Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Monad/Basic.lean

Statistics

MetricCount
DefinitionsComonad, id, instInhabited, toFunctor, transport, δ, ε, ComonadHom, toNatTrans, mk, toNatIso, id, instInhabited, toFunctor, transport, η, μ, MonadHom, toNatTrans, mk, toNatIso, coeComonad, coeMonad, comonadToFunctor, instCategoryComonad, instCategoryMonad, instInhabitedComonadHom, instInhabitedMonadHom, instQuiverComonad, instQuiverMonad, monadToFunctor
31
Theoremscoassoc, coassoc_assoc, counit_naturality, counit_naturality_assoc, delta_naturality, delta_naturality_assoc, id_map, id_obj, id_δ_app, id_ε_app, isSplitEpi_iff_isIso_counit, left_counit, left_counit_assoc, map_counit_app, right_counit, right_counit_assoc, app_δ, app_δ_assoc, app_ε, app_ε_assoc, ext, ext', ext'_iff, ext_iff, id_toNatTrans, mk_hom_toNatTrans, mk_inv_toNatTrans, toNatIso_hom, toNatIso_inv, assoc, id_map, id_obj, id_η_app, id_μ_app, isSplitMono_iff_isIso_unit, left_unit, left_unit_assoc, map_unit_app, mu_naturality, mu_naturality_assoc, right_unit, right_unit_assoc, unit_naturality, unit_naturality_assoc, app_η, app_η_assoc, app_μ, app_μ_assoc, comp_toNatTrans, ext, ext', ext'_iff, ext_iff, id_toNatTrans, mk_hom_toNatTrans, mk_inv_toNatTrans, toNatIso_hom, toNatIso_inv, comonadToFunctor_map, comonadToFunctor_mapIso_comonad_iso_mk, comonadToFunctor_obj, comp_toNatTrans, instFaithfulComonadFunctorComonadToFunctor, instFaithfulMonadFunctorMonadToFunctor, instReflectsIsomorphismsComonadFunctorComonadToFunctor, instReflectsIsomorphismsMonadFunctorMonadToFunctor, monadToFunctor_map, monadToFunctor_mapIso_monad_iso_mk, monadToFunctor_obj
69
Total100

