Documentation Verification Report

Algebra

📁 Source: Mathlib/CategoryTheory/Monad/Algebra.lean

Statistics

MetricCount
DefinitionsA, comp, f, id, a, eilenbergMoore, instCategoryStruct, isoMk, adj, cofree, forget, Algebra, A, comp, f, id, instInhabited, a, eilenbergMoore, instCategoryStruct, isoMk, adj, algebraEquivOfIsoMonads, algebraFunctorOfMonadHom, algebraFunctorOfMonadHomComp, algebraFunctorOfMonadHomEq, algebraFunctorOfMonadHomId, forget, free, instInhabitedAlgebra
30
Theoremsext, ext', ext'_iff, ext_iff, h, h_assoc, coassoc, coassoc_assoc, comp_eq_comp, comp_f, counit, counit_assoc, id_eq_id, id_f, isoMk_hom_f, isoMk_inv_f, adj_counit, adj_unit, algebra_epi_of_epi, algebra_mono_of_mono, coalgebra_iso_of_iso, cofree_map_f, cofree_obj_A, cofree_obj_a, forget_faithful, forget_map, forget_obj, forget_reflects_iso, instIsLeftAdjointCoalgebraForget, ext, ext', ext'_iff, ext_iff, h, h_assoc, assoc, assoc_assoc, comp_eq_comp, comp_f, id_eq_id, id_f, isoMk_hom_f, isoMk_inv_f, unit, unit_assoc, adj_counit, adj_unit, algebraEquivOfIsoMonads_counitIso, algebraEquivOfIsoMonads_functor, algebraEquivOfIsoMonads_inverse, algebraEquivOfIsoMonads_unitIso, algebraFunctorOfMonadHomComp_hom_app_f, algebraFunctorOfMonadHomComp_inv_app_f, algebraFunctorOfMonadHomEq_hom_app_f, algebraFunctorOfMonadHomEq_inv_app_f, algebraFunctorOfMonadHomId_hom_app_f, algebraFunctorOfMonadHomId_inv_app_f, algebraFunctorOfMonadHom_map_f, algebraFunctorOfMonadHom_obj_A, algebraFunctorOfMonadHom_obj_a, algebra_epi_of_epi, algebra_equiv_of_iso_monads_comp_forget, algebra_iso_of_iso, algebra_mono_of_mono, forget_faithful, forget_map, forget_obj, forget_reflects_iso, free_map_f, free_obj_A, free_obj_a, instIsRightAdjointAlgebraForget
72
Total102

CategoryTheory.Comonad

Definitions

NameCategoryTheorems
adj 📖CompOp
6 mathmath: CategoryTheory.Adjunction.adjToComonadIso_inv_toNatTrans_app, CategoryTheory.instEssSurjCoalgebraToComonadAdjComparison, CategoryTheory.Adjunction.adjToComonadIso_hom_toNatTrans_app, adj_counit, adj_unit, CategoryTheory.instFullCoalgebraToComonadAdjComparison
cofree 📖CompOp
18 mathmath: CategoryTheory.Adjunction.adjToComonadIso_inv_toNatTrans_app, beckCoalgebraFork_pt, CofreeEqualizer.topMap_f, instIsCoreflexivePairCoalgebraTopMapBottomMap, cofree_obj_A, CategoryTheory.instEssSurjCoalgebraToComonadAdjComparison, cofree_map_f, CategoryTheory.Adjunction.adjToComonadIso_hom_toNatTrans_app, adj_counit, left_comparison, CofreeEqualizer.ι_f, CategoryTheory.Over.star_map_left, cofree_obj_a, CofreeEqualizer.condition, CofreeEqualizer.bottomMap_f, adj_unit, beckCoalgebraFork_π_app, CategoryTheory.instFullCoalgebraToComonadAdjComparison
forget 📖CompOp
28 mathmath: CategoryTheory.Adjunction.adjToComonadIso_inv_toNatTrans_app, ForgetCreatesLimits'.liftedCone_π_app_f, forget_map, ForgetCreatesLimits'.γ_app, forget_faithful, CategoryTheory.comp_comparison_forget_hasColimit, ForgetCreatesColimits'.newCocone_ι_app, ForgetCreatesLimits'.newCone_pt, CategoryTheory.instEssSurjCoalgebraToComonadAdjComparison, ForgetCreatesColimits'.γ_app, comparisonForget_inv_app, CategoryTheory.Adjunction.adjToComonadIso_hom_toNatTrans_app, adj_counit, comparisonForget_hom_app, ForgetCreatesLimits'.newCone_π, ForgetCreatesColimits'.coconePoint_a, forget_obj, ForgetCreatesColimits'.liftedCoconeIsColimit_desc_f, ForgetCreatesLimits'.conePoint_A, ForgetCreatesColimits'.coconePoint_A, forget_additive, ForgetCreatesLimits'.commuting, ForgetCreatesLimits'.liftedConeIsLimit_lift_f, ForgetCreatesColimits'.liftedCocone_ι_app_f, adj_unit, instIsLeftAdjointCoalgebraForget, CategoryTheory.instFullCoalgebraToComonadAdjComparison, forget_reflects_iso

