Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Monoidal/Action/Basic.lean

Statistics

MetricCount
DefinitionsMonoidalLeftAction, actionAssocNatIso, actionLeft, actionRight, actionUnitNatIso, curriedAction, termαₗ, toMonoidalLeftActionStruct, «term_⊙ₗ_», «term_⊙ₗₘ_», «term_⊴ₗ_», «term_⊵ₗ_», «termλₗ[_]», «termλₗ», MonoidalLeftActionStruct, actionAssocIso, actionHom, actionHomLeft, actionHomRight, actionObj, actionUnitIso, MonoidalRightAction, actionAssocNatIso, actionLeft, actionRight, actionUnitNatIso, curriedAction, termαᵣ, termρᵣ, toMonoidalRightActionStruct, «term_⊙ᵣ_», «term_⊙ᵣₘ_», «term_⊴ᵣ_», «term_⊵ᵣ_», «termρᵣ[_]», MonoidalRightActionStruct, actionAssocIso, actionHom, actionHomLeft, actionHomRight, actionObj, actionUnitIso, selRightfAction, selfLeftAction
44
TheoremsactionAssocIso_hom_naturality, actionAssocIso_hom_naturality_assoc, actionAssocIso_inv_naturality, actionAssocIso_inv_naturality_assoc, actionAssocNatIso_hom_app_app_app, actionAssocNatIso_inv_app_app_app, actionHomLeft_action, actionHomLeft_action_assoc, actionHomRight_comp, actionHomRight_comp_assoc, actionHomRight_hom_inv, actionHomRight_hom_inv', actionHomRight_hom_inv'_assoc, actionHomRight_hom_inv_assoc, actionHomRight_id, actionHomRight_id_assoc, actionHomRight_inv_hom, actionHomRight_inv_hom', actionHomRight_inv_hom'_assoc, actionHomRight_inv_hom_assoc, actionHom_comp, actionHom_comp_assoc, actionHom_def, actionHom_def', actionHom_def'_assoc, actionHom_def_assoc, actionHom_id, actionLeft_map, actionLeft_obj, actionRight_map, actionRight_obj, actionUnitIso_hom_naturality, actionUnitIso_hom_naturality_assoc, actionUnitIso_inv_naturality, actionUnitIso_inv_naturality_assoc, actionUnitNatIso_hom_app, actionUnitNatIso_inv_app, action_exchange, action_exchange_assoc, associator_actionHom, associator_actionHom_assoc, comp_actionHomLeft, comp_actionHomLeft_assoc, curriedAction_map_app, curriedAction_obj_map, curriedAction_obj_obj, hom_inv_actionHomLeft, hom_inv_actionHomLeft', hom_inv_actionHomLeft'_assoc, hom_inv_actionHomLeft_assoc, id_actionHom, id_actionHomLeft, id_actionHomLeft_assoc, inv_actionHom, inv_actionHomLeft, inv_actionHomRight, inv_hom_actionHomLeft, inv_hom_actionHomLeft', inv_hom_actionHomLeft'_assoc, inv_hom_actionHomLeft_assoc, isIso_actionHom, isIso_actionHomLeft, isIso_actionHomRight, leftUnitor_actionHom, leftUnitor_actionHom_assoc, rightUnitor_actionHom, rightUnitor_actionHom_assoc, tensor_actionHomRight, tensor_actionHomRight_assoc, unit_actionHomRight, unit_actionHomRight_assoc, whiskerLeft_actionHomLeft, whiskerLeft_actionHomLeft_assoc, whiskerRight_actionHomLeft, actionAssocIso_hom_naturality, actionAssocIso_hom_naturality_assoc, actionAssocIso_inv_naturality, actionAssocIso_inv_naturality_assoc, actionAssocNatIso_hom_app_app_app, actionAssocNatIso_inv_app_app_app, actionHomLeft_tensor, actionHomLeft_tensor_assoc, actionHomRight_comp, actionHomRight_comp_assoc, actionHomRight_hom_inv, actionHomRight_hom_inv', actionHomRight_hom_inv'_assoc, actionHomRight_hom_inv_assoc, actionHomRight_id, actionHomRight_id_assoc, actionHomRight_inv_hom, actionHomRight_inv_hom', actionHomRight_inv_hom'_assoc, actionHomRight_inv_hom_assoc, actionHomRight_whiskerRight, actionHomRight_whiskerRight_assoc, actionHom_associator, actionHom_associator_assoc, actionHom_comp, actionHom_comp_assoc, actionHom_def, actionHom_def', actionHom_def'_assoc, actionHom_def_assoc, actionHom_id, actionHom_leftUnitor, actionHom_leftUnitor_assoc, actionHom_rightUnitor, actionHom_rightUnitor_assoc, actionLeft_map, actionLeft_obj, actionRight_map, actionRight_obj, actionUnitIso_hom_naturality, actionUnitIso_hom_naturality_assoc, actionUnitIso_inv_naturality, actionUnitIso_inv_naturality_assoc, actionUnitNatIso_hom_app, actionUnitNatIso_inv_app, action_actionHomRight, action_actionHomRight_assoc, action_exchange, action_exchange_assoc, comp_actionHomLeft, comp_actionHomLeft_assoc, curriedAction_map_app, curriedAction_obj_map, curriedAction_obj_obj, hom_inv_actionHomLeft, hom_inv_actionHomLeft', hom_inv_actionHomLeft'_assoc, hom_inv_actionHomLeft_