Documentation Verification Report

Adjunction

📁 Source: Mathlib/CategoryTheory/Monad/Adjunction.lean

Statistics

MetricCount
DefinitionsadjToComonadIso, adjToMonadIso, counitAsIsoOfIso, fullyFaithfulLOfCompIsoId, fullyFaithfulROfCompIsoId, toComonad, toMonad, unitAsIsoOfIso, comparison, comparisonForget, ComonadicLeftAdjoint, R, adj, comparison, comparisonForget, MonadicRightAdjoint, L, adj, comonadicAdjunction, comonadicOfCoreflective, comonadicRightAdjoint, instComonadicLeftAdjointCoalgebraForget, instMonadicRightAdjointAlgebraForget, monadicAdjunction, monadicLeftAdjoint, monadicOfReflective
26
TheoremsadjToComonadIso_hom_toNatTrans_app, adjToComonadIso_inv_toNatTrans_app, adjToMonadIso_hom_toNatTrans_app, adjToMonadIso_inv_toNatTrans_app, isIso_counit_of_iso, isIso_unit_of_iso, toComonad_coe, toComonad_δ, toComonad_ε, toMonad_coe, toMonad_η, toMonad_μ, comparisonForget_hom_app, comparisonForget_inv_app, comparison_faithful_of_faithful, comparison_map_f, comparison_obj_A, comparison_obj_a, left_comparison, eqv, comparison_essSurj, comparison_full, instIsIsoAppCounitCoreflectorAdjunctionA, comparisonForget_hom_app, comparisonForget_inv_app, comparison_map_f, comparison_obj_A, comparison_obj_a, left_comparison, eqv, comparison_essSurj, comparison_full, instIsIsoAppUnitReflectorAdjunctionA, instEssSurjAlgebraToMonadAdjComparison, instEssSurjCoalgebraToComonadAdjComparison, instFaithfulAlgebraToMonadComparison, instFullAlgebraToMonadAdjComparison, instFullCoalgebraToComonadAdjComparison, instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison, instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison, instIsLeftAdjointOfComonadicLeftAdjoint, instIsRightAdjointOfMonadicRightAdjoint, δ_iso_of_coreflective, μ_iso_of_reflective
44
Total70

CategoryTheory

Definitions

NameCategoryTheorems
ComonadicLeftAdjoint 📖CompData
MonadicRightAdjoint 📖CompData
comonadicAdjunction 📖CompOp
3 mathmath: comp_comparison_hasColimit, comp_comparison_forget_hasColimit, instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison
comonadicOfCoreflective 📖CompOp
1 mathmath: rightAdjoint_preservesInitial_of_coreflective
comonadicRightAdjoint 📖CompOp
4 mathmath: comp_comparison_hasColimit, comp_comparison_forget_hasColimit, instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison, rightAdjoint_preservesInitial_of_coreflective
instComonadicLeftAdjointCoalgebraForget 📖CompOp
instMonadicRightAdjointAlgebraForget 📖CompOp
monadicAdjunction 📖CompOp
3 mathmath: comp_comparison_forget_hasLimit, comp_comparison_hasLimit, instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison
monadicLeftAdjoint 📖CompOp
4 mathmath: comp_comparison_forget_hasLimit, leftAdjoint_preservesTerminal_of_reflective, comp_comparison_hasLimit, instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison
monadicOfReflective 📖CompOp
1 mathmath: leftAdjoint_preservesTerminal_of_reflective