Theorems

NameKindAssumesProvesValidatesDepends On
adj_counit 📖mathematicalCategoryTheory.Adjunction.counit
Coalgebra
Coalgebra.eilenbergMoore
forget
cofree
adj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
toFunctor
ε
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Coalgebra.A
Coalgebra.a
CategoryTheory.Functor.map
Coalgebra.Hom.f
CategoryTheory.Category.id_comp
CategoryTheory.Category.id_comp
adj_unit 📖mathematicalCategoryTheory.Adjunction.unit
Coalgebra
Coalgebra.eilenbergMoore
forget
cofree
adj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
Coalgebra.A
Coalgebra.a
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
toFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
Coalgebra.Hom.f
CategoryTheory.NatTrans.app
ε
Coalgebra.Hom
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
algebra_epi_of_epi 📖mathematicalCategoryTheory.Epi
Coalgebra
Coalgebra.eilenbergMoore
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
forget_faithful
algebra_mono_of_mono 📖mathematicalCategoryTheory.Mono
Coalgebra
Coalgebra.eilenbergMoore
CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
forget_faithful
coalgebra_iso_of_iso 📖mathematicalCategoryTheory.IsIso
Coalgebra
Coalgebra.eilenbergMoore
CategoryTheory.IsIso.eq_inv_comp
Coalgebra.Hom.h_assoc
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
Coalgebra.Hom.ext'
CategoryTheory.IsIso.inv_hom_id
cofree_map_f 📖mathematicalCoalgebra.Hom.f
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
δ
CategoryTheory.Functor.map
Coalgebra
Coalgebra.eilenbergMoore
cofree
cofree_obj_A 📖mathematicalCoalgebra.A
CategoryTheory.Functor.obj
Coalgebra
Coalgebra.eilenbergMoore
cofree
toFunctor
cofree_obj_a 📖mathematicalCoalgebra.a
CategoryTheory.Functor.obj
Coalgebra
Coalgebra.eilenbergMoore
cofree
CategoryTheory.NatTrans.app
toFunctor
CategoryTheory.Functor.comp
δ
forget_faithful 📖mathematicalCategoryTheory.Functor.Faithful
Coalgebra
Coalgebra.eilenbergMoore
forget
Coalgebra.Hom.ext'
forget_map 📖mathematicalCategoryTheory.Functor.map
Coalgebra
Coalgebra.eilenbergMoore
forget
Coalgebra.Hom.f
forget_obj 📖mathematicalCategoryTheory.Functor.obj
Coalgebra
Coalgebra.eilenbergMoore
forget
Coalgebra.A
forget_reflects_iso 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
Coalgebra
Coalgebra.eilenbergMoore
forget
coalgebra_iso_of_iso
instIsLeftAdjointCoalgebraForget 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
Coalgebra
Coalgebra.eilenbergMoore
forget