assoc, id_actionHom, id_actionHomLeft, id_actionHomLeft_assoc, inv_actionHom, inv_actionHomLeft, inv_actionHomRight, inv_hom_actionHomLeft, inv_hom_actionHomLeft', inv_hom_actionHomLeft'_assoc, inv_hom_actionHomLeft_assoc, isIso_actionHom, isIso_actionHomLeft, isIso_actionHomRight, unit_actionHomRight, unit_actionHomRight_assoc, whiskerRight_actionHomLeft, selRightfAction_actionAssocIso_hom, selRightfAction_actionAssocIso_inv, selRightfAction_actionHom, selRightfAction_actionHomLeft, selRightfAction_actionHomRight, selRightfAction_actionObj, selRightfAction_actionUnitIso, selfLeftAction_actionAssocIso, selfLeftAction_actionHom, selfLeftAction_actionHomLeft, selfLeftAction_actionHomRight, selfLeftAction_actionObj, selfLeftAction_actionUnitIso
161
Total205

CategoryTheory.MonoidalCategory

Definitions

NameCategoryTheorems
MonoidalLeftAction 📖CompData
MonoidalLeftActionStruct 📖CompData
MonoidalRightAction 📖CompData
MonoidalRightActionStruct 📖CompData
selRightfAction 📖CompOp
7 mathmath: selRightfAction_actionHomRight, selRightfAction_actionHom, selRightfAction_actionUnitIso, selRightfAction_actionHomLeft, selRightfAction_actionAssocIso_hom, selRightfAction_actionAssocIso_inv, selRightfAction_actionObj
selfLeftAction 📖CompOp
12 mathmath: selfLeftAction_actionUnitIso, selfLeftAction_actionHomLeft, selfLeftAction_actionHom, CategoryTheory.ModObj.smul_eq_mul, selfLeftAction_actionObj, CategoryTheory.ModObj.ext_iff, CategoryTheory.Mod_.trivialAction_X, CategoryTheory.Mod_.regular_mod_smul, selfLeftAction_actionAssocIso, CategoryTheory.Mod_.regular_X, CategoryTheory.Mod_.trivialAction_mod_smul, selfLeftAction_actionHomRight

Theorems

NameKindAssumesProvesValidatesDepends On
selRightfAction_actionAssocIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
toMonoidalCategoryStruct
MonoidalRightActionStruct.actionAssocIso
MonoidalRightAction.toMonoidalRightActionStruct
selRightfAction
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
selRightfAction_actionAssocIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
toMonoidalCategoryStruct
MonoidalRightActionStruct.actionAssocIso
MonoidalRightAction.toMonoidalRightActionStruct
selRightfAction
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
selRightfAction_actionHom 📖mathematicalMonoidalRightActionStruct.actionHom
toMonoidalCategoryStruct
MonoidalRightAction.toMonoidalRightActionStruct
selRightfAction
CategoryTheory.MonoidalCategoryStruct.tensorHom
selRightfAction_actionHomLeft 📖mathematicalMonoidalRightActionStruct.actionHomLeft
toMonoidalCategoryStruct
MonoidalRightAction.toMonoidalRightActionStruct
selRightfAction
CategoryTheory.MonoidalCategoryStruct.whiskerRight
selRightfAction_actionHomRight 📖mathematicalMonoidalRightActionStruct.actionHomRight
toMonoidalCategoryStruct
MonoidalRightAction.toMonoidalRightActionStruct
selRightfAction
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
selRightfAction_actionObj 📖mathematicalMonoidalRightActionStruct.actionObj
toMonoidalCategoryStruct
MonoidalRightAction.toMonoidalRightActionStruct
selRightfAction
CategoryTheory.MonoidalCategoryStruct.tensorObj
selRightfAction_actionUnitIso 📖mathematicalMonoidalRightActionStruct.actionUnitIso
toMonoidalCategoryStruct
MonoidalRightAction.toMonoidalRightActionStruct
selRightfAction
CategoryTheory.MonoidalCategoryStruct.rightUnitor
selfLeftAction_actionAssocIso 📖mathematicalMonoidalLeftActionStruct.actionAssocIso
toMonoidalCategoryStruct
MonoidalLeftAction.toMonoidalLeftActionStruct
selfLeftAction
CategoryTheory.MonoidalCategoryStruct.associator
selfLeftAction_actionHom 📖mathematicalMonoidalLeftActionStruct.actionHom
toMonoidalCategoryStruct
MonoidalLeftAction.toMonoidalLeftActionStruct
selfLeftAction
CategoryTheory.MonoidalCategoryStruct.tensorHom
selfLeftAction_actionHomLeft 📖mathematicalMonoidalLeftActionStruct.actionHomLeft
toMonoidalCategoryStruct
MonoidalLeftAction.toMonoidalLeftActionStruct
selfLeftAction
CategoryTheory.MonoidalCategoryStruct.whiskerRight
selfLeftAction_actionHomRight 📖mathematicalMonoidalLeftActionStruct.actionHomRight
toMonoidalCategoryStruct
