| Name | Category | Theorems |
Algebra 📖 | CompData | 97 mathmath: ForgetCreatesColimits.commuting, algebra_iso_of_iso, ForgetCreatesColimits.liftedCocone_pt, free_map_f, forget_reflects_iso, ForgetCreatesLimits.liftedConeIsLimit_lift_f, algebra_mono_of_mono, left_comparison, algebraFunctorOfMonadHom_obj_A, algebraFunctorOfMonadHomId_inv_app_f, forget_creates_colimits_of_monad_preserves, CategoryTheory.comp_comparison_forget_hasLimit, algebraPreadditive_homGroup_sub_f, algebraEquivOfIsoMonads_inverse, algebraFunctorOfMonadHomId_hom_app_f, algebraEquivOfIsoMonads_unitIso, ForgetCreatesLimits.conePoint_a, FreeCoequalizer.condition, Algebra.comp_eq_comp, algebraFunctorOfMonadHomEq_hom_app_f, ForgetCreatesColimits.γ_app, Algebra.id_f, ForgetCreatesLimits.newCone_π_app, algebraPreadditive_homGroup_add_f, CategoryTheory.instFullAlgebraToMonadAdjComparison, comparisonForget_hom_app, algebraFunctorOfMonadHomComp_hom_app_f, MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, Algebra.isoMk_inv_f, comparison_obj_a, beckAlgebraCofork_pt, adj_counit, adj_unit, ForgetCreatesLimits.liftedCone_pt, algebraFunctorOfMonadHomEq_inv_app_f, CategoryTheory.algebraEquivUnder_inverse, CategoryTheory.underToAlgebra_obj_A, algebraEquivOfIsoMonads_functor, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, hasLimit_of_comp_forget_hasLimit, algebra_equiv_of_iso_monads_comp_forget, comparison_obj_A, free_obj_a, ForgetCreatesColimits.coconePoint_A, CategoryTheory.instFaithfulAlgebraToMonadComparison, forget_faithful, algebraPreadditive_homGroup_zsmul_f, ForgetCreatesColimits.newCocone_pt, MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, MonadicityInternal.comparisonAdjunction_unit_f, free_obj_A, FreeCoequalizer.π_f, algebraEquivOfIsoMonads_counitIso, FreeCoequalizer.bottomMap_f, Algebra.id_eq_id, algebra_epi_of_epi, CategoryTheory.algebraEquivUnder_unitIso, algebraPreadditive_homGroup_zero_f, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.algebraToUnder_obj, algebraFunctorOfMonadHom_obj_a, MonadicityInternal.comparisonAdjunction_unit_f_aux, MonadicityInternal.comparisonAdjunction_counit, forget_map, algebraPreadditive_homGroup_nsmul_f, CategoryTheory.algebraEquivUnder_counitIso, CategoryTheory.Reflective.comparison_full, CategoryTheory.comp_comparison_hasLimit, instIsRightAdjointAlgebraForget, ForgetCreatesLimits.conePoint_A, algebraFunctorOfMonadHomComp_inv_app_f, beckAlgebraCofork_ι_app, comparisonForget_inv_app, forget_additive, comparison_map_f, CategoryTheory.underToAlgebra_map_f, ForgetCreatesColimits.liftedCocone_ι_app_f, ForgetCreatesLimits.γ_app, CategoryTheory.MonadicRightAdjoint.eqv, algebraPreadditive_homGroup_neg_f, CategoryTheory.Under.costar_map_left, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, Algebra.isoMk_hom_f, ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.Reflective.comparison_essSurj, CategoryTheory.instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison, forget_obj, CategoryTheory.algebraToUnder_map, instIsReflexivePairAlgebraTopMapBottomMap, Algebra.comp_f, CategoryTheory.algebraEquivUnder_functor, MonadicityInternal.comparisonAdjunction_counit_app, ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, algebraFunctorOfMonadHom_map_f, FreeCoequalizer.topMap_f, ForgetCreatesColimits.newCocone_ι