CategoryTheory.Comonad.Coalgebra

Definitions

NameCategoryTheorems
A 📖CompOp
48 mathmath: CategoryTheory.Comonad.beckCoalgebraFork_pt, comp_f, CategoryTheory.Comonad.CofreeEqualizer.topMap_f, CategoryTheory.Comonad.ForgetCreatesColimits'.newCocone_ι_app, CategoryTheory.Comonad.instIsCoreflexivePairCoalgebraTopMapBottomMap, CategoryTheory.Comonad.cofree_obj_A, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_neg_f, CategoryTheory.Comonad.ComonadicityInternal.unitFork_ι, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, Hom.h, coassoc, CategoryTheory.Comonad.adj_counit, CategoryTheory.coalgebraToOver_obj, CategoryTheory.Coreflective.instIsIsoAppCounitCoreflectorAdjunctionA, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_nsmul_f, Hom.h_assoc, coassoc_assoc, CategoryTheory.Comonad.ComonadicityInternal.main_pair_coreflexive, CategoryTheory.Comonad.CofreeEqualizer.ι_f, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.overToCoalgebra_obj_A, CategoryTheory.Comonad.forget_obj, CategoryTheory.coalgebraToOver_map, counit_assoc, id_f, CategoryTheory.Comonad.beckEqualizer_lift, CategoryTheory.Comonad.ForgetCreatesLimits'.conePoint_A, CategoryTheory.Comonad.comparison_obj_A, CategoryTheory.Comonad.ForgetCreatesColimits'.coconePoint_A, CategoryTheory.Comonad.beckFork_ι, CategoryTheory.Comonad.beckFork_pt, CategoryTheory.Comonad.CofreeEqualizer.condition, counit, CategoryTheory.coalgebraEquivOver_unitIso, CategoryTheory.Comonad.ComonadicityInternal.main_pair_F_cosplit, CategoryTheory.Comonad.instHasEqualizerMapAAppUnitObjAOfHasEqualizerOfIsCosplitPair, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, CategoryTheory.Comonad.CofreeEqualizer.bottomMap_f, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_add_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_sub_f, CategoryTheory.Comonad.adj_unit, CategoryTheory.Comonad.beckCoalgebraFork_π_app, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zero_f
a 📖CompOp
34 mathmath: CategoryTheory.Comonad.comparison_obj_a, CategoryTheory.Comonad.CofreeEqualizer.topMap_f, CategoryTheory.Comonad.ForgetCreatesLimits'.γ_app, CategoryTheory.Comonad.ForgetCreatesColimits'.newCocone_ι_app, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, CategoryTheory.Comonad.ComonadicityInternal.unitFork_ι, CategoryTheory.Comonad.instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, Hom.h, CategoryTheory.Comonad.ForgetCreatesColimits'.γ_app, coassoc, CategoryTheory.Comonad.adj_counit, CategoryTheory.coalgebraToOver_obj, Hom.h_assoc, coassoc_assoc, CategoryTheory.Comonad.ComonadicityInternal.main_pair_coreflexive, CategoryTheory.Comonad.CofreeEqualizer.ι_f, CategoryTheory.Comonad.cofree_obj_a, CategoryTheory.Comonad.ForgetCreatesColimits'.coconePoint_a, CategoryTheory.Comonad.ForgetCreatesLimits'.conePoint_a, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.coalgebraToOver_map, counit_assoc, CategoryTheory.Comonad.beckEqualizer_lift, CategoryTheory.Comonad.beckFork_ι, CategoryTheory.Comonad.beckFork_pt, CategoryTheory.overToCoalgebra_obj_a, counit, CategoryTheory.Comonad.ComonadicityInternal.main_pair_F_cosplit, CategoryTheory.Comonad.instHasEqualizerMapAAppUnitObjAOfHasEqualizerOfIsCosplitPair, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.Comonad.instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, CategoryTheory.Comonad.ComonadicityInternal.counitFork_pt, CategoryTheory.Comonad.adj_unit, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply
eilenbergMoore 📖CompOp
79 mathmath: CategoryTheory.Adjunction.adjToComonadIso_inv_toNatTrans_app, CategoryTheory.Comonad.comparison_faithful_of_faithful, CategoryTheory.ComonadicLeftAdjoint.eqv, CategoryTheory.comp_comparison_hasColimit, CategoryTheory.Comonad.comparison_obj_a, CategoryTheory.Comonad.beckCoalgebraFork_pt, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCocone_pt, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_π_app_f, CategoryTheory.Comonad.CofreeEqualizer.topMap_f, CategoryTheory.Comonad.forget_map, CategoryTheory.Comonad.ForgetCreatesLimits'.γ_app, CategoryTheory.coalgebraEquivOver_functor, CategoryTheory.Comonad.forget_faithful, CategoryTheory.comp_comparison_forget_hasColimit, CategoryTheory.Comonad.ForgetCreatesColimits'.newCocone_ι_app, CategoryTheory.Comonad.instIsCoreflexivePairCoalgebraTopMapBottomMap, CategoryTheory.Coreflective.comparison_full, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_pt, CategoryTheory.Comonad.cofree_obj_A, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_neg_f, isoMk_hom_f, CategoryTheory.Comonad.coalgebra_iso_of_iso, CategoryTheory.instEssSurjCoalgebraToComonadAdjComparison, CategoryTheory.Comonad.cofree_map_f, CategoryTheory.Comonad.ForgetCreatesColimits'.γ_app, CategoryTheory.Comonad.comparisonForget_inv_app, CategoryTheory.Adjunction.adjToComonadIso_hom_toNatTrans_app, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.Comonad.adj_counit, CategoryTheory.Comonad.comparisonForget_hom_app, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_π, CategoryTheory.coalgebraToOver_obj, CategoryTheory.Comonad.left_comparison, CategoryTheory.coalgebraEquivOver_counitIso, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_nsmul_f, CategoryTheory.instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison, CategoryTheory.Comonad.comparison_map_f, CategoryTheory.Comonad.CofreeEqualizer.ι_f, CategoryTheory.Over.star_map_left, CategoryTheory.Comonad.cofree_obj_a, CategoryTheory.Comonad.ForgetCreatesColimits'.coconePoint_a, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.overToCoalgebra_obj_A, CategoryTheory.Comonad.forget_obj, CategoryTheory.Comonad.forget_creates_limits_of_comonad_preserves, CategoryTheory.coalgebraToOver_map, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCoconeIsColimit_desc_f, CategoryTheory.Comonad.ForgetCreatesLimits'.conePoint_A, CategoryTheory.Comonad.comparison_obj_A, CategoryTheory.Comonad.ForgetCreatesColimits'.coconePoint_A, CategoryTheory.Comonad.forget_additive, CategoryTheory.coalgebraEquivOver_inverse, CategoryTheory.overToCoalgebra_obj_a, CategoryTheory.Comonad.CofreeEqualizer.condition, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit, isoMk_inv_f, CategoryTheory.coalgebraEquivOver_unitIso, CategoryTheory.Comonad.algebra_epi_of_epi, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.Comonad.algebra_mono_of_mono, CategoryTheory.Comonad.CofreeEqualizer.bottomMap_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_add_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_sub_f, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_unit_app, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedConeIsLimit_lift_f, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCocone_ι_app_f, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, CategoryTheory.Comonad.adj_unit, CategoryTheory.Comonad.beckCoalgebraFork_π_app, CategoryTheory.Comonad.instIsLeftAdjointCoalgebraForget, CategoryTheory.instFullCoalgebraToComonadAdjComparison, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.Comonad.forget_reflects_iso, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_pt, CategoryTheory.Comonad.hasColimit_of_comp_forget_hasColimit, CategoryTheory.Coreflective.comparison_essSurj
instCategoryStruct 📖CompOp
7 mathmath: comp_f, id_eq_id, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, id_f, CategoryTheory.Comonad.CofreeEqualizer.condition, comp_eq_comp, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply
isoMk 📖CompOp
3 mathmath: isoMk_hom_f, isoMk_inv_f, CategoryTheory.coalgebraEquivOver_unitIso

Theorems

NameKindAssumesProvesValidatesDepends On
coassoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
A
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.Functor.comp
a
CategoryTheory.NatTrans.app
CategoryTheory.Comonad.δ
CategoryTheory.Functor.map
coassoc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
A
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
a
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Comonad.δ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coassoc
comp_eq_comp 📖mathematicalHom.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comonad.Coalgebra
instCategoryStruct
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comonad.Coalgebra
instCategoryStruct
CategoryTheory.Category.toCategoryStruct
A
counit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
A
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.Functor.id
a
CategoryTheory.NatTrans.app
CategoryTheory.Comonad.ε
CategoryTheory.CategoryStruct.id
counit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
A
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
a
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Comonad.ε
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
counit
id_eq_id 📖mathematicalHom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Comonad.Coalgebra
instCategoryStruct
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.Comonad.Coalgebra
instCategoryStruct
CategoryTheory.Category.toCategoryStruct
A
isoMk_hom_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
A
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.CategoryStruct.comp
a
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Hom.f
CategoryTheory.Comonad.Coalgebra
eilenbergMoore
isoMk
isoMk_inv_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
A
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.CategoryStruct.comp
a
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Hom.f
CategoryTheory.Iso.inv
CategoryTheory.Comonad.Coalgebra
eilenbergMoore
isoMk