Theorems

NameKindAssumesProvesValidatesDepends On
instEssSurjAlgebraToMonadAdjComparison 📖mathematicalFunctor.EssSurj
Monad.Algebra
Adjunction.toMonad
Monad.Algebra.eilenbergMoore
Monad.free
Monad.forget
Monad.adj
Monad.comparison
Category.comp_id
Monad.adj_unit
Monad.Algebra.unit
Functor.map_id
Category.id_comp
Monad.adj_counit
Monad.Algebra.assoc
instEssSurjCoalgebraToComonadAdjComparison 📖mathematicalFunctor.EssSurj
Comonad.Coalgebra
Adjunction.toComonad
Comonad.Coalgebra.eilenbergMoore
Comonad.forget
Comonad.cofree
Comonad.adj
Comonad.comparison
Category.id_comp
Comonad.adj_counit
Comonad.Coalgebra.counit
Functor.map_id
Category.comp_id
Comonad.adj_unit
Comonad.Coalgebra.coassoc
instFaithfulAlgebraToMonadComparison 📖mathematicalFunctor.Faithful
Monad.Algebra
Adjunction.toMonad
Monad.Algebra.eilenbergMoore
Monad.comparison
Functor.map_injective
instFullAlgebraToMonadAdjComparison 📖mathematicalFunctor.Full
Monad.Algebra
Monad.Algebra.eilenbergMoore
Adjunction.toMonad
Monad.free
Monad.forget
Monad.adj
Monad.comparison
Functor.map_id
Category.id_comp
Monad.adj_counit
Monad.Algebra.Hom.h
instFullCoalgebraToComonadAdjComparison 📖mathematicalFunctor.Full
Comonad.Coalgebra
Comonad.Coalgebra.eilenbergMoore
Adjunction.toComonad
Comonad.forget
Comonad.cofree
Comonad.adj
Comonad.comparison
Functor.map_id
Category.comp_id
Comonad.adj_unit
Comonad.Coalgebra.Hom.h
instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison 📖mathematicalFunctor.IsEquivalence
Monad.Algebra
Adjunction.toMonad
monadicLeftAdjoint
monadicAdjunction
Monad.Algebra.eilenbergMoore
Monad.comparison
MonadicRightAdjoint.eqv
instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison 📖mathematicalFunctor.IsEquivalence
Comonad.Coalgebra
Adjunction.toComonad
comonadicRightAdjoint
comonadicAdjunction
Comonad.Coalgebra.eilenbergMoore
Comonad.comparison
ComonadicLeftAdjoint.eqv
instIsLeftAdjointOfComonadicLeftAdjoint 📖mathematicalFunctor.IsLeftAdjointAdjunction.isLeftAdjoint
instIsRightAdjointOfMonadicRightAdjoint 📖mathematicalFunctor.IsRightAdjointAdjunction.isRightAdjoint
δ_iso_of_coreflective 📖mathematicalIsIso
Functor
Functor.category
Comonad.toFunctor
Adjunction.toComonad
coreflector
coreflectorAdjunction
Functor.comp
Comonad.δ
Functor.isIso_whiskerRight
Functor.isIso_whiskerLeft
Adjunction.unit_isIso_of_L_fully_faithful
Coreflective.toFull
Coreflective.toFaithful
μ_iso_of_reflective 📖mathematicalIsIso
Functor
Functor.category
Functor.comp
Monad.toFunctor
Adjunction.toMonad
reflector
reflectorAdjunction
Monad.μ
Functor.isIso_whiskerRight
Functor.isIso_whiskerLeft
Adjunction.counit_isIso_of_R_fully_faithful
Reflective.toFull
Reflective.toFaithful

