Documentation Verification Report

Kleisli

📁 Source: Mathlib/CategoryTheory/Monad/Kleisli.lean

Statistics

MetricCount
DefinitionsCokleisli, adj, fromCokleisli, toCokleisli, toCokleisliCompFromCokleisliIsoSelf, category, instInhabited, Kleisli, adj, fromKleisli, toKleisli, toKleisliCompFromKleisliIsoSelf, category, instInhabited
14
TheoremsfromCokleisli_map, fromCokleisli_obj, toCokleisli_map, toCokleisli_obj, fromKleisli_map, fromKleisli_obj, toKleisli_map, toKleisli_obj
8
Total22

CategoryTheory

Definitions

NameCategoryTheorems
Cokleisli 📖CompOp
4 mathmath: Cokleisli.Adjunction.toCokleisli_obj, Cokleisli.Adjunction.fromCokleisli_map, Cokleisli.Adjunction.fromCokleisli_obj, Cokleisli.Adjunction.toCokleisli_map
Kleisli 📖CompOp
10 mathmath: eq_counitIso, Kleisli.Adjunction.toKleisli_map, eq_functor_obj, eq_inverse_obj, Kleisli.Adjunction.toKleisli_obj, eq_functor_map, Kleisli.Adjunction.fromKleisli_map, eq_unitIso, Kleisli.Adjunction.fromKleisli_obj, eq_inverse_map

CategoryTheory.Cokleisli

Definitions

NameCategoryTheorems
category 📖CompOp
4 mathmath: Adjunction.toCokleisli_obj, Adjunction.fromCokleisli_map, Adjunction.fromCokleisli_obj, Adjunction.toCokleisli_map
instInhabited 📖CompOp

CategoryTheory.Cokleisli.Adjunction

Definitions

NameCategoryTheorems
adj 📖CompOp
fromCokleisli 📖CompOp
2 mathmath: fromCokleisli_map, fromCokleisli_obj
toCokleisli 📖CompOp
2 mathmath: toCokleisli_obj, toCokleisli_map
toCokleisliCompFromCokleisliIsoSelf 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
fromCokleisli_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Cokleisli
CategoryTheory.Cokleisli.category
fromCokleisli
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Comonad.δ
fromCokleisli_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Cokleisli
CategoryTheory.Cokleisli.category
fromCokleisli
CategoryTheory.Comonad.toFunctor
toCokleisli_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Cokleisli
CategoryTheory.Cokleisli.category
toCokleisli
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comonad.toFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Comonad.ε
toCokleisli_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Cokleisli
CategoryTheory.Cokleisli.category
toCokleisli

CategoryTheory.Kleisli

Definitions

NameCategoryTheorems
category 📖CompOp
10 mathmath: CategoryTheory.eq_counitIso, Adjunction.toKleisli_map, CategoryTheory.eq_functor_obj, CategoryTheory.eq_inverse_obj, Adjunction.toKleisli_obj, CategoryTheory.eq_functor_map, Adjunction.fromKleisli_map, CategoryTheory.eq_unitIso, Adjunction.fromKleisli_obj, CategoryTheory.eq_inverse_map
instInhabited 📖CompOp

CategoryTheory.Kleisli.Adjunction

Definitions

NameCategoryTheorems
adj 📖CompOp
fromKleisli 📖CompOp
2 mathmath: fromKleisli_map, fromKleisli_obj
toKleisli 📖CompOp
2 mathmath: toKleisli_map, toKleisli_obj
toKleisliCompFromKleisliIsoSelf 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
fromKleisli_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Kleisli
CategoryTheory.Kleisli.category
fromKleisli
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Monad.μ
fromKleisli_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Kleisli
CategoryTheory.Kleisli.category
fromKleisli
CategoryTheory.Monad.toFunctor
toKleisli_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Kleisli
CategoryTheory.Kleisli.category
toKleisli
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Monad.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Monad.η
toKleisli_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Kleisli
CategoryTheory.Kleisli.category
toKleisli

---

← Back to Index