CategoryTheory.Comonad.Coalgebra.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
1 mathmath: CategoryTheory.Comonad.Coalgebra.comp_eq_comp
f 📖CompOp
32 mathmath: CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_π_app_f, CategoryTheory.Comonad.Coalgebra.comp_f, CategoryTheory.Comonad.CofreeEqualizer.topMap_f, CategoryTheory.Comonad.forget_map, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_neg_f, CategoryTheory.Comonad.Coalgebra.isoMk_hom_f, h, CategoryTheory.Comonad.cofree_map_f, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.Comonad.adj_counit, ext_iff, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_nsmul_f, h_assoc, CategoryTheory.Comonad.comparison_map_f, CategoryTheory.Comonad.CofreeEqualizer.ι_f, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.coalgebraToOver_map, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCoconeIsColimit_desc_f, CategoryTheory.Comonad.Coalgebra.id_f, CategoryTheory.Comonad.Coalgebra.isoMk_inv_f, CategoryTheory.Comonad.CofreeEqualizer.bottomMap_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_add_f, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_sub_f, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedConeIsLimit_lift_f, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCocone_ι_app_f, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, CategoryTheory.Comonad.adj_unit, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zero_f, ext'_iff
id 📖CompOp
1 mathmath: CategoryTheory.Comonad.Coalgebra.id_eq_id

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖f
ext' 📖fext
ext'_iff 📖mathematicalfext'
ext_iff 📖mathematicalfext
h 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comonad.Coalgebra.A
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.Comonad.Coalgebra.a
CategoryTheory.Functor.map
f
h_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comonad.Coalgebra.A
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.Comonad.Coalgebra.a
CategoryTheory.Functor.map
f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
h

