Documentation Verification Report

Equalizer

📁 Source: Mathlib/CategoryTheory/Monad/Equalizer.lean

Statistics

MetricCount
DefinitionsbottomMap, topMap, ι, beckCoalgebraEqualizer, beckCoalgebraFork, beckEqualizer, beckFork, beckSplitEqualizer
8
TheoremsbottomMap_f, condition, topMap_f, ι_f, beckCoalgebraFork_pt, beckCoalgebraFork_π_app, beckEqualizer_lift, beckFork_pt, beckFork_ι, instIsCoreflexivePairCoalgebraTopMapBottomMap
10
Total18

CategoryTheory.Comonad

Definitions

NameCategoryTheorems
beckCoalgebraEqualizer 📖CompOp
beckCoalgebraFork 📖CompOp
2 mathmath: beckCoalgebraFork_pt, beckCoalgebraFork_π_app
beckEqualizer 📖CompOp
2 mathmath: ComonadicityInternal.comparisonAdjunction_counit_f, beckEqualizer_lift
beckFork 📖CompOp
4 mathmath: ComonadicityInternal.comparisonAdjunction_counit_f, beckEqualizer_lift, beckFork_ι, beckFork_pt
beckSplitEqualizer 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
beckCoalgebraFork_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Coalgebra
Coalgebra.eilenbergMoore
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
cofree
Coalgebra.A
toFunctor
CofreeEqualizer.topMap
CofreeEqualizer.bottomMap
beckCoalgebraFork
beckCoalgebraFork_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
Coalgebra
Coalgebra.eilenbergMoore
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.parallelPair
cofree
Coalgebra.A
toFunctor
CofreeEqualizer.topMap
CofreeEqualizer.bottomMap
CategoryTheory.Limits.Cone.π
beckCoalgebraFork
CategoryTheory.Limits.WalkingParallelPair.zero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CofreeEqualizer.ι
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.CategoryStruct.comp
beckEqualizer_lift 📖mathematicalCategoryTheory.Limits.IsLimit.lift
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
toFunctor
Coalgebra.A
CategoryTheory.Functor.map
Coalgebra.a
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
δ
beckFork
beckEqualizer
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Functor.id
CategoryTheory.Limits.Fork.ι
ε
beckFork_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
toFunctor
Coalgebra.A
CategoryTheory.Functor.map
Coalgebra.a
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
δ
beckFork
beckFork_ι 📖mathematicalCategoryTheory.Limits.Fork.ι
CategoryTheory.Functor.obj
toFunctor
Coalgebra.A
CategoryTheory.Functor.map
Coalgebra.a
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
δ
beckFork
instIsCoreflexivePairCoalgebraTopMapBottomMap 📖mathematicalCategoryTheory.IsCoreflexivePair
Coalgebra
Coalgebra.eilenbergMoore
CategoryTheory.Functor.obj
cofree
Coalgebra.A
toFunctor
CofreeEqualizer.topMap
CofreeEqualizer.bottomMap
CategoryTheory.IsCoreflexivePair.mk'
Coalgebra.Hom.ext'
CategoryTheory.Functor.map_comp
Coalgebra.counit
CategoryTheory.Functor.map_id
right_counit

CategoryTheory.Comonad.CofreeEqualizer

Definitions

NameCategoryTheorems
bottomMap 📖CompOp
5 mathmath: CategoryTheory.Comonad.beckCoalgebraFork_pt, CategoryTheory.Comonad.instIsCoreflexivePairCoalgebraTopMapBottomMap, condition, bottomMap_f, CategoryTheory.Comonad.beckCoalgebraFork_π_app
topMap 📖CompOp
5 mathmath: CategoryTheory.Comonad.beckCoalgebraFork_pt, topMap_f, CategoryTheory.Comonad.instIsCoreflexivePairCoalgebraTopMapBottomMap, condition, CategoryTheory.Comonad.beckCoalgebraFork_π_app
ι 📖CompOp
3 mathmath: ι_f, condition, CategoryTheory.Comonad.beckCoalgebraFork_π_app

Theorems

NameKindAssumesProvesValidatesDepends On
bottomMap_f 📖mathematicalCategoryTheory.Comonad.Coalgebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.cofree
CategoryTheory.Comonad.Coalgebra.A
CategoryTheory.Comonad.toFunctor
bottomMap
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Comonad.δ
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Comonad.Coalgebra.instCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.cofree
CategoryTheory.Comonad.Coalgebra.A
CategoryTheory.Comonad.toFunctor
ι
topMap
bottomMap
CategoryTheory.Comonad.Coalgebra.Hom.ext
CategoryTheory.Comonad.Coalgebra.coassoc
topMap_f 📖mathematicalCategoryTheory.Comonad.Coalgebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.cofree
CategoryTheory.Comonad.Coalgebra.A
CategoryTheory.Comonad.toFunctor
topMap
CategoryTheory.Functor.map
CategoryTheory.Comonad.Coalgebra.a
ι_f 📖mathematicalCategoryTheory.Comonad.Coalgebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Comonad.Coalgebra
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Comonad.cofree
CategoryTheory.Comonad.Coalgebra.A
ι
CategoryTheory.Comonad.Coalgebra.a

---

← Back to Index