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
adjToComonadIso 📖CompOp
2 mathmath: adjToComonadIso_inv_toNatTrans_app, adjToComonadIso_hom_toNatTrans_app
adjToMonadIso 📖CompOp
2 mathmath: adjToMonadIso_inv_toNatTrans_app, adjToMonadIso_hom_toNatTrans_app
counitAsIsoOfIso 📖CompOp
fullyFaithfulLOfCompIsoId 📖CompOp
fullyFaithfulROfCompIsoId 📖CompOp
toComonad 📖CompOp
32 mathmath: adjToComonadIso_inv_toNatTrans_app, CategoryTheory.Comonad.comparison_faithful_of_faithful, CategoryTheory.ComonadicLeftAdjoint.eqv, CategoryTheory.comp_comparison_hasColimit, CategoryTheory.Comonad.comparison_obj_a, CategoryTheory.comp_comparison_forget_hasColimit, CategoryTheory.Coreflective.comparison_full, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, toComonad_δ, CategoryTheory.Comonad.ComonadicityInternal.unitFork_ι, toComonad_ε, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, CategoryTheory.instEssSurjCoalgebraToComonadAdjComparison, CategoryTheory.Comonad.comparisonForget_inv_app, adjToComonadIso_hom_toNatTrans_app, CategoryTheory.Comonad.comparisonForget_hom_app, CategoryTheory.Comonad.left_comparison, CategoryTheory.Coreflective.instIsIsoAppCounitCoreflectorAdjunctionA, CategoryTheory.instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison, CategoryTheory.Comonad.comparison_map_f, CategoryTheory.Comonad.ComonadicityInternal.main_pair_coreflexive, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.δ_iso_of_coreflective, CategoryTheory.Comonad.comparison_obj_A, CategoryTheory.Comonad.ComonadicityInternal.main_pair_F_cosplit, CategoryTheory.Comonad.instHasEqualizerMapAAppUnitObjAOfHasEqualizerOfIsCosplitPair, toComonad_coe, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, CategoryTheory.instFullCoalgebraToComonadAdjComparison, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.Coreflective.comparison_essSurj
toMonad 📖CompOp
32 mathmath: CategoryTheory.Monad.left_comparison, CategoryTheory.comp_comparison_forget_hasLimit, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, CategoryTheory.instFullAlgebraToMonadAdjComparison, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, CategoryTheory.Monad.comparisonForget_hom_app, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, CategoryTheory.Monad.comparison_obj_a, toMonad_η, CategoryTheory.Monad.MonadicityInternal.unitCofork_π, toMonad_μ, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, CategoryTheory.Monad.comparison_obj_A, CategoryTheory.Monad.instHasCoequalizerMapAAppCounitObjAOfHasCoequalizerOfIsSplitPair, CategoryTheory.instFaithfulAlgebraToMonadComparison, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, adjToMonadIso_inv_toNatTrans_app, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CategoryTheory.Reflective.comparison_full, CategoryTheory.comp_comparison_hasLimit, CategoryTheory.Monad.comparisonForget_inv_app, CategoryTheory.Monad.comparison_map_f, toMonad_coe, CategoryTheory.μ_iso_of_reflective, CategoryTheory.MonadicRightAdjoint.eqv, adjToMonadIso_hom_toNatTrans_app, CategoryTheory.Monad.MonadicityInternal.main_pair_G_split, CategoryTheory.Reflective.comparison_essSurj, CategoryTheory.Monad.MonadicityInternal.main_pair_reflexive, CategoryTheory.instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison, CategoryTheory.Reflective.instIsIsoAppUnitReflectorAdjunctionA
unitAsIsoOfIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
adjToComonadIso_hom_toNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comonad.toFunctor
toComonad
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.forget
CategoryTheory.Comonad.cofree
CategoryTheory.Comonad.adj
CategoryTheory.ComonadHom.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Comonad
CategoryTheory.instCategoryComonad
adjToComonadIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
adjToComonadIso_inv_toNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comonad.toFunctor
toComonad
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.forget
CategoryTheory.Comonad.cofree
CategoryTheory.Comonad.adj
CategoryTheory.ComonadHom.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Comonad
CategoryTheory.instCategoryComonad
adjToComonadIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
adjToMonadIso_hom_toNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Monad.toFunctor
toMonad
CategoryTheory.Monad.Algebra
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.free
CategoryTheory.Monad.forget
CategoryTheory.Monad.adj
CategoryTheory.MonadHom.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
adjToMonadIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
adjToMonadIso_inv_toNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Monad.toFunctor
toMonad
CategoryTheory.Monad.Algebra
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.free
CategoryTheory.Monad.forget
CategoryTheory.Monad.adj
CategoryTheory.MonadHom.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
adjToMonadIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
isIso_counit_of_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Iso.isIso_hom
isIso_unit_of_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Iso.isIso_hom
toComonad_coe 📖mathematicalCategoryTheory.Comonad.toFunctor
toComonad
CategoryTheory.Functor.comp
toComonad_δ 📖mathematicalCategoryTheory.Comonad.δ
toComonad
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
unit
toComonad_ε 📖mathematicalCategoryTheory.Comonad.ε
toComonad
counit
toMonad_coe 📖mathematicalCategoryTheory.Monad.toFunctor
toMonad
CategoryTheory.Functor.comp
toMonad_η 📖mathematicalCategoryTheory.Monad.η
toMonad
unit
toMonad_μ 📖mathematicalCategoryTheory.Monad.μ
toMonad
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
counit