|
adj 📖 | CompOp | 6 mathmath: CategoryTheory.instFullAlgebraToMonadAdjComparison, adj_counit, adj_unit, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app
|
algebraEquivOfIsoMonads 📖 | CompOp | 4 mathmath: algebraEquivOfIsoMonads_inverse, algebraEquivOfIsoMonads_unitIso, algebraEquivOfIsoMonads_functor, algebraEquivOfIsoMonads_counitIso
|
algebraFunctorOfMonadHom 📖 | CompOp | 14 mathmath: algebraFunctorOfMonadHom_obj_A, algebraFunctorOfMonadHomId_inv_app_f, algebraEquivOfIsoMonads_inverse, algebraFunctorOfMonadHomId_hom_app_f, algebraEquivOfIsoMonads_unitIso, algebraFunctorOfMonadHomEq_hom_app_f, algebraFunctorOfMonadHomComp_hom_app_f, algebraFunctorOfMonadHomEq_inv_app_f, algebraEquivOfIsoMonads_functor, algebra_equiv_of_iso_monads_comp_forget, algebraEquivOfIsoMonads_counitIso, algebraFunctorOfMonadHom_obj_a, algebraFunctorOfMonadHomComp_inv_app_f, algebraFunctorOfMonadHom_map_f
|
algebraFunctorOfMonadHomComp 📖 | CompOp | 4 mathmath: algebraEquivOfIsoMonads_unitIso, algebraFunctorOfMonadHomComp_hom_app_f, algebraEquivOfIsoMonads_counitIso, algebraFunctorOfMonadHomComp_inv_app_f
|
algebraFunctorOfMonadHomEq 📖 | CompOp | 4 mathmath: algebraEquivOfIsoMonads_unitIso, algebraFunctorOfMonadHomEq_hom_app_f, algebraFunctorOfMonadHomEq_inv_app_f, algebraEquivOfIsoMonads_counitIso
|
algebraFunctorOfMonadHomId 📖 | CompOp | 4 mathmath: algebraFunctorOfMonadHomId_inv_app_f, algebraFunctorOfMonadHomId_hom_app_f, algebraEquivOfIsoMonads_unitIso, algebraEquivOfIsoMonads_counitIso
|
forget 📖 | CompOp | 29 mathmath: ForgetCreatesColimits.commuting, forget_reflects_iso, ForgetCreatesLimits.liftedConeIsLimit_lift_f, CategoryTheory.comp_comparison_forget_hasLimit, ForgetCreatesLimits.conePoint_a, ForgetCreatesColimits.γ_app, ForgetCreatesLimits.newCone_π_app, CategoryTheory.instFullAlgebraToMonadAdjComparison, comparisonForget_hom_app, adj_counit, adj_unit, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, algebra_equiv_of_iso_monads_comp_forget, ForgetCreatesColimits.coconePoint_A, forget_faithful, ForgetCreatesColimits.newCocone_pt, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, forget_map, instIsRightAdjointAlgebraForget, ForgetCreatesLimits.conePoint_A, comparisonForget_inv_app, forget_additive, ForgetCreatesColimits.liftedCocone_ι_app_f, ForgetCreatesLimits.γ_app, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, ForgetCreatesLimits.liftedCone_π_app_f, forget_obj, ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, ForgetCreatesColimits.newCocone_ι
|
free 📖 | CompOp | 18 mathmath: free_map_f, left_comparison, FreeCoequalizer.condition, CategoryTheory.instFullAlgebraToMonadAdjComparison, beckAlgebraCofork_pt, adj_counit, adj_unit, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, free_obj_a, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, free_obj_A, FreeCoequalizer.π_f, FreeCoequalizer.bottomMap_f, beckAlgebraCofork_ι_app, CategoryTheory.Under.costar_map_left, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, instIsReflexivePairAlgebraTopMapBottomMap, FreeCoequalizer.topMap_f
|
instInhabitedAlgebra 📖 | CompOp | — |