Documentation Verification Report

LocallyDirected

📁 Source: Mathlib/CategoryTheory/LocallyDirected.lean

Statistics

MetricCount
DefinitionsLocallyDirected, IsLocallyDirected
2
Theoremscond, exists_map_eq_of_isLocallyDirected, instIsLocallyDirectedDiscrete, instIsLocallyDirectedWidePushoutShapeOfMonoObjNoneSomeMapInit
4
Total6

AlgebraicGeometry.Scheme.Cover

Definitions

NameCategoryTheorems
LocallyDirected 📖CompData—

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instIsLocallyDirectedDiscrete 📖mathematical—Functor.IsLocallyDirected
Discrete
discreteCategory
—Discrete.functor_map_id
FunctorToTypes.map_id_apply
instIsLocallyDirectedWidePushoutShapeOfMonoObjNoneSomeMapInit 📖mathematicalMono
types
Functor.obj
Limits.WidePushoutShape
Limits.WidePushoutShape.category
Functor.map
Limits.WidePushoutShape.Hom.init
Functor.IsLocallyDirected—FunctorToTypes.map_id_apply
mono_iff_injective

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsLocallyDirected 📖CompData
9 mathmath: AlgebraicGeometry.Scheme.Cover.instIsLocallyDirectedI₀CompFunctorOfLocallyDirectedForget, CategoryTheory.instIsLocallyDirectedDiscrete, CategoryTheory.instIsLocallyDirectedWidePushoutShapeOfMonoObjNoneSomeMapInit, AlgebraicGeometry.Scheme.IsLocallyDirected.instIsLocallyDirectedWidePushoutShapeCompForgetOfIsOpenImmersionMap, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.isLocallyDirected, AlgebraicGeometry.instIsLocallyDirectedCompSchemeOverOverTopMorphismPropertyForgetForgetForget, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.instIsLocallyDirectedI₀CompFunctorForgetOfIsThin, AlgebraicGeometry.Scheme.Hom.instIsLocallyDirectedI₀DirectedCoverCompFunctorNormalizationGlueDataForget, AlgebraicGeometry.Scheme.isLocallyDirected_of_equifibered_of_injective

Theorems

NameKindAssumesProvesValidatesDepends On
exists_map_eq_of_isLocallyDirected 📖—map
CategoryTheory.types
——IsLocallyDirected.cond

CategoryTheory.Functor.IsLocallyDirected

Theorems

NameKindAssumesProvesValidatesDepends On
cond 📖—CategoryTheory.Functor.map
CategoryTheory.types
———

---

← Back to Index