CategoryTheory

Definitions

NameCategoryTheorems
Comonad 📖CompData
13 mathmath: Adjunction.adjToComonadIso_inv_toNatTrans_app, ComonadIso.toNatIso_inv, ComonadIso.toNatIso_hom, comonadToFunctor_mapIso_comonad_iso_mk, comonadToFunctor_obj, ComonadHom.id_toNatTrans, comp_toNatTrans, Adjunction.adjToComonadIso_hom_toNatTrans_app, ComonadIso.mk_hom_toNatTrans, comonadToFunctor_map, instReflectsIsomorphismsComonadFunctorComonadToFunctor, ComonadIso.mk_inv_toNatTrans, instFaithfulComonadFunctorComonadToFunctor
ComonadHom 📖CompData
MonadHom 📖CompData
coeComonad 📖CompOp
coeMonad 📖CompOp
comonadToFunctor 📖CompOp
7 mathmath: ComonadIso.toNatIso_inv, ComonadIso.toNatIso_hom, comonadToFunctor_mapIso_comonad_iso_mk, comonadToFunctor_obj, comonadToFunctor_map, instReflectsIsomorphismsComonadFunctorComonadToFunctor, instFaithfulComonadFunctorComonadToFunctor
instCategoryComonad 📖CompOp
13 mathmath: Adjunction.adjToComonadIso_inv_toNatTrans_app, ComonadIso.toNatIso_inv, ComonadIso.toNatIso_hom, comonadToFunctor_mapIso_comonad_iso_mk, comonadToFunctor_obj, ComonadHom.id_toNatTrans, comp_toNatTrans, Adjunction.adjToComonadIso_hom_toNatTrans_app, ComonadIso.mk_hom_toNatTrans, comonadToFunctor_map, instReflectsIsomorphismsComonadFunctorComonadToFunctor, ComonadIso.mk_inv_toNatTrans, instFaithfulComonadFunctorComonadToFunctor
instCategoryMonad 📖CompOp
31 mathmath: Monad.monadMonEquiv_unitIso_inv_app_toNatTrans_app, MonadIso.toNatIso_hom, instReflectsIsomorphismsMonadFunctorMonadToFunctor, Monad.algebraFunctorOfMonadHomId_inv_app_f, Monad.algebraEquivOfIsoMonads_inverse, Monad.monadMonEquiv_counitIso_hom_app_hom, MonadHom.comp_toNatTrans, Monad.algebraFunctorOfMonadHomId_hom_app_f, Monad.algebraEquivOfIsoMonads_unitIso, Monad.monadToMon_obj, monadToFunctor_obj, Monad.monToMonad_obj, MonadIso.mk_hom_toNatTrans, Monad.algebraFunctorOfMonadHomComp_hom_app_f, Monad.monadToMon_map_hom, MonadIso.toNatIso_inv, Monad.algebraEquivOfIsoMonads_functor, Adjunction.adjToMonadIso_inv_toNatTrans_app, Monad.monToMonad_map_toNatTrans, Monad.algebraEquivOfIsoMonads_counitIso, monadToFunctor_mapIso_monad_iso_mk, Monad.monadMonEquiv_inverse, monadToFunctor_map, instFaithfulMonadFunctorMonadToFunctor, Monad.algebraFunctorOfMonadHomComp_inv_app_f, Monad.monadMonEquiv_counitIso_inv_app_hom, MonadIso.mk_inv_toNatTrans, Monad.monadMonEquiv_functor, Adjunction.adjToMonadIso_hom_toNatTrans_app, Monad.monadMonEquiv_unitIso_hom_app_toNatTrans_app, MonadHom.id_toNatTrans
instInhabitedComonadHom 📖CompOp
instInhabitedMonadHom 📖CompOp
instQuiverComonad 📖CompOp
instQuiverMonad 📖CompOp
monadToFunctor 📖CompOp
7 mathmath: MonadIso.toNatIso_hom, instReflectsIsomorphismsMonadFunctorMonadToFunctor, monadToFunctor_obj, MonadIso.toNatIso_inv, monadToFunctor_mapIso_monad_iso_mk, monadToFunctor_map, instFaithfulMonadFunctorMonadToFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
comonadToFunctor_map 📖mathematicalFunctor.map
Comonad
instCategoryComonad
Functor
Functor.category
comonadToFunctor
ComonadHom.toNatTrans
comonadToFunctor_mapIso_comonad_iso_mk 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Comonad.toFunctor
Functor.id
NatTrans.app
Iso.hom
Functor
Functor.category
Comonad.ε
Functor.comp
Comonad.δ
Functor.map
Functor.mapIso
Comonad
instCategoryComonad
comonadToFunctor
Iso.ext
NatTrans.ext'
comonadToFunctor_obj 📖mathematicalFunctor.obj
Comonad
instCategoryComonad
Functor
Functor.category
comonadToFunctor
Comonad.toFunctor
comp_toNatTrans 📖mathematicalComonadHom.toNatTrans
CategoryStruct.comp
Comonad
Category.toCategoryStruct
instCategoryComonad
Functor
Functor.category
Comonad.toFunctor
instFaithfulComonadFunctorComonadToFunctor 📖mathematicalFunctor.Faithful
Comonad
instCategoryComonad
Functor
Functor.category
comonadToFunctor
ComonadHom.ext'
instFaithfulMonadFunctorMonadToFunctor 📖mathematicalFunctor.Faithful
Monad
instCategoryMonad
Functor
Functor.category
monadToFunctor
MonadHom.ext'
instReflectsIsomorphismsComonadFunctorComonadToFunctor 📖mathematicalFunctor.ReflectsIsomorphisms
Comonad
instCategoryComonad
Functor
Functor.category
comonadToFunctor
Iso.isIso_hom
ComonadHom.app_ε
ComonadHom.app_δ
instReflectsIsomorphismsMonadFunctorMonadToFunctor 📖mathematicalFunctor.ReflectsIsomorphisms
Monad
instCategoryMonad
Functor
Functor.category
monadToFunctor
Iso.isIso_hom
MonadHom.app_η
MonadHom.app_μ
monadToFunctor_map 📖mathematicalFunctor.map
Monad
instCategoryMonad
Functor
Functor.category
monadToFunctor
MonadHom.toNatTrans
monadToFunctor_mapIso_monad_iso_mk 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.id
Monad.toFunctor
NatTrans.app
Monad.η
Iso.hom
Functor
Functor.category
Functor.comp
Monad.μ
Functor.map
Functor.mapIso
Monad
instCategoryMonad
monadToFunctor
Iso.ext
NatTrans.ext'
monadToFunctor_obj 📖mathematicalFunctor.obj
Monad
instCategoryMonad
Functor
Functor.category
monadToFunctor
Monad.toFunctor

