Documentation Verification Report

Coequalizer

📁 Source: Mathlib/CategoryTheory/Monad/Coequalizer.lean

Statistics

MetricCount
DefinitionsbottomMap, topMap, π, beckAlgebraCoequalizer, beckAlgebraCofork, beckCoequalizer, beckCofork, beckSplitCoequalizer
8
TheoremsbottomMap_f, condition, topMap_f, π_f, beckAlgebraCofork_pt, beckAlgebraCofork_ι_app, beckCoequalizer_desc, beckCofork_pt, beckCofork_π, instIsReflexivePairAlgebraTopMapBottomMap
10
Total18

CategoryTheory.Monad

Definitions

NameCategoryTheorems
beckAlgebraCoequalizer 📖CompOp
beckAlgebraCofork 📖CompOp
2 mathmath: beckAlgebraCofork_pt, beckAlgebraCofork_ι_app
beckCoequalizer 📖CompOp
2 mathmath: beckCoequalizer_desc, MonadicityInternal.comparisonAdjunction_unit_f
beckCofork 📖CompOp
4 mathmath: beckCoequalizer_desc, beckCofork_pt, MonadicityInternal.comparisonAdjunction_unit_f, beckCofork_π
beckSplitCoequalizer 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
beckAlgebraCofork_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Algebra
Algebra.eilenbergMoore
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
free
toFunctor
Algebra.A
FreeCoequalizer.topMap
FreeCoequalizer.bottomMap
beckAlgebraCofork
beckAlgebraCofork_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Algebra
Algebra.eilenbergMoore
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
free
toFunctor
Algebra.A
FreeCoequalizer.topMap
FreeCoequalizer.bottomMap
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
beckAlgebraCofork
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
FreeCoequalizer.π
beckCoequalizer_desc 📖mathematicalCategoryTheory.Limits.IsColimit.desc
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
toFunctor
Algebra.A
CategoryTheory.Functor.map
Algebra.a
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
μ
beckCofork
beckCoequalizer
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair.one
η
CategoryTheory.Limits.Cofork.π
beckCofork_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
toFunctor
Algebra.A
CategoryTheory.Functor.map
Algebra.a
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
μ
beckCofork
beckCofork_π 📖mathematicalCategoryTheory.Limits.Cofork.π
CategoryTheory.Functor.obj
toFunctor
Algebra.A
CategoryTheory.Functor.map
Algebra.a
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
μ
beckCofork
instIsReflexivePairAlgebraTopMapBottomMap 📖mathematicalCategoryTheory.IsReflexivePair
Algebra
Algebra.eilenbergMoore
CategoryTheory.Functor.obj
free
toFunctor
Algebra.A
FreeCoequalizer.topMap
FreeCoequalizer.bottomMap
CategoryTheory.IsReflexivePair.mk'
Algebra.Hom.ext'
CategoryTheory.Functor.map_comp
Algebra.unit
CategoryTheory.Functor.map_id
right_unit

CategoryTheory.Monad.FreeCoequalizer

Definitions

NameCategoryTheorems
bottomMap 📖CompOp
5 mathmath: condition, CategoryTheory.Monad.beckAlgebraCofork_pt, bottomMap_f, CategoryTheory.Monad.beckAlgebraCofork_ι_app, CategoryTheory.Monad.instIsReflexivePairAlgebraTopMapBottomMap
topMap 📖CompOp
5 mathmath: condition, CategoryTheory.Monad.beckAlgebraCofork_pt, CategoryTheory.Monad.beckAlgebraCofork_ι_app, CategoryTheory.Monad.instIsReflexivePairAlgebraTopMapBottomMap, topMap_f
π 📖CompOp
3 mathmath: condition, π_f, CategoryTheory.Monad.beckAlgebraCofork_ι_app

Theorems

NameKindAssumesProvesValidatesDepends On
bottomMap_f 📖mathematicalCategoryTheory.Monad.Algebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Monad.Algebra
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.free
CategoryTheory.Monad.toFunctor
CategoryTheory.Monad.Algebra.A
bottomMap
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Monad.μ
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Monad.Algebra
CategoryTheory.Monad.Algebra.instCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.free
CategoryTheory.Monad.toFunctor
CategoryTheory.Monad.Algebra.A
topMap
π
bottomMap
CategoryTheory.Monad.Algebra.Hom.ext
CategoryTheory.Monad.Algebra.assoc
topMap_f 📖mathematicalCategoryTheory.Monad.Algebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Monad.Algebra
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.free
CategoryTheory.Monad.toFunctor
CategoryTheory.Monad.Algebra.A
topMap
CategoryTheory.Functor.map
CategoryTheory.Monad.Algebra.a
π_f 📖mathematicalCategoryTheory.Monad.Algebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Monad.Algebra
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Monad.free
CategoryTheory.Monad.Algebra.A
π
CategoryTheory.Monad.Algebra.a

---

← Back to Index