CategoryTheory.Monad

Definitions

NameCategoryTheorems
Algebra 📖CompData
97 mathmath: ForgetCreatesColimits.commuting, algebra_iso_of_iso, ForgetCreatesColimits.liftedCocone_pt, free_map_f, forget_reflects_iso, ForgetCreatesLimits.liftedConeIsLimit_lift_f, algebra_mono_of_mono, left_comparison, algebraFunctorOfMonadHom_obj_A, algebraFunctorOfMonadHomId_inv_app_f, forget_creates_colimits_of_monad_preserves, CategoryTheory.comp_comparison_forget_hasLimit, algebraPreadditive_homGroup_sub_f, algebraEquivOfIsoMonads_inverse, algebraFunctorOfMonadHomId_hom_app_f, algebraEquivOfIsoMonads_unitIso, ForgetCreatesLimits.conePoint_a, FreeCoequalizer.condition, Algebra.comp_eq_comp, algebraFunctorOfMonadHomEq_hom_app_f, ForgetCreatesColimits.γ_app, Algebra.id_f, ForgetCreatesLimits.newCone_π_app, algebraPreadditive_homGroup_add_f, CategoryTheory.instFullAlgebraToMonadAdjComparison, comparisonForget_hom_app, algebraFunctorOfMonadHomComp_hom_app_f, MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, Algebra.isoMk_inv_f, comparison_obj_a, beckAlgebraCofork_pt, adj_counit, adj_unit, ForgetCreatesLimits.liftedCone_pt, algebraFunctorOfMonadHomEq_inv_app_f, CategoryTheory.algebraEquivUnder_inverse, CategoryTheory.underToAlgebra_obj_A, algebraEquivOfIsoMonads_functor, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, hasLimit_of_comp_forget_hasLimit, algebra_equiv_of_iso_monads_comp_forget, comparison_obj_A, free_obj_a, ForgetCreatesColimits.coconePoint_A, CategoryTheory.instFaithfulAlgebraToMonadComparison, forget_faithful, algebraPreadditive_homGroup_zsmul_f, ForgetCreatesColimits.newCocone_pt, MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, MonadicityInternal.comparisonAdjunction_unit_f, free_obj_A, FreeCoequalizer.π_f, algebraEquivOfIsoMonads_counitIso, FreeCoequalizer.bottomMap_f, Algebra.id_eq_id, algebra_epi_of_epi, CategoryTheory.algebraEquivUnder_unitIso, algebraPreadditive_homGroup_zero_f, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.algebraToUnder_obj, algebraFunctorOfMonadHom_obj_a, MonadicityInternal.comparisonAdjunction_unit_f_aux, MonadicityInternal.comparisonAdjunction_counit, forget_map, algebraPreadditive_homGroup_nsmul_f, CategoryTheory.algebraEquivUnder_counitIso, CategoryTheory.Reflective.comparison_full, CategoryTheory.comp_comparison_hasLimit, instIsRightAdjointAlgebraForget, ForgetCreatesLimits.conePoint_A, algebraFunctorOfMonadHomComp_inv_app_f, beckAlgebraCofork_ι_app, comparisonForget_inv_app, forget_additive, comparison_map_f, CategoryTheory.underToAlgebra_map_f, ForgetCreatesColimits.liftedCocone_ι_app_f, ForgetCreatesLimits.γ_app, CategoryTheory.MonadicRightAdjoint.eqv, algebraPreadditive_homGroup_neg_f, CategoryTheory.Under.costar_map_left, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, Algebra.isoMk_hom_f, ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.Reflective.comparison_essSurj, CategoryTheory.instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison, forget_obj, CategoryTheory.algebraToUnder_map, instIsReflexivePairAlgebraTopMapBottomMap, Algebra.comp_f, CategoryTheory.algebraEquivUnder_functor, MonadicityInternal.comparisonAdjunction_counit_app, ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, algebraFunctorOfMonadHom_map_f, FreeCoequalizer.topMap_f, ForgetCreatesColimits.newCocone_ι
adj 📖CompOp
6 mathmath: CategoryTheory.instFullAlgebraToMonadAdjComparison, adj_counit, adj_unit, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app
algebraEquivOfIsoMonads 📖CompOp
4 mathmath: algebraEquivOfIsoMonads_inverse, algebraEquivOfIsoMonads_unitIso, algebraEquivOfIsoMonads_functor, algebraEquivOfIsoMonads_counitIso
algebraFunctorOfMonadHom 📖CompOp
14 mathmath: algebraFunctorOfMonadHom_obj_A, algebraFunctorOfMonadHomId_inv_app_f, algebraEquivOfIsoMonads_inverse, algebraFunctorOfMonadHomId_hom_app_f, algebraEquivOfIsoMonads_unitIso, algebraFunctorOfMonadHomEq_hom_app_f, algebraFunctorOfMonadHomComp_hom_app_f, algebraFunctorOfMonadHomEq_inv_app_f, algebraEquivOfIsoMonads_functor, algebra_equiv_of_iso_monads_comp_forget, algebraEquivOfIsoMonads_counitIso, algebraFunctorOfMonadHom_obj_a, algebraFunctorOfMonadHomComp_inv_app_f, algebraFunctorOfMonadHom_map_f
algebraFunctorOfMonadHomComp 📖CompOp
4 mathmath: algebraEquivOfIsoMonads_unitIso, algebraFunctorOfMonadHomComp_hom_app_f, algebraEquivOfIsoMonads_counitIso, algebraFunctorOfMonadHomComp_inv_app_f
algebraFunctorOfMonadHomEq 📖CompOp
4 mathmath: algebraEquivOfIsoMonads_unitIso, algebraFunctorOfMonadHomEq_hom_app_f, algebraFunctorOfMonadHomEq_inv_app_f, algebraEquivOfIsoMonads_counitIso
algebraFunctorOfMonadHomId 📖CompOp
4 mathmath: algebraFunctorOfMonadHomId_inv_app_f, algebraFunctorOfMonadHomId_hom_app_f, algebraEquivOfIsoMonads_unitIso, algebraEquivOfIsoMonads_counitIso
forget 📖CompOp
29 mathmath: ForgetCreatesColimits.commuting, forget_reflects_iso, ForgetCreatesLimits.liftedConeIsLimit_lift_f, CategoryTheory.comp_comparison_forget_hasLimit, ForgetCreatesLimits.conePoint_a, ForgetCreatesColimits.γ_app, ForgetCreatesLimits.newCone_π_app, CategoryTheory.instFullAlgebraToMonadAdjComparison, comparisonForget_hom_app, adj_counit, adj_unit, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, algebra_equiv_of_iso_monads_comp_forget, ForgetCreatesColimits.coconePoint_A, forget_faithful, ForgetCreatesColimits.newCocone_pt, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, forget_map, instIsRightAdjointAlgebraForget, ForgetCreatesLimits.conePoint_A, comparisonForget_inv_app, forget_additive, ForgetCreatesColimits.liftedCocone_ι_app_f, ForgetCreatesLimits.γ_app, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, ForgetCreatesLimits.liftedCone_π_app_f, forget_obj, ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, ForgetCreatesColimits.newCocone_ι
free 📖CompOp
18 mathmath: free_map_f, left_comparison, FreeCoequalizer.condition, CategoryTheory.instFullAlgebraToMonadAdjComparison, beckAlgebraCofork_pt, adj_counit, adj_unit, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, free_obj_a, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, free_obj_A, FreeCoequalizer.π_f, FreeCoequalizer.bottomMap_f, beckAlgebraCofork_ι_app, CategoryTheory.Under.costar_map_left, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, instIsReflexivePairAlgebraTopMapBottomMap, FreeCoequalizer.topMap_f
instInhabitedAlgebra 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
adj_counit 📖mathematicalCategoryTheory.Adjunction.counit