CategoryTheory.Comonad

Definitions

NameCategoryTheorems
id 📖CompOp
4 mathmath: id_δ_app, id_ε_app, id_map, id_obj
instInhabited 📖CompOp
toFunctor 📖CompOp
72 mathmath: CategoryTheory.Adjunction.adjToComonadIso_inv_toNatTrans_app, beckCoalgebraFork_pt, CategoryTheory.ComonadIso.toNatIso_inv, CofreeEqualizer.topMap_f, right_counit_assoc, ForgetCreatesLimits'.γ_app, CategoryTheory.ComonadIso.toNatIso_hom, ForgetCreatesColimits'.newCocone_ι_app, coassoc, instIsCoreflexivePairCoalgebraTopMapBottomMap, CategoryTheory.ComonadHom.app_ε, ForgetCreatesLimits'.newCone_pt, cofree_obj_A, counit_naturality, instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCoreflexivePair, CategoryTheory.comonadToFunctor_obj, CategoryTheory.ComonadHom.id_toNatTrans, delta_naturality_assoc, isSplitEpi_iff_isIso_counit, CategoryTheory.comp_toNatTrans, ComonadicityInternal.unitFork_ι, CategoryTheory.ComonadHom.app_ε_assoc, instPreservesLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfPreservesLimitOfIsCosplitPair, CategoryTheory.prodComonad_obj, left_counit, Coalgebra.Hom.h, cofree_map_f, ForgetCreatesColimits'.γ_app, CategoryTheory.ComonadHom.app_δ_assoc, Coalgebra.coassoc, CategoryTheory.prodComonad_map, CategoryTheory.Adjunction.adjToComonadIso_hom_toNatTrans_app, adj_counit, CategoryTheory.Cokleisli.Adjunction.fromCokleisli_map, ForgetCreatesLimits'.newCone_π, map_counit_app, CategoryTheory.ComonadIso.mk_hom_toNatTrans, CategoryTheory.coalgebraToOver_obj, coassoc_assoc, Coalgebra.Hom.h_assoc, Coalgebra.coassoc_assoc, delta_naturality, ComonadicityInternal.main_pair_coreflexive, cofree_obj_a, CategoryTheory.ComonadHom.app_δ, counit_naturality_assoc, CategoryTheory.ComonadHom.ext_iff, CategoryTheory.coalgebraToOver_map, Coalgebra.counit_assoc, CategoryTheory.δ_iso_of_coreflective, right_counit, CategoryTheory.ComonadIso.mk_inv_toNatTrans, CategoryTheory.ComonadHom.ext'_iff, beckEqualizer_lift, beckFork_ι, beckFork_pt, CofreeEqualizer.condition, id_map, Coalgebra.counit, ComonadicityInternal.main_pair_F_cosplit, instHasEqualizerMapAAppUnitObjAOfHasEqualizerOfIsCosplitPair, ForgetCreatesLimits'.commuting, CategoryTheory.Adjunction.toComonad_coe, id_obj, instReflectsLimitWalkingParallelPairParallelPairMapAAppUnitObjAOfReflectsLimitOfIsCosplitPair, CofreeEqualizer.bottomMap_f, CategoryTheory.Cokleisli.Adjunction.fromCokleisli_obj, left_counit_assoc, ComonadicityInternal.counitFork_pt, adj_unit, beckCoalgebraFork_π_app, CategoryTheory.Cokleisli.Adjunction.toCokleisli_map
transport 📖CompOp
δ 📖CompOp
24 mathmath: right_counit_assoc, CategoryTheory.prodComonad_δ_app, coassoc, ComonadicityInternal.comparisonAdjunction_counit_f, delta_naturality_assoc, CategoryTheory.Adjunction.toComonad_δ, left_counit, cofree_map_f, id_δ_app, CategoryTheory.ComonadHom.app_δ_assoc, Coalgebra.coassoc, CategoryTheory.Cokleisli.Adjunction.fromCokleisli_map, coassoc_assoc, Coalgebra.coassoc_assoc, delta_naturality, cofree_obj_a, CategoryTheory.ComonadHom.app_δ, CategoryTheory.δ_iso_of_coreflective, right_counit, beckEqualizer_lift, beckFork_ι, beckFork_pt, CofreeEqualizer.bottomMap_f, left_counit_assoc
ε 📖CompOp
19 mathmath: CategoryTheory.prodComonad_ε_app, right_counit_assoc, CategoryTheory.ComonadHom.app_ε, counit_naturality, isSplitEpi_iff_isIso_counit, CategoryTheory.ComonadHom.app_ε_assoc, CategoryTheory.Adjunction.toComonad_ε, left_counit, adj_counit, map_counit_app, counit_naturality_assoc, Coalgebra.counit_assoc, right_counit, beckEqualizer_lift, id_ε_app, Coalgebra.counit, left_counit_assoc, adj_unit, CategoryTheory.Cokleisli.Adjunction.toCokleisli_map