CategoryTheory.Comonad

Definitions

NameCategoryTheorems
comparison 📖CompOp
21 mathmath: comparison_faithful_of_faithful, CategoryTheory.ComonadicLeftAdjoint.eqv, CategoryTheory.comp_comparison_hasColimit, comparison_obj_a, CategoryTheory.comp_comparison_forget_hasColimit, CategoryTheory.Coreflective.comparison_full, ComonadicityInternal.comparisonAdjunction_counit_f, CategoryTheory.instEssSurjCoalgebraToComonadAdjComparison, comparisonForget_inv_app, comparisonForget_hom_app, left_comparison, CategoryTheory.instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison, comparison_map_f, ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, comparison_obj_A, ComonadicityInternal.comparisonAdjunction_counit, ComonadicityInternal.comparisonAdjunction_unit_app, ComonadicityInternal.comparisonAdjunction_counit_f_aux, CategoryTheory.instFullCoalgebraToComonadAdjComparison, ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.Coreflective.comparison_essSurj
comparisonForget 📖CompOp
2 mathmath: comparisonForget_inv_app, comparisonForget_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
comparisonForget_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
Coalgebra
CategoryTheory.Adjunction.toComonad
Coalgebra.eilenbergMoore
comparison
forget
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
comparisonForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
comparisonForget_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
Coalgebra
CategoryTheory.Adjunction.toComonad
Coalgebra.eilenbergMoore
comparison
forget
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
comparisonForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
comparison_faithful_of_faithful 📖mathematicalCategoryTheory.Functor.Faithful
Coalgebra
CategoryTheory.Adjunction.toComonad
Coalgebra.eilenbergMoore
comparison
CategoryTheory.Functor.map_injective
comparison_map_f 📖mathematicalCoalgebra.Hom.f
CategoryTheory.Adjunction.toComonad
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Adjunction.unit
Coalgebra
Coalgebra.eilenbergMoore
comparison
comparison_obj_A 📖mathematicalCoalgebra.A
CategoryTheory.Adjunction.toComonad
CategoryTheory.Functor.obj
Coalgebra
Coalgebra.eilenbergMoore
comparison
comparison_obj_a 📖mathematicalCoalgebra.a
CategoryTheory.Adjunction.toComonad
CategoryTheory.Functor.obj
Coalgebra
Coalgebra.eilenbergMoore
comparison
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Adjunction.unit
left_comparison 📖mathematicalCategoryTheory.Functor.comp
Coalgebra
CategoryTheory.Adjunction.toComonad
Coalgebra.eilenbergMoore
comparison
cofree

CategoryTheory.ComonadicLeftAdjoint

Definitions

NameCategoryTheorems
R 📖CompOp
1 mathmath: eqv
adj 📖CompOp
1 mathmath: eqv

Theorems

NameKindAssumesProvesValidatesDepends On
eqv 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Adjunction.toComonad
R
adj
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.comparison