Algebra
Algebra.eilenbergMoore
free
forget
adj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Algebra.A
Algebra.a
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
toFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.app
η
Algebra.Hom.f
Algebra.Hom
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
adj_unit 📖mathematicalCategoryTheory.Adjunction.unit
Algebra
Algebra.eilenbergMoore
free
forget
adj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
toFunctor
η
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Algebra.Hom.f
Algebra.A
CategoryTheory.Functor.map
Algebra.a
CategoryTheory.Category.comp_id
CategoryTheory.Category.comp_id
algebraEquivOfIsoMonads_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
Algebra
Algebra.eilenbergMoore
algebraEquivOfIsoMonads
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
algebraFunctorOfMonadHom
CategoryTheory.Iso.hom
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
algebraFunctorOfMonadHomComp
CategoryTheory.CategoryStruct.id
algebraFunctorOfMonadHomEq
algebraFunctorOfMonadHomId
algebraEquivOfIsoMonads_functor 📖mathematicalCategoryTheory.Equivalence.functor
Algebra
Algebra.eilenbergMoore
algebraEquivOfIsoMonads
algebraFunctorOfMonadHom
CategoryTheory.Iso.inv
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
algebraEquivOfIsoMonads_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
Algebra
Algebra.eilenbergMoore
algebraEquivOfIsoMonads
algebraFunctorOfMonadHom
CategoryTheory.Iso.hom
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
algebraEquivOfIsoMonads_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
Algebra
Algebra.eilenbergMoore
algebraEquivOfIsoMonads
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
algebraFunctorOfMonadHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Monad
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMonad
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.Iso.symm
algebraFunctorOfMonadHomId
CategoryTheory.CategoryStruct.comp
algebraFunctorOfMonadHomEq
algebraFunctorOfMonadHomComp
algebraFunctorOfMonadHomComp_hom_app_f 📖mathematicalAlgebra.Hom.f
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
algebraFunctorOfMonadHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Monad
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMonad
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
algebraFunctorOfMonadHomComp
Algebra.A
CategoryTheory.Iso.refl
algebraFunctorOfMonadHomComp_inv_app_f 📖mathematicalAlgebra.Hom.f
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
CategoryTheory.Functor.comp
algebraFunctorOfMonadHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Monad
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMonad
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
algebraFunctorOfMonadHomComp
Algebra.A
CategoryTheory.Iso.refl
algebraFunctorOfMonadHomEq_hom_app_f 📖mathematicalAlgebra.Hom.f
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
algebraFunctorOfMonadHom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
algebraFunctorOfMonadHomEq
Algebra.A
CategoryTheory.Iso.refl
algebraFunctorOfMonadHomEq_inv_app_f 📖mathematicalAlgebra.Hom.f
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
algebraFunctorOfMonadHom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
algebraFunctorOfMonadHomEq
Algebra.A
CategoryTheory.Iso.refl
algebraFunctorOfMonadHomId_hom_app_f 📖mathematicalAlgebra.Hom.f
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
algebraFunctorOfMonadHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Monad
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMonad
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
algebraFunctorOfMonadHomId
Algebra.A
CategoryTheory.Iso.refl
algebraFunctorOfMonadHomId_inv_app_f 📖mathematicalAlgebra.Hom.f
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
CategoryTheory.Functor.id
algebraFunctorOfMonadHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Monad
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMonad
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
algebraFunctorOfMonadHomId
Algebra.A
CategoryTheory.Iso.refl
algebraFunctorOfMonadHom_map_f 📖mathematicalAlgebra.Hom.f
Algebra.A
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.MonadHom.toNatTrans
Algebra.a
CategoryTheory.Functor.map
Algebra
Algebra.eilenbergMoore
algebraFunctorOfMonadHom
algebraFunctorOfMonadHom_obj_A 📖mathematicalAlgebra.A
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
algebraFunctorOfMonadHom
algebraFunctorOfMonadHom_obj_a 📖mathematicalAlgebra.a
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
algebraFunctorOfMonadHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
toFunctor
Algebra.A
CategoryTheory.NatTrans.app
CategoryTheory.MonadHom.toNatTrans
algebra_epi_of_epi 📖mathematicalCategoryTheory.Epi
Algebra
Algebra.eilenbergMoore
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
forget_faithful
algebra_equiv_of_iso_monads_comp_forget 📖mathematicalCategoryTheory.Functor.comp
Algebra
Algebra.eilenbergMoore
algebraFunctorOfMonadHom
forget
algebra_iso_of_iso 📖mathematicalCategoryTheory.IsIso
Algebra
Algebra.eilenbergMoore
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.Category.assoc
Algebra.Hom.h
Algebra.Hom.ext'
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
algebra_mono_of_mono 📖mathematicalCategoryTheory.Mono
Algebra
Algebra.eilenbergMoore
CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
forget_faithful
forget_faithful 📖mathematicalCategoryTheory.Functor.Faithful
Algebra
Algebra.eilenbergMoore
forget
Algebra.Hom.ext'
forget_map 📖mathematicalCategoryTheory.Functor.map
Algebra
Algebra.eilenbergMoore
forget
Algebra.Hom.f
forget_obj 📖mathematicalCategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
forget
Algebra.A
forget_reflects_iso 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
Algebra
Algebra.eilenbergMoore
forget
algebra_iso_of_iso
free_map_f 📖mathematicalAlgebra.Hom.f
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
μ
CategoryTheory.Functor.map
Algebra
Algebra.eilenbergMoore
free
free_obj_A 📖mathematicalAlgebra.A
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
free
toFunctor
free_obj_a 📖mathematicalAlgebra.a
CategoryTheory.Functor.obj
Algebra
Algebra.eilenbergMoore
free
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
toFunctor
μ
instIsRightAdjointAlgebraForget 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
Algebra
Algebra.eilenbergMoore
forget