Theorems

NameKindAssumesProvesValidatesDepends On
coassoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
δ
CategoryTheory.Functor.map
coassoc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
δ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coassoc
counit_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
ε
CategoryTheory.NatTrans.naturality
counit_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
ε
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counit_naturality
delta_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
δ
CategoryTheory.NatTrans.naturality
delta_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
delta_naturality
id_map 📖mathematicalCategoryTheory.Functor.map
toFunctor
id
id_obj 📖mathematicalCategoryTheory.Functor.obj
toFunctor
id
id_δ_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
δ
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
id_ε_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
ε
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
isSplitEpi_iff_isIso_counit 📖mathematicalCategoryTheory.IsSplitEpi
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
ε
CategoryTheory.IsIso
CategoryTheory.Functor.map_id
CategoryTheory.IsSplitEpi.id
CategoryTheory.Functor.map_comp
map_counit_app
counit_naturality
CategoryTheory.IsSplitEpi.of_iso
left_counit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
δ
ε
CategoryTheory.CategoryStruct.id
left_counit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
δ
CategoryTheory.Functor.id
ε
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
left_counit
map_counit_app 📖mathematicalCategoryTheory.Functor.map
toFunctor
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
ε
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
right_counit
left_counit
right_counit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
δ
CategoryTheory.Functor.map
ε
CategoryTheory.CategoryStruct.id
right_counit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
δ
CategoryTheory.Functor.map
CategoryTheory.Functor.id
ε
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
right_counit

