences, hw, Hom.comp_f, unop_w, unopFunctor_map_f, CategoryTheory.LocalizerMorphism.LeftResolution.op_X₁, op_w, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, Hom.comm_assoc
instCategory 📖CompOp
15 mathmath: CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_map_f, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, comp_f_assoc, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_unitIso, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_inverse, CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_obj, HomotopicalAlgebra.FibrantObject.instIsConnectedRightResolutionWeakEquivalencesLocalizerMorphism, id_f, unopFunctor_obj, comp_f, CategoryTheory.LocalizerMorphism.isConnected_rightResolution_of_functorial_resolutions, unopFunctor_map_f, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_counitIso, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_functor
op 📖CompOp
2 mathmath: op_X₁, op_w
unop 📖CompOp
4 mathmath: unop_X₁, unopFunctor_obj, unop_w, unopFunctor_map_f
unopFunctor 📖CompOp
4 mathmath: CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_inverse, unopFunctor_obj, unopFunctor_map_f, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_counitIso
w 📖CompOp
10 mathmath: CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, CategoryTheory.LocalizerMorphism.LeftResolution.unop_w, Hom.comm, HomotopicalAlgebra.FibrantObject.instWeakEquivalenceWWeakEquivalences, hw, unop_w, CategoryTheory.LocalizerMorphism.LeftResolution.op_w, op_w, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, Hom.comm_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.Category.toCategoryStruct
instCategory
X₁
comp_f_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
Hom.f
CategoryTheory.LocalizerMorphism.RightResolution
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_f
hom_ext 📖Hom.fHom.ext
hom_ext_iff 📖mathematicalHom.fhom_ext
hw 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.LocalizerMorphism.functor
X₁
w
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.Category.toCategoryStruct
instCategory
X₁
mk_surjective 📖hw
op_X₁ 📖mathematicalCategoryTheory.LocalizerMorphism.LeftResolution.X₁
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
op
X₁
op_w 📖mathematicalCategoryTheory.LocalizerMorphism.LeftResolution.w
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
Opposite.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.obj
CategoryTheory.LocalizerMorphism.functor
X₁
w
unopFunctor_map_f 📖mathematicalCategoryTheory.LocalizerMorphism.LeftResolution.Hom.f
Opposite.unop
unop
CategoryTheory.LocalizerMorphism.RightResolution
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
CategoryTheory.Functor.map
instCategory
CategoryTheory.LocalizerMorphism.LeftResolution
CategoryTheory.LocalizerMorphism.LeftResolution.instCategory
unopFunctor
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
X₁
Hom.f
unopFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.LocalizerMorphism.RightResolution
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
instCategory
CategoryTheory.LocalizerMorphism.LeftResolution
Opposite.unop
CategoryTheory.LocalizerMorphism.LeftResolution.instCategory
unopFunctor
unop
unop_X₁ 📖mathematicalCategoryTheory.LocalizerMorphism.LeftResolution.X₁
Opposite.unop
unop
X₁
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MorphismProperty.op
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.op
unop_w 📖mathematicalCategoryTheory.LocalizerMorphism.LeftResolution.w
Opposite.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.LocalizerMorphism.functor
CategoryTheory.MorphismProperty.op
CategoryTheory.LocalizerMorphism.op
X₁
w

CategoryTheory.LocalizerMorphism.RightResolution.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
1 mathmath: comp_f
f 📖CompOp
12 mathmath: CategoryTheory.LocalizerMorphism.LeftResolution.opFunctor_map_f, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, CategoryTheory.LocalizerMorphism.RightResolution.comp_f_assoc, id_f, ext_iff, CategoryTheory.LocalizerMorphism.RightResolution.id_f, CategoryTheory.LocalizerMorphism.RightResolution.comp_f, CategoryTheory.LocalizerMorphism.RightResolution.hom_ext_iff, comm, comp_f, CategoryTheory.LocalizerMorphism.RightResolution.unopFunctor_map_f, comm_assoc
id 📖CompOp
1 mathmath: id_f

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.LocalizerMorphism.functor
CategoryTheory.LocalizerMorphism.RightResolution.X₁
CategoryTheory.LocalizerMorphism.RightResolution.w
CategoryTheory.Functor.map
f
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.LocalizerMorphism.functor
CategoryTheory.LocalizerMorphism.RightResolution.X₁
CategoryTheory.LocalizerMorphism.RightResolution.w
CategoryTheory.Functor.map
f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
comp_f 📖mathematicalf
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.RightResolution.X₁
ext 📖f
ext_iff 📖mathematicalfext
id_f 📖mathematicalf
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.LocalizerMorphism.RightResolution.X₁

---

← Back to Index