CategoryTheory.Monad.Algebra

Definitions

NameCategoryTheorems
A 📖CompOp
67 mathmath: CategoryTheory.Monad.ForgetCreatesColimits.commuting, unit_assoc, CategoryTheory.Monad.algebraFunctorOfMonadHom_obj_A, Hom.h, CategoryTheory.Monad.algebraFunctorOfMonadHomId_inv_app_f, CategoryTheory.Monad.algebraPreadditive_homGroup_sub_f, CategoryTheory.Monad.beckCoequalizer_desc, Compactum.instT2SpaceA, CategoryTheory.Monad.algebraFunctorOfMonadHomId_hom_app_f, assoc_assoc, CategoryTheory.Monad.FreeCoequalizer.condition, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, CategoryTheory.Monad.algebraFunctorOfMonadHomEq_hom_app_f, id_f, CategoryTheory.Monad.ForgetCreatesLimits.newCone_π_app, CategoryTheory.Monad.algebraPreadditive_homGroup_add_f, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, Compactum.cl_eq_closure, CategoryTheory.Monad.algebraFunctorOfMonadHomComp_hom_app_f, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, Compactum.instCompactSpaceA, CategoryTheory.Monad.beckAlgebraCofork_pt, CategoryTheory.Monad.adj_counit, CategoryTheory.Monad.adj_unit, Compactum.le_nhds_of_str_eq, Compactum.lim_eq_str, CategoryTheory.Monad.algebraFunctorOfMonadHomEq_inv_app_f, CategoryTheory.Monad.MonadicityInternal.unitCofork_π, CategoryTheory.underToAlgebra_obj_A, assoc, CategoryTheory.Monad.comparison_obj_A, CategoryTheory.Monad.beckCofork_pt, CategoryTheory.Monad.instHasCoequalizerMapAAppCounitObjAOfHasCoequalizerOfIsSplitPair, CategoryTheory.Monad.ForgetCreatesColimits.coconePoint_A, CategoryTheory.Monad.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Monad.free_obj_A, CategoryTheory.Monad.FreeCoequalizer.π_f, CategoryTheory.Monad.FreeCoequalizer.bottomMap_f, Compactum.continuous_of_hom, CategoryTheory.algebraEquivUnder_unitIso, CategoryTheory.Monad.algebraPreadditive_homGroup_zero_f, CategoryTheory.algebraToUnder_obj, CategoryTheory.Monad.algebraFunctorOfMonadHom_obj_a, CategoryTheory.Monad.beckCofork_π, CategoryTheory.Monad.algebraPreadditive_homGroup_nsmul_f, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CategoryTheory.Monad.ForgetCreatesLimits.conePoint_A, CategoryTheory.Monad.algebraFunctorOfMonadHomComp_inv_app_f, CategoryTheory.Monad.beckAlgebraCofork_ι_app, Compactum.str_hom_commute, CategoryTheory.Monad.algebraPreadditive_homGroup_neg_f, CategoryTheory.Monad.MonadicityInternal.main_pair_G_split, CategoryTheory.Monad.MonadicityInternal.main_pair_reflexive, CategoryTheory.Monad.forget_obj, CategoryTheory.algebraToUnder_map, CategoryTheory.Monad.instIsReflexivePairAlgebraTopMapBottomMap, comp_f, unit, Compactum.isClosed_iff, Compactum.isClosed_cl, Hom.h_assoc, CategoryTheory.Reflective.instIsIsoAppUnitReflectorAdjunctionA, Compactum.join_distrib, CategoryTheory.Monad.algebraFunctorOfMonadHom_map_f, CategoryTheory.Monad.FreeCoequalizer.topMap_f
a 📖CompOp
36 mathmath: CategoryTheory.Monad.ForgetCreatesColimits.commuting, CategoryTheory.Monad.ForgetCreatesColimits.coconePoint_a, unit_assoc, Hom.h, CategoryTheory.Monad.beckCoequalizer_desc, assoc_assoc, CategoryTheory.Monad.ForgetCreatesLimits.conePoint_a, CategoryTheory.Monad.instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, CategoryTheory.Monad.ForgetCreatesColimits.γ_app, CategoryTheory.Monad.ForgetCreatesLimits.newCone_π_app, CategoryTheory.Monad.instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, CategoryTheory.Monad.comparison_obj_a, CategoryTheory.Monad.adj_counit, CategoryTheory.Monad.adj_unit, CategoryTheory.Monad.MonadicityInternal.unitCofork_π, assoc, CategoryTheory.Monad.beckCofork_pt, CategoryTheory.Monad.instHasCoequalizerMapAAppCounitObjAOfHasCoequalizerOfIsSplitPair, CategoryTheory.Monad.free_obj_a, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Monad.FreeCoequalizer.π_f, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.algebraToUnder_obj, CategoryTheory.Monad.algebraFunctorOfMonadHom_obj_a, CategoryTheory.Monad.beckCofork_π, CategoryTheory.Monad.MonadicityInternal.unitCofork_pt, CategoryTheory.Monad.ForgetCreatesLimits.γ_app, CategoryTheory.Monad.MonadicityInternal.main_pair_G_split, CategoryTheory.Monad.MonadicityInternal.main_pair_reflexive, CategoryTheory.algebraToUnder_map, unit, Hom.h_assoc, CategoryTheory.Monad.algebraFunctorOfMonadHom_map_f, CategoryTheory.Monad.FreeCoequalizer.topMap_f
eilenbergMoore 📖CompOp
93 mathmath: CategoryTheory.Monad.ForgetCreatesColimits.commuting, CategoryTheory.Monad.algebra_iso_of_iso, CategoryTheory.Monad.ForgetCreatesColimits.liftedCocone_pt, CategoryTheory.Monad.free_map_f, CategoryTheory.Monad.forget_reflects_iso, CategoryTheory.Monad.ForgetCreatesLimits.liftedConeIsLimit_lift_f, CategoryTheory.Monad.algebra_mono_of_mono, CategoryTheory.Monad.left_comparison, CategoryTheory.Monad.algebraFunctorOfMonadHom_obj_A, CategoryTheory.Monad.algebraFunctorOfMonadHomId_inv_app_f, CategoryTheory.Monad.forget_creates_colimits_of_monad_preserves, CategoryTheory.comp_comparison_forget_hasLimit, CategoryTheory.Monad.algebraPreadditive_homGroup_sub_f, CategoryTheory.Monad.algebraEquivOfIsoMonads_inverse, CategoryTheory.Monad.algebraFunctorOfMonadHomId_hom_app_f, CategoryTheory.Monad.algebraEquivOfIsoMonads_unitIso, CategoryTheory.Monad.ForgetCreatesLimits.conePoint_a, CategoryTheory.Monad.FreeCoequalizer.condition, CategoryTheory.Monad.algebraFunctorOfMonadHomEq_hom_app_f, CategoryTheory.Monad.ForgetCreatesColimits.γ_app, CategoryTheory.Monad.ForgetCreatesLimits.newCone_π_app, CategoryTheory.Monad.algebraPreadditive_homGroup_add_f, CategoryTheory.instFullAlgebraToMonadAdjComparison, CategoryTheory.Monad.comparisonForget_hom_app, CategoryTheory.Monad.algebraFunctorOfMonadHomComp_hom_app_f, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, isoMk_inv_f, CategoryTheory.Monad.comparison_obj_a, CategoryTheory.Monad.beckAlgebraCofork_pt, CategoryTheory.Monad.adj_counit, CategoryTheory.Monad.adj_unit, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_pt, CategoryTheory.Monad.algebraFunctorOfMonadHomEq_inv_app_f, CategoryTheory.algebraEquivUnder_inverse, CategoryTheory.underToAlgebra_obj_A, CategoryTheory.Monad.algebraEquivOfIsoMonads_functor, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, CategoryTheory.Monad.hasLimit_of_comp_forget_hasLimit, CategoryTheory.Monad.algebra_equiv_of_iso_monads_comp_forget, CategoryTheory.Monad.comparison_obj_A, CategoryTheory.Monad.free_obj_a, CategoryTheory.Monad.ForgetCreatesColimits.coconePoint_A, CategoryTheory.instFaithfulAlgebraToMonadComparison, CategoryTheory.Monad.forget_faithful, CategoryTheory.Monad.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.Monad.ForgetCreatesColimits.newCocone_pt, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, CategoryTheory.Monad.free_obj_A, CategoryTheory.Monad.FreeCoequalizer.π_f, CategoryTheory.Monad.algebraEquivOfIsoMonads_counitIso, CategoryTheory.Monad.FreeCoequalizer.bottomMap_f, CategoryTheory.Monad.algebra_epi_of_epi, CategoryTheory.algebraEquivUnder_unitIso, CategoryTheory.Monad.algebraPreadditive_homGroup_zero_f, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.algebraToUnder_obj, CategoryTheory.Monad.algebraFunctorOfMonadHom_obj_a, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, CategoryTheory.Monad.forget_map, CategoryTheory.Monad.algebraPreadditive_homGroup_nsmul_f, CategoryTheory.algebraEquivUnder_counitIso, CategoryTheory.Reflective.comparison_full, CategoryTheory.comp_comparison_hasLimit, CategoryTheory.Monad.instIsRightAdjointAlgebraForget, CategoryTheory.Monad.ForgetCreatesLimits.conePoint_A, CategoryTheory.Monad.algebraFunctorOfMonadHomComp_inv_app_f, CategoryTheory.Monad.beckAlgebraCofork_ι_app, CategoryTheory.Monad.comparisonForget_inv_app, CategoryTheory.Monad.forget_additive, CategoryTheory.Monad.comparison_map_f, CategoryTheory.underToAlgebra_map_f, CategoryTheory.Monad.ForgetCreatesColimits.liftedCocone_ι_app_f, CategoryTheory.Monad.ForgetCreatesLimits.γ_app, CategoryTheory.MonadicRightAdjoint.eqv, CategoryTheory.Monad.algebraPreadditive_homGroup_neg_f, CategoryTheory.Under.costar_map_left, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, isoMk_hom_f, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.Reflective.comparison_essSurj, CategoryTheory.instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison, CategoryTheory.Monad.forget_obj, CategoryTheory.algebraToUnder_map, CategoryTheory.Monad.instIsReflexivePairAlgebraTopMapBottomMap, CategoryTheory.algebraEquivUnder_functor, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit_app, CategoryTheory.Monad.ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, CategoryTheory.Monad.algebraFunctorOfMonadHom_map_f, CategoryTheory.Monad.FreeCoequalizer.topMap_f, CategoryTheory.Monad.ForgetCreatesColimits.newCocone_ι
instCategoryStruct 📖CompOp
7 mathmath: CategoryTheory.Monad.FreeCoequalizer.condition, comp_eq_comp, id_f, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, id_eq_id, comp_f
isoMk 📖CompOp
3 mathmath: isoMk_inv_f, CategoryTheory.algebraEquivUnder_unitIso, isoMk_hom_f

