Documentation Verification Report

SmallShiftedHom

šŸ“ Source: Mathlib/CategoryTheory/Localization/SmallShiftedHom.lean

Statistics

MetricCount
DefinitionsHasSmallLocalizedShiftedHom, shift, SmallShiftedHom, chgUniv, comp, equiv, mk, mkā‚€, mkā‚€Inv, postcompEquiv, precompEquiv, shift, smallShiftedHomMap
13
Theoremsequiv_shift, comp_assoc, comp_mkā‚€_id, equiv_apply, equiv_chgUniv, equiv_comp, equiv_mk, equiv_mkā‚€, equiv_mkā‚€Inv, equiv_shift, equiv_shift', mkā‚€Inv_comp_mkā‚€, mkā‚€_comp_mkā‚€Inv, mkā‚€_id_comp, postcompEquiv_apply, postcompEquiv_symm_apply, precompEquiv_apply, precompEquiv_symm_apply, hasSmallLocalizedHom_of_hasSmallLocalizedShiftedHomā‚€, hasSmallLocalizedShiftedHom_iff, hasSmallLocalizedShiftedHom_iff_source, hasSmallLocalizedShiftedHom_iff_target, instHasSmallLocalizedHomObjShiftFunctor, instHasSmallLocalizedHomObjShiftFunctor_1, instHasSmallLocalizedHomObjShiftFunctor_2, instHasSmallLocalizedHomObjShiftFunctor_3, equiv_smallShiftedHomMap, smallShiftedHomMap_comp, smallShiftedHomMap_mk, smallShiftedHomMap_mkā‚€
30
Total43

CategoryTheory.Localization

Definitions

NameCategoryTheorems
HasSmallLocalizedShiftedHom šŸ“–MathDef
7 mathmath: CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoXā‚ƒCochainComplexMapSingleFunctorOfNatX₁, hasSmallLocalizedShiftedHom_iff_target, hasSmallLocalizedShiftedHom_iff_source, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, hasSmallLocalizedShiftedHom_iff
SmallShiftedHom šŸ“–CompOp
19 mathmath: CochainComplex.HomComplex.CohomologyClass.equivOfIsKInjective_apply, SmallShiftedHom.equiv_comp, CochainComplex.HomComplex.CohomologyClass.bijective_toSmallShiftedHom_of_isKProjective, CochainComplex.HomComplex.CohomologyClass.bijective_toSmallShiftedHom_of_isKInjective, CochainComplex.HomComplex.CohomologyClass.equivOfIsKInjective_symm_apply, SmallShiftedHom.equiv_mk, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, SmallShiftedHom.equiv_chgUniv, CategoryTheory.LocalizerMorphism.equiv_smallShiftedHomMap, SmallShiftedHom.equiv_shift, SmallShiftedHom.postcompEquiv_symm_apply, SmallShiftedHom.precompEquiv_symm_apply, CochainComplex.HomComplex.CohomologyClass.equivOfIsKProjective_symm_apply, SmallShiftedHom.precompEquiv_apply, SmallShiftedHom.equiv_mkā‚€Inv, SmallShiftedHom.equiv_mkā‚€, CochainComplex.HomComplex.CohomologyClass.equivOfIsKProjective_apply, SmallShiftedHom.equiv_apply, SmallShiftedHom.postcompEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
hasSmallLocalizedHom_of_hasSmallLocalizedShiftedHomā‚€ šŸ“–mathematicalHasSmallLocalizedShiftedHomHasSmallLocalizedHom—hasSmallLocalizedHom_iff_of_isos
hasSmallLocalizedShiftedHom_iff šŸ“–mathematical—HasSmallLocalizedShiftedHom
Small
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
—small_congr
hasSmallLocalizedHom_iff
hasSmallLocalizedShiftedHom_iff_source šŸ“–mathematical—HasSmallLocalizedShiftedHom—hasSmallLocalizedHom_iff_source
CategoryTheory.MorphismProperty.shift
hasSmallLocalizedShiftedHom_iff_target šŸ“–mathematical—HasSmallLocalizedShiftedHom—hasSmallLocalizedHom_iff_target
CategoryTheory.MorphismProperty.shift
instHasSmallLocalizedHomObjShiftFunctor šŸ“–mathematicalHasSmallLocalizedShiftedHomHasSmallLocalizedHom
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
—hasSmallLocalizedHom_iff_of_isos
instHasSmallLocalizedHomObjShiftFunctor_1 šŸ“–mathematicalHasSmallLocalizedShiftedHomHasSmallLocalizedHom
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
—hasSmallLocalizedHom_iff_of_isos
instHasSmallLocalizedHomObjShiftFunctor_2 šŸ“–mathematicalHasSmallLocalizedShiftedHomHasSmallLocalizedHom
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
—hasSmallLocalizedHom_iff_of_isos
instHasSmallLocalizedHomObjShiftFunctor_3 šŸ“–mathematicalHasSmallLocalizedShiftedHomHasSmallLocalizedHom
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
—hasSmallLocalizedHom_iff_of_isos