MonoidalLeftAction.toMonoidalLeftActionStruct
selfLeftAction
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
selfLeftAction_actionObj 📖mathematicalMonoidalLeftActionStruct.actionObj
toMonoidalCategoryStruct
MonoidalLeftAction.toMonoidalLeftActionStruct
selfLeftAction
CategoryTheory.MonoidalCategoryStruct.tensorObj
selfLeftAction_actionUnitIso 📖mathematicalMonoidalLeftActionStruct.actionUnitIso
toMonoidalCategoryStruct
MonoidalLeftAction.toMonoidalLeftActionStruct
selfLeftAction
CategoryTheory.MonoidalCategoryStruct.leftUnitor

CategoryTheory.MonoidalCategory.MonoidalLeftAction

Definitions

NameCategoryTheorems
actionAssocNatIso 📖CompOp
2 mathmath: actionAssocNatIso_hom_app_app_app, actionAssocNatIso_inv_app_app_app
actionLeft 📖CompOp
6 mathmath: actionUnitNatIso_inv_app, actionUnitNatIso_hom_app, actionLeft_map, curriedActionMopMonoidal_η_unmop_app, curriedActionMopMonoidal_ε_unmop_app, actionLeft_obj
actionRight 📖CompOp
2 mathmath: actionRight_obj, actionRight_map
actionUnitNatIso 📖CompOp
2 mathmath: actionUnitNatIso_inv_app, actionUnitNatIso_hom_app
curriedAction 📖CompOp
9 mathmath: actionAssocNatIso_hom_app_app_app, curriedActionMopMonoidal_μ_unmop_app, actionAssocNatIso_inv_app_app_app, curriedAction_map_app, curriedActionMopMonoidal_δ_unmop_app, curriedActionMopMonoidal_η_unmop_app, curriedActionMopMonoidal_ε_unmop_app, curriedAction_obj_obj, curriedAction_obj_map
termαₗ 📖CompOp
toMonoidalLeftActionStruct 📖CompOp
197 mathmath: actionUnitNatIso_inv_app, CategoryTheory.ModObj.one_smul_assoc, actionHomRight_hom_inv_assoc, actionOfMonoidalFunctorToEndofunctorMop_actionHomLeft, actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, actionUnitNatIso_hom_app, CategoryTheory.ModObj.mul_smul_assoc, actionLeft_map, leftActionOfMonoidalOppositeRightAction_actionObj, oppositeLeftAction_actionHomRight, oppositeLeftAction_actionAssocIso, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_right, leftActionOfOppositeLeftAction_actionHomRight, CategoryTheory.MonoidalCategory.selfLeftAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomLeft, isIso_actionHom, CategoryTheory.Functor.LeftLinear.instIsIsoδₗ, CategoryTheory.MonoidalCategory.selfLeftAction_actionHomLeft, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv, leftActionOfOppositeLeftAction_actionAssocIso, leftUnitor_actionHom_assoc, action_exchange, leftActionOfMonoidalOppositeRightAction_actionHom, actionAssocNatIso_hom_app_app_app, actionHomRight_id_assoc, actionHomLeft_action_assoc, monoidalOppositeLeftAction_actionHomLeft, actionHomRight_hom_inv, curriedActionMopMonoidal_μ_unmop_app, isIso_actionHomLeft, actionHomLeft_action, CategoryTheory.ModObj.mul_smul'_assoc, actionHom_def_assoc, actionUnitIso_hom_naturality_assoc, CategoryTheory.Functor.LeftLinear.μₗ_comp_δₗ_assoc, actionAssocIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso_mop_mop, monoidalOppositeLeftAction_actionHomRight, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv_assoc, actionHom_comp_assoc, CategoryTheory.Functor.LeftLinear.inv_μₗ, actionHomRight_inv_hom_assoc, CategoryTheory.IsMod_Hom.smul_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_right_assoc, CategoryTheory.MonoidalCategory.selfLeftAction_actionHom, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_left_assoc, id_actionHomLeft, inv_actionHomLeft, whiskerLeft_actionHomLeft_assoc, action_exchange_assoc, id_actionHom, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_hom_assoc, tensor_actionHomRight, CategoryTheory.ModObj.one_smul'_assoc, rightUnitor_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso, leftActionOfOppositeLeftAction_actionObj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_inv, leftActionOfOppositeLeftAction_actionHom_unop, monoidalOppositeLeftAction_actionHomLeft_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionObj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity, monoidalOppositeLeftAction_actionUnitIso, CategoryTheory.Functor.LeftLinear.