Theorems

NameKindAssumesProvesValidatesDepends On
assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Monad.toFunctor
A
CategoryTheory.NatTrans.app
CategoryTheory.Monad.μ
a
CategoryTheory.Functor.map
assoc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
A
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Monad.μ
a
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
assoc
comp_eq_comp 📖mathematicalHom.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Monad.Algebra
instCategoryStruct
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Monad.Algebra
instCategoryStruct
CategoryTheory.Category.toCategoryStruct
A
id_eq_id 📖mathematicalHom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Monad.Algebra
instCategoryStruct
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.Monad.Algebra
instCategoryStruct
CategoryTheory.Category.toCategoryStruct
A
isoMk_hom_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
A
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
a
Hom.f
CategoryTheory.Monad.Algebra
eilenbergMoore
isoMk
isoMk_inv_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
A
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
a
Hom.f
CategoryTheory.Iso.inv
CategoryTheory.Monad.Algebra
eilenbergMoore
isoMk
unit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
A
CategoryTheory.Monad.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Monad.η
a
CategoryTheory.CategoryStruct.id
unit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
A
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Monad.η
a
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
unit

CategoryTheory.Monad.Algebra.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
1 mathmath: CategoryTheory.Monad.Algebra.comp_eq_comp
f 📖CompOp
40 mathmath: CategoryTheory.Monad.free_map_f, CategoryTheory.Monad.ForgetCreatesLimits.liftedConeIsLimit_lift_f, h, CategoryTheory.Monad.algebraFunctorOfMonadHomId_inv_app_f, CategoryTheory.Monad.algebraPreadditive_homGroup_sub_f, CategoryTheory.Monad.algebraFunctorOfMonadHomId_hom_app_f, ext_iff, CategoryTheory.Monad.algebraFunctorOfMonadHomEq_hom_app_f, CategoryTheory.Monad.Algebra.id_f, CategoryTheory.Monad.algebraPreadditive_homGroup_add_f, CategoryTheory.Monad.algebraFunctorOfMonadHomComp_hom_app_f, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, CategoryTheory.Monad.Algebra.isoMk_inv_f, CategoryTheory.Monad.adj_counit, CategoryTheory.Monad.adj_unit, CategoryTheory.Monad.algebraFunctorOfMonadHomEq_inv_app_f, CategoryTheory.Monad.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, CategoryTheory.Monad.FreeCoequalizer.π_f, CategoryTheory.Monad.FreeCoequalizer.bottomMap_f, CategoryTheory.Monad.algebraPreadditive_homGroup_zero_f, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, CategoryTheory.Monad.forget_map, CategoryTheory.Monad.algebraPreadditive_homGroup_nsmul_f, CategoryTheory.Monad.algebraFunctorOfMonadHomComp_inv_app_f, CategoryTheory.Monad.comparison_map_f, CategoryTheory.underToAlgebra_map_f, CategoryTheory.Monad.ForgetCreatesColimits.liftedCocone_ι_app_f, CategoryTheory.Monad.algebraPreadditive_homGroup_neg_f, CategoryTheory.Monad.Algebra.isoMk_hom_f, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.algebraToUnder_map, CategoryTheory.Monad.Algebra.comp_f, ext'_iff, CategoryTheory.Monad.ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, h_assoc, CategoryTheory.Monad.algebraFunctorOfMonadHom_map_f, CategoryTheory.Monad.FreeCoequalizer.topMap_f
id 📖CompOp
1 mathmath: CategoryTheory.Monad.Algebra.id_eq_id
instInhabited 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖f
ext' 📖fext
ext'_iff 📖mathematicalfext'
ext_iff 📖mathematicalfext
h 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
CategoryTheory.Monad.Algebra.A
CategoryTheory.Functor.map
f
CategoryTheory.Monad.Algebra.a
h_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
CategoryTheory.Monad.Algebra.A
CategoryTheory.Functor.map
f
CategoryTheory.Monad.Algebra.a
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
h

---

← Back to Index