CategoryTheory.Localization.SmallHom

Definitions

NameCategoryTheorems
shift šŸ“–CompOp
1 mathmath: equiv_shift

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_shift šŸ“–mathematical—DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
equiv
shift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
—CategoryTheory.LocalizerMorphism.equiv_smallHomMap

CategoryTheory.Localization.SmallShiftedHom

Definitions

NameCategoryTheorems
chgUniv šŸ“–CompOp
1 mathmath: equiv_chgUniv
comp šŸ“–CompOp
11 mathmath: equiv_comp, comp_mkā‚€_id, mkā‚€_id_comp, comp_assoc, mkā‚€Inv_comp_mkā‚€, postcompEquiv_symm_apply, precompEquiv_symm_apply, precompEquiv_apply, CategoryTheory.LocalizerMorphism.smallShiftedHomMap_comp, mkā‚€_comp_mkā‚€Inv, postcompEquiv_apply
equiv šŸ“–CompOp
9 mathmath: equiv_comp, equiv_mk, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, equiv_chgUniv, CategoryTheory.LocalizerMorphism.equiv_smallShiftedHomMap, equiv_shift, equiv_mkā‚€Inv, equiv_mkā‚€, equiv_apply
mk šŸ“–CompOp—
mkā‚€ šŸ“–CompOp
8 mathmath: comp_mkā‚€_id, mkā‚€_id_comp, mkā‚€Inv_comp_mkā‚€, precompEquiv_apply, mkā‚€_comp_mkā‚€Inv, equiv_mkā‚€, CategoryTheory.LocalizerMorphism.smallShiftedHomMap_mkā‚€, postcompEquiv_apply
mkā‚€Inv šŸ“–CompOp
5 mathmath: mkā‚€Inv_comp_mkā‚€, postcompEquiv_symm_apply, precompEquiv_symm_apply, equiv_mkā‚€Inv, mkā‚€_comp_mkā‚€Inv
postcompEquiv šŸ“–CompOp
2 mathmath: postcompEquiv_symm_apply, postcompEquiv_apply
precompEquiv šŸ“–CompOp
2 mathmath: precompEquiv_symm_apply, precompEquiv_apply
shift šŸ“–CompOp
2 mathmath: equiv_shift', equiv_shift

Theorems

NameKindAssumesProvesValidatesDepends On
comp_assoc šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
comp—Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.comp_assoc
comp_mkā‚€_id šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
comp
mkā‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.ShiftedHom.comp.congr_simp
equiv_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€.congr_simp
CategoryTheory.Functor.map_id
CategoryTheory.ShiftedHom.comp_mkā‚€_id
equiv_apply šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomDFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CategoryTheory.ShiftedHom
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.shiftFunctor
CategoryTheory.Functor.comp
CategoryTheory.Localization.SmallHom
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Localization.SmallHom.equiv
CategoryTheory.Iso.hom
CategoryTheory.Iso.app
CategoryTheory.Functor.CommShift.commShiftIso
——
equiv_chgUniv šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomDFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CategoryTheory.ShiftedHom
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
chgUniv
—CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Localization.SmallHom.equiv_chgUniv
equiv_comp šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CategoryTheory.ShiftedHom
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
comp
CategoryTheory.ShiftedHom.comp
—CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Localization.SmallHom.equiv_comp
equiv_shift'
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_comp
equiv_mk šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomDFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CategoryTheory.ShiftedHom
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
CategoryTheory.ShiftedHom.map
—Equiv.injective
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
Equiv.symm_apply_apply
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
equiv_mkā‚€ šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CategoryTheory.ShiftedHom
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
mkā‚€
CategoryTheory.ShiftedHom.mkā‚€
CategoryTheory.Functor.map
—CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Functor.CommShift.commShiftIso_zero
CategoryTheory.Functor.CommShift.isoZero_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
equiv_mkā‚€Inv šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CategoryTheory.ShiftedHom
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
mkā‚€Inv
CategoryTheory.ShiftedHom.mkā‚€
CategoryTheory.Iso.inv
CategoryTheory.Localization.isoOfHom
—CategoryTheory.MorphismProperty.RespectsIso.precomp
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.eq_whisker
CategoryTheory.Localization.SmallHom.equiv_mkInv
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Functor.commShiftIso_zero'
CategoryTheory.Functor.CommShift.isoZero'_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Localization.isoOfHom_hom_inv_id_assoc
equiv_shift šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor_2
CategoryTheory.ShiftedHom
EquivLike.toFunLike
Equiv.instEquivLike
equiv
shift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorAdd'
—CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor_2
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
equiv_shift'
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_comp
equiv_shift' šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Localization.SmallHom.equiv
shift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Functor.map
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorAdd'
—CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor_3
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor_2
CategoryTheory.Localization.SmallHom.equiv_comp
CategoryTheory.Localization.SmallHom.equiv_shift
CategoryTheory.Category.assoc
CategoryTheory.Functor.commShiftIso_add'
CategoryTheory.Functor.CommShift.isoAdd'_inv_app
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
mkā‚€Inv_comp_mkā‚€ šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
comp
mkā‚€Inv
mkā‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.ShiftedHom.comp.congr_simp
equiv_mkā‚€Inv
equiv_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€_comp_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€.congr_simp
CategoryTheory.Localization.isoOfHom_inv_hom_id
CategoryTheory.Functor.map_id
mkā‚€_comp_mkā‚€Inv šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
comp
mkā‚€
mkā‚€Inv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.ShiftedHom.comp.congr_simp
equiv_mkā‚€
equiv_mkā‚€Inv
CategoryTheory.ShiftedHom.mkā‚€_comp_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€.congr_simp
CategoryTheory.Localization.isoOfHom_hom_inv_id
CategoryTheory.Functor.map_id
mkā‚€_id_comp šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
comp
mkā‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.ShiftedHom.comp.congr_simp
equiv_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€.congr_simp
CategoryTheory.Functor.map_id
CategoryTheory.ShiftedHom.mkā‚€_id_comp
postcompEquiv_apply šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomDFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
EquivLike.toFunLike
Equiv.instEquivLike
postcompEquiv
comp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
mkā‚€
—CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
postcompEquiv_symm_apply šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomDFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
postcompEquiv
comp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
mkā‚€Inv
—CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
precompEquiv_apply šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomDFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
EquivLike.toFunLike
Equiv.instEquivLike
precompEquiv
comp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
mkā‚€
—CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
precompEquiv_symm_apply šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomDFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
precompEquiv
comp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
mkā‚€Inv
—CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor

CategoryTheory.LocalizerMorphism

Definitions

NameCategoryTheorems
smallShiftedHomMap šŸ“–CompOp
4 mathmath: smallShiftedHomMap_mk, equiv_smallShiftedHomMap, smallShiftedHomMap_comp, smallShiftedHomMap_mkā‚€

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_smallShiftedHomMap šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomDFunLike.coe
Equiv
CategoryTheory.Localization.SmallShiftedHom
CategoryTheory.ShiftedHom
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Localization.SmallShiftedHom.equiv
smallShiftedHomMap
CategoryTheory.ShiftedHom.comp
CategoryTheory.Functor.comp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.ShiftedHom.mkā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.ShiftedHom.map
zero_add
add_zero
—CategoryTheory.Localization.hasSmallLocalizedHom_of_hasSmallLocalizedShiftedHomā‚€
Equiv.injective
zero_add
add_zero
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
equiv_smallHomMap'
CategoryTheory.NatTrans.app_shift
CategoryTheory.NatTrans.CommShift.of_iso_inv
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.Functor.commShiftIso_comp_inv_app
CategoryTheory.Functor.map_comp
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.comp_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€_comp
CategoryTheory.Functor.commShiftIso_inv_naturality
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
smallShiftedHomMap_comp šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
smallShiftedHomMap
CategoryTheory.Localization.SmallShiftedHom.comp
—Equiv.injective
CategoryTheory.Functor.q_isLocalization
zero_add
add_zero
equiv_smallShiftedHomMap
instCommShiftLocalizationHomFunctorIsoFunctorQLocalizedFunctor
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.Localization.SmallShiftedHom.equiv_comp
CategoryTheory.ShiftedHom.map_comp
CategoryTheory.ShiftedHom.comp_assoc
CategoryTheory.ShiftedHom.mkā‚€_comp_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€.congr_simp
CategoryTheory.Category.assoc
CategoryTheory.Iso.map_hom_inv_id_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.ShiftedHom.mkā‚€_id_comp
smallShiftedHomMap_mk šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHomsmallShiftedHomMap
CategoryTheory.ShiftedHom.comp
CategoryTheory.Functor.obj
functor
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.ShiftedHom.mkā‚€
CategoryTheory.Iso.inv
CategoryTheory.ShiftedHom.map
CategoryTheory.Iso.hom
zero_add
add_zero
—Equiv.injective
CategoryTheory.Functor.q_isLocalization
zero_add
add_zero
equiv_smallShiftedHomMap
instCommShiftLocalizationHomFunctorIsoFunctorQLocalizedFunctor
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.ShiftedHom.comp_mkā‚€
CategoryTheory.NatTrans.shift_app
CategoryTheory.NatTrans.CommShift.of_iso_inv
CategoryTheory.Functor.commShiftIso_comp_inv_app
CategoryTheory.Functor.commShiftIso_comp_hom_app
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.ShiftedHom.mkā‚€_comp
CategoryTheory.Functor.commShiftIso_hom_naturality
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.NatIso.naturality_2
smallShiftedHomMap_mkā‚€ šŸ“–mathematicalCategoryTheory.Localization.HasSmallLocalizedShiftedHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
smallShiftedHomMap
CategoryTheory.Localization.SmallShiftedHom.mkā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Iso.inv
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
—add_zero
zero_add
CategoryTheory.ShiftedHom.comp.congr_simp
CategoryTheory.ShiftedHom.map_mkā‚€
CategoryTheory.ShiftedHom.mkā‚€_comp_mkā‚€

---

← Back to Index