CategoryTheory.ComonadHom

Definitions

NameCategoryTheorems
toNatTrans 📖CompOp
13 mathmath: CategoryTheory.Adjunction.adjToComonadIso_inv_toNatTrans_app, app_ε, id_toNatTrans, CategoryTheory.comp_toNatTrans, app_ε_assoc, app_δ_assoc, CategoryTheory.Adjunction.adjToComonadIso_hom_toNatTrans_app, CategoryTheory.ComonadIso.mk_hom_toNatTrans, CategoryTheory.comonadToFunctor_map, app_δ, ext_iff, CategoryTheory.ComonadIso.mk_inv_toNatTrans, ext'_iff

Theorems

NameKindAssumesProvesValidatesDepends On
app_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
toNatTrans
CategoryTheory.Comonad.δ
CategoryTheory.Functor.map
app_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.NatTrans.app
toNatTrans
CategoryTheory.Functor.comp
CategoryTheory.Comonad.δ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
app_δ
app_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
toNatTrans
CategoryTheory.Comonad.ε
app_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.NatTrans.app
toNatTrans
CategoryTheory.Functor.id
CategoryTheory.Comonad.ε
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
app_ε
ext 📖CategoryTheory.NatTrans.app
CategoryTheory.Comonad.toFunctor
toNatTrans
ext' 📖CategoryTheory.NatTrans.app
CategoryTheory.Comonad.toFunctor
toNatTrans
ext
ext'_iff 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comonad.toFunctor
toNatTrans
ext'
ext_iff 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comonad.toFunctor
toNatTrans
ext
id_toNatTrans 📖mathematicaltoNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Comonad
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryComonad
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comonad.toFunctor

CategoryTheory.ComonadIso

Definitions

NameCategoryTheorems
mk 📖CompOp
toNatIso 📖CompOp
2 mathmath: toNatIso_inv, toNatIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom_toNatTrans 📖mathematicalCategoryTheory.ComonadHom.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Comonad
CategoryTheory.instCategoryComonad
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comonad.toFunctor
mk_inv_toNatTrans 📖mathematicalCategoryTheory.ComonadHom.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Comonad
CategoryTheory.instCategoryComonad
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comonad.toFunctor
toNatIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comonad.toFunctor
toNatIso
CategoryTheory.Functor.map
CategoryTheory.Comonad
CategoryTheory.instCategoryComonad
CategoryTheory.comonadToFunctor
toNatIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comonad.toFunctor
toNatIso
CategoryTheory.Functor.map
CategoryTheory.Comonad
CategoryTheory.instCategoryComonad
CategoryTheory.comonadToFunctor