CategoryTheory.Coreflective

Theorems

NameKindAssumesProvesValidatesDepends On
comparison_essSurj 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Adjunction.toComonad
CategoryTheory.coreflector
CategoryTheory.coreflectorAdjunction
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.comparison
instIsIsoAppCounitCoreflectorAdjunctionA
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.Adjunction.left_triangle_components_assoc
CategoryTheory.Category.comp_id
CategoryTheory.whisker_eq
CategoryTheory.Comonad.Coalgebra.counit
comparison_full 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Adjunction.toComonad
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.comparison
CategoryTheory.Comonad.Coalgebra.Hom.ext'
CategoryTheory.Functor.map_preimage
instIsIsoAppCounitCoreflectorAdjunctionA 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.coreflector
CategoryTheory.Comonad.Coalgebra.A
CategoryTheory.Adjunction.toComonad
CategoryTheory.coreflectorAdjunction
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.counit_obj_eq_map_counit
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_id
CategoryTheory.Comonad.Coalgebra.counit

CategoryTheory.Monad

Definitions

NameCategoryTheorems
comparison 📖CompOp
21 mathmath: left_comparison, CategoryTheory.comp_comparison_forget_hasLimit, CategoryTheory.instFullAlgebraToMonadAdjComparison, comparisonForget_hom_app, MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, comparison_obj_a, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, comparison_obj_A, CategoryTheory.instFaithfulAlgebraToMonadComparison, MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, MonadicityInternal.comparisonAdjunction_unit_f, MonadicityInternal.comparisonAdjunction_unit_f_aux, MonadicityInternal.comparisonAdjunction_counit, CategoryTheory.Reflective.comparison_full, CategoryTheory.comp_comparison_hasLimit, comparisonForget_inv_app, comparison_map_f, CategoryTheory.MonadicRightAdjoint.eqv, CategoryTheory.Reflective.comparison_essSurj, CategoryTheory.instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison, MonadicityInternal.comparisonAdjunction_counit_app
comparisonForget 📖CompOp
2 mathmath: comparisonForget_hom_app, comparisonForget_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
comparisonForget_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
Algebra
CategoryTheory.Adjunction.toMonad
Algebra.eilenbergMoore
comparison
forget
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
comparisonForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
comparisonForget_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
Algebra
CategoryTheory.Adjunction.toMonad
Algebra.eilenbergMoore
comparison
forget
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
comparisonForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
comparison_map_f 📖mathematicalAlgebra.Hom.f
CategoryTheory.Adjunction.toMonad
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
Algebra
Algebra.eilenbergMoore
comparison
comparison_obj_A 📖mathematicalAlgebra.A
CategoryTheory.Adjunction.toMonad
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
comparison
comparison_obj_a 📖mathematicalAlgebra.a
CategoryTheory.Adjunction.toMonad
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
comparison
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
left_comparison 📖mathematicalCategoryTheory.Functor.comp
Algebra
CategoryTheory.Adjunction.toMonad
Algebra.eilenbergMoore
comparison
free

CategoryTheory.MonadicRightAdjoint

Definitions

NameCategoryTheorems
L 📖CompOp
1 mathmath: eqv
adj 📖CompOp
1 mathmath: eqv

Theorems

NameKindAssumesProvesValidatesDepends On
eqv 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Monad.Algebra
CategoryTheory.Adjunction.toMonad
L
adj
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.comparison

CategoryTheory.Reflective

Theorems

NameKindAssumesProvesValidatesDepends On
comparison_essSurj 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Monad.Algebra
CategoryTheory.Adjunction.toMonad
CategoryTheory.reflector
CategoryTheory.reflectorAdjunction
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.comparison
instIsIsoAppUnitReflectorAdjunctionA
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.Adjunction.right_triangle_components
CategoryTheory.Category.comp_id
CategoryTheory.Monad.Algebra.unit_assoc
comparison_full 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Monad.Algebra
CategoryTheory.Adjunction.toMonad
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.comparison
CategoryTheory.Monad.Algebra.Hom.ext'
CategoryTheory.Functor.map_preimage
instIsIsoAppUnitReflectorAdjunctionA 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Monad.Algebra.A
CategoryTheory.Adjunction.toMonad
CategoryTheory.reflector
CategoryTheory.reflectorAdjunction
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Monad.Algebra.unit
CategoryTheory.Adjunction.unit_naturality
CategoryTheory.unit_obj_eq_map_unit
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_id

---

← Back to Index