δₗ_comp_μₗ, hom_inv_actionHomLeft'_assoc, monoidalOppositeLeftAction_actionHom_mop_mop, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_assoc, leftActionOfMonoidalOppositeRightAction_actionAssocIso, actionAssocNatIso_inv_app_app_app, CategoryTheory.IsMod_Hom.smul_hom_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, actionHomRight_id, id_actionHomLeft_assoc, actionAssocIso_hom_naturality, oppositeLeftAction_actionHomLeft_op, unit_actionHomRight_assoc, curriedAction_map_app, leftUnitor_actionHom, actionHomRight_inv_hom'_assoc, leftActionOfOppositeLeftAction_actionUnitIso, actionHomRight_inv_hom', associator_actionHom_assoc, leftActionOfOppositeLeftAction_actionHomLeft_unop, oppositeLeftAction_actionObj, leftActionOfMonoidalOppositeRightAction_actionUnitIso, actionRight_obj, monoidalOppositeLeftAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomLeft, hom_inv_actionHomLeft_assoc, CategoryTheory.ModObj.one_smul', actionHom_id, actionHomRight_inv_hom, tensor_actionHomRight_assoc, actionOfMonoidalFunctorToEndofunctorMop_actionObj, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity, actionHomRight_comp_assoc, rightUnitor_actionHom_assoc, actionHomRight_hom_inv'_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionUnitIso, leftActionOfOppositeLeftAction_actionAssocIso_unop, whiskerLeft_actionHomLeft, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_left, actionAssocIso_hom_naturality_assoc, leftActionOfMonoidalOppositeRightAction_actionHomLeft, curriedActionMop_map_unmop_app, actionHomRight_comp, CategoryTheory.ModObj.assoc_flip, actionHomRight_hom_inv', curriedActionMopMonoidal_δ_unmop_app, CategoryTheory.MonoidalCategory.selfLeftAction_actionObj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_right, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_assoc, oppositeLeftAction_actionRight_op, inv_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj_mop, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv, unit_actionHomRight, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_inv, oppositeLeftAction_actionHom_op, curriedActionMop_obj_unmop_obj, CategoryTheory.ModObj.one_smul, leftActionOfOppositeLeftAction_actionRight_unop, actionUnitIso_inv_naturality_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality, whiskerRight_actionHomLeft, leftActionOfOppositeLeftAction_actionObj_unop, oppositeLeftAction_actionHom, monoidalOppositeLeftAction_actionObj, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_inv_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_inv_assoc, monoidalOppositeLeftAction_actionObj_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom_mop_mop, comp_actionHomLeft, actionOfMonoidalFunctorToEndofunctorMop_actionHomRight, comp_actionHomLeft_assoc, monoidalOppositeLeftAction_actionHom, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_left, CategoryTheory.Mod_.scalarRestriction_smul, actionAssocIso_inv_naturality, leftActionOfOppositeLeftAction_actionHom, inv_hom_actionHomLeft'_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_left_assoc, actionUnitIso_hom_naturality, CategoryTheory.ModObj.smul_def, oppositeLeftAction_actionAssocIso_op, actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, monoidalOppositeLeftAction_actionRight_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomRight, actionHom_def, actionHom_def', actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_right_assoc, CategoryTheory.Functor.LeftLinear.inv_δₗ, curriedActionMop_obj_unmop_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionAssocIso, inv_actionHom, CategoryTheory.Functor.LeftLinear.μₗ_comp_δₗ, CategoryTheory.Mod_.assoc_flip, oppositeLeftAction_actionHomLeft, associator_actionHom, CategoryTheory.Functor.LeftLinear.instIsIsoμₗ, CategoryTheory.MonoidalCategory.selfLeftAction_actionAssocIso, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_assoc, actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, actionRight_map, curriedActionMopMonoidal_η_unmop_app, CategoryTheory.ModObj.mul_smul, leftActionOfMonoidalOppositeRightAction_actionHomRight, curriedActionMopMonoidal_ε_unmop_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionRight_mop, inv_hom_actionHomLeft_assoc, CategoryTheory.ModObj.mul_smul', actionLeft_obj, monoidalOppositeLeftAction_actionAssocIso_mop_mop, hom_inv_actionHomLeft, hom_inv_actionHomLeft', CategoryTheory.MonoidalCategory.selfLeftAction_actionHomRight, actionOfMonoidalFunctorToEndofunctorMop_actionHom, oppositeLeftAction_actionObj_op, actionUnitIso_inv_naturality, oppositeLeftAction_actionUnitIso, CategoryTheory.Functor.LeftLinear.