CategoryTheory.Monad

Definitions

NameCategoryTheorems
id 📖CompOp
4 mathmath: id_η_app, id_μ_app, id_obj, id_map
instInhabited 📖CompOp
toFunctor 📖CompOp
79 mathmath: ForgetCreatesColimits.commuting, monadMonEquiv_unitIso_inv_app_toNatTrans_app, CategoryTheory.MonadIso.toNatIso_hom, free_map_f, mul_def, Algebra.unit_assoc, CategoryTheory.MonadHom.app_μ, Algebra.Hom.h, beckCoequalizer_desc, CategoryTheory.MonadHom.comp_toNatTrans, CategoryTheory.Kleisli.Adjunction.toKleisli_map, isSplitMono_iff_isIso_unit, Algebra.assoc_assoc, FreeCoequalizer.condition, CategoryTheory.monadToFunctor_obj, instReflectsColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfReflectsColimitOfIsSplitPair, instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsReflexivePair, ForgetCreatesColimits.γ_app, ForgetCreatesLimits.newCone_π_app, instPreservesColimitWalkingParallelPairParallelPairMapAAppCounitObjAOfPreservesColimitOfIsSplitPair, CategoryTheory.MonadIso.mk_hom_toNatTrans, left_unit, id_obj, beckAlgebraCofork_pt, adj_counit, adj_unit, assoc, unit_naturality, MonadicityInternal.unitCofork_π, mu_naturality, CategoryTheory.MonadIso.toNatIso_inv, mu_naturality_assoc, CategoryTheory.MonadHom.ext_iff, CategoryTheory.MonadHom.app_η_assoc, CategoryTheory.MonadHom.app_μ_assoc, Algebra.assoc, map_unit_app, beckCofork_pt, instHasCoequalizerMapAAppCounitObjAOfHasCoequalizerOfIsSplitPair, free_obj_a, CategoryTheory.MonadHom.app_η, ForgetCreatesColimits.newCocone_pt, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, CategoryTheory.ofTypeMonad_map, free_obj_A, FreeCoequalizer.bottomMap_f, algebraFunctorOfMonadHom_obj_a, beckCofork_π, CategoryTheory.Kleisli.Adjunction.fromKleisli_map, MonadicityInternal.unitCofork_pt, beckAlgebraCofork_ι_app, CategoryTheory.Kleisli.Adjunction.fromKleisli_obj, CategoryTheory.MonadHom.ext'_iff, ForgetCreatesLimits.γ_app, CategoryTheory.coprodMonad_map, CategoryTheory.Adjunction.toMonad_coe, ofMon_obj, CategoryTheory.μ_iso_of_reflective, right_unit, CategoryTheory.MonadIso.mk_inv_toNatTrans, unit_naturality_assoc, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, MonadicityInternal.main_pair_G_split, toMon_X, MonadicityInternal.main_pair_reflexive, monadMonEquiv_unitIso_hom_app_toNatTrans_app, one_def, left_unit_assoc, instIsReflexivePairAlgebraTopMapBottomMap, Algebra.unit, CategoryTheory.MonadHom.id_toNatTrans, id_map, CategoryTheory.coprodMonad_obj, CategoryTheory.ofTypeMonad_obj, Algebra.Hom.h_assoc, algebraFunctorOfMonadHom_map_f, right_unit_assoc, FreeCoequalizer.topMap_f, ForgetCreatesColimits.newCocone_ι
transport 📖CompOp
η 📖CompOp
22 mathmath: id_η_app, ofMon_η, Algebra.unit_assoc, CategoryTheory.ofTypeMonad_η_app, beckCoequalizer_desc, CategoryTheory.Kleisli.Adjunction.toKleisli_map, isSplitMono_iff_isIso_unit, left_unit, adj_counit, adj_unit, CategoryTheory.Adjunction.toMonad_η, unit_naturality, CategoryTheory.MonadHom.app_η_assoc, map_unit_app, CategoryTheory.MonadHom.app_η, CategoryTheory.coprodMonad_η_app, right_unit, unit_naturality_assoc, one_def, left_unit_assoc, Algebra.unit, right_unit_assoc
μ 📖CompOp
26 mathmath: free_map_f, mul_def, CategoryTheory.MonadHom.app_μ, beckCoequalizer_desc, CategoryTheory.coprodMonad_μ_app, id_μ_app, Algebra.assoc_assoc, CategoryTheory.ofTypeMonad_μ_app, left_unit, assoc, mu_naturality, mu_naturality_assoc, CategoryTheory.Adjunction.toMonad_μ, CategoryTheory.MonadHom.app_μ_assoc, Algebra.assoc, beckCofork_pt, free_obj_a, MonadicityInternal.comparisonAdjunction_unit_f, FreeCoequalizer.bottomMap_f, beckCofork_π, CategoryTheory.Kleisli.Adjunction.fromKleisli_map, ofMon_μ, CategoryTheory.μ_iso_of_reflective, right_unit, left_unit_assoc, right_unit_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
μ
id_map 📖mathematicalCategoryTheory.Functor.map
toFunctor
id
id_obj 📖mathematicalCategoryTheory.Functor.obj
toFunctor
id
id_η_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
η
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
id_μ_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
μ
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
isSplitMono_iff_isIso_unit 📖mathematicalCategoryTheory.IsSplitMono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
toFunctor
CategoryTheory.NatTrans.app
η
CategoryTheory.IsIso
CategoryTheory.IsSplitMono.id
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp
map_unit_app
unit_naturality
CategoryTheory.IsSplitMono.of_iso
left_unit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
toFunctor
CategoryTheory.NatTrans.app
η
CategoryTheory.Functor.comp
μ
CategoryTheory.CategoryStruct.id
left_unit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
η
CategoryTheory.Functor.comp
μ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
left_unit
map_unit_app 📖mathematicalCategoryTheory.Functor.map
toFunctor
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
η
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
right_unit
left_unit
mu_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
μ
CategoryTheory.NatTrans.naturality
mu_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
μ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mu_naturality
right_unit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
η
CategoryTheory.Functor.comp
μ
CategoryTheory.CategoryStruct.id
right_unit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
η
CategoryTheory.Functor.comp
μ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
right_unit
unit_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
η
CategoryTheory.Functor.map
CategoryTheory.NatTrans.naturality
unit_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
η
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_naturality