δₗ_comp_μₗ_assoc, leftActionOfOppositeLeftAction_actionHomLeft, actionHom_comp, inv_hom_actionHomLeft, curriedAction_obj_obj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv_assoc, curriedAction_obj_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionUnitIso, inv_hom_actionHomLeft', isIso_actionHomRight, actionHom_def'_assoc
«term_⊙ₗ_» 📖CompOp
«term_⊙ₗₘ_» 📖CompOp
«term_⊴ₗ_» 📖CompOp
«term_⊵ₗ_» 📖CompOp
«termλₗ[_]» 📖CompOp
«termλₗ» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
actionAssocIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
actionAssocIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionAssocIso_hom_naturality
actionAssocIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_comp_eq
actionAssocIso_hom_naturality
actionAssocIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionAssocIso_inv_naturality
actionAssocNatIso_hom_app_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.bifunctorComp₁₂
CategoryTheory.MonoidalCategory.curriedTensor
curriedAction
CategoryTheory.bifunctorComp₂₃
CategoryTheory.Iso.hom
actionAssocNatIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
actionAssocNatIso_inv_app_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.bifunctorComp₂₃
curriedAction
CategoryTheory.bifunctorComp₁₂
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Iso.inv
actionAssocNatIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
actionHomLeft_action 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
whiskerRight_actionHomLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
actionHomLeft_action_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomLeft_action
actionHomRight_comp 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.Category.comp_id
actionHomRight_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_comp
actionHomRight_hom_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
actionHomRight_comp
CategoryTheory.Iso.hom_inv_id
actionHomRight_id
actionHomRight_hom_inv' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.inv
CategoryTheory.CategoryStruct.id
actionHomRight_comp
CategoryTheory.IsIso.hom_inv_id
actionHomRight_id
actionHomRight_hom_inv'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_hom_inv'
actionHomRight_hom_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_hom_inv
actionHomRight_id 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
actionHomRight_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_id
actionHomRight_inv_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
actionHomRight_comp
CategoryTheory.Iso.inv_hom_id
actionHomRight_id
actionHomRight_inv_hom' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.inv
CategoryTheory.CategoryStruct.id
actionHomRight_comp
CategoryTheory.IsIso.inv_hom_id
actionHomRight_id
actionHomRight_inv_hom'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_inv_hom'
actionHomRight_inv_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_inv_hom
actionHom_comp 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
actionHom_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_comp
actionHom_def 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
actionHom_def' 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
actionHom_def
action_exchange
actionHom_def'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_def'
actionHom_def_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_def
actionHom_id 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
actionHom_def
actionHomRight_id
CategoryTheory.Category.comp_id
actionLeft_map 📖mathematicalCategoryTheory.Functor.map
actionLeft
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
actionLeft_obj 📖mathematicalCategoryTheory.Functor.obj