CategoryTheory.MonadHom

Definitions

NameCategoryTheorems
toNatTrans 📖CompOp
19 mathmath: CategoryTheory.Monad.monadMonEquiv_unitIso_inv_app_toNatTrans_app, app_μ, comp_toNatTrans, CategoryTheory.MonadIso.mk_hom_toNatTrans, CategoryTheory.Monad.monadToMon_map_hom, ext_iff, app_η_assoc, app_μ_assoc, app_η, CategoryTheory.Adjunction.adjToMonadIso_inv_toNatTrans_app, CategoryTheory.Monad.monToMonad_map_toNatTrans, CategoryTheory.Monad.algebraFunctorOfMonadHom_obj_a, CategoryTheory.monadToFunctor_map, ext'_iff, CategoryTheory.MonadIso.mk_inv_toNatTrans, CategoryTheory.Adjunction.adjToMonadIso_hom_toNatTrans_app, CategoryTheory.Monad.monadMonEquiv_unitIso_hom_app_toNatTrans_app, id_toNatTrans, CategoryTheory.Monad.algebraFunctorOfMonadHom_map_f

Theorems

NameKindAssumesProvesValidatesDepends On
app_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Monad.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Monad.η
toNatTrans
app_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Monad.η
toNatTrans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
app_η
app_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Monad.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Monad.μ
toNatTrans
CategoryTheory.Functor.map
app_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Monad.μ
toNatTrans
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
app_μ
comp_toNatTrans 📖mathematicaltoNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Monad
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMonad
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monad.toFunctor
ext 📖CategoryTheory.NatTrans.app
CategoryTheory.Monad.toFunctor
toNatTrans
ext' 📖CategoryTheory.NatTrans.app
CategoryTheory.Monad.toFunctor
toNatTrans
ext
ext'_iff 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Monad.toFunctor
toNatTrans
ext'
ext_iff 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Monad.toFunctor
toNatTrans
ext
id_toNatTrans 📖mathematicaltoNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Monad
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryMonad
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monad.toFunctor

CategoryTheory.MonadIso

Definitions

NameCategoryTheorems
mk 📖CompOp
toNatIso 📖CompOp
2 mathmath: toNatIso_hom, toNatIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom_toNatTrans 📖mathematicalCategoryTheory.MonadHom.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monad.toFunctor
mk_inv_toNatTrans 📖mathematicalCategoryTheory.MonadHom.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monad.toFunctor
toNatIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monad.toFunctor
toNatIso
CategoryTheory.Functor.map
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
CategoryTheory.monadToFunctor
toNatIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monad.toFunctor
toNatIso
CategoryTheory.Functor.map
CategoryTheory.Monad
CategoryTheory.instCategoryMonad
CategoryTheory.monadToFunctor

---

← Back to Index