actionLeft
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
actionRight_map 📖mathematicalCategoryTheory.Functor.map
actionRight
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
actionRight_obj 📖mathematicalCategoryTheory.Functor.obj
actionRight
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
actionUnitIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
actionUnitIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionUnitIso_hom_naturality
actionUnitIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.inv_comp_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.comp_inv_eq
actionUnitIso_hom_naturality
actionUnitIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionUnitIso_inv_naturality
actionUnitNatIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
actionLeft
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
actionUnitNatIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
actionUnitNatIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
actionLeft
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
actionUnitNatIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
action_exchange 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
action_exchange_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
action_exchange
associator_actionHom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
associator_actionHom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_actionHom
comp_actionHomLeft 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.Category.id_comp
comp_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_actionHomLeft
curriedAction_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
curriedAction
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
curriedAction_obj_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
curriedAction
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
curriedAction_obj_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
curriedAction
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
hom_inv_actionHomLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
comp_actionHomLeft
CategoryTheory.Iso.hom_inv_id
id_actionHomLeft
hom_inv_actionHomLeft' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.inv
CategoryTheory.CategoryStruct.id
comp_actionHomLeft
CategoryTheory.IsIso.hom_inv_id
id_actionHomLeft
hom_inv_actionHomLeft'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_actionHomLeft'
hom_inv_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_actionHomLeft
id_actionHom 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
actionHom_def
id_actionHomLeft
CategoryTheory.Category.id_comp
id_actionHomLeft 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
id_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
id_actionHomLeft
inv_actionHom 📖mathematicalCategoryTheory.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
isIso_actionHom
CategoryTheory.IsIso.inv_eq_of_hom_inv_id
isIso_actionHom
CategoryTheory.IsIso.hom_inv_id
actionHom_id
id_actionHomLeft
inv_actionHomLeft 📖mathematicalCategoryTheory.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
isIso_actionHomLeft
CategoryTheory.IsIso.inv_eq_of_hom_inv_id
isIso_actionHomLeft
hom_inv_actionHomLeft'
inv_actionHomRight 📖mathematicalCategoryTheory.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
isIso_actionHomRight
CategoryTheory.IsIso.inv_eq_of_hom_inv_id
isIso_actionHomRight
actionHomRight_hom_inv'
inv_hom_actionHomLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
comp_actionHomLeft
CategoryTheory.Iso.inv_hom_id
id_actionHomLeft
inv_hom_actionHomLeft' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.inv
CategoryTheory.CategoryStruct.id
comp_actionHomLeft
CategoryTheory.IsIso.inv_hom_id
id_actionHomLeft
inv_hom_actionHomLeft'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_actionHomLeft'
inv_hom_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_actionHomLeft
isIso_actionHom 📖mathematicalCategoryTheory.IsIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHom
CategoryTheory.IsIso.hom_inv_id
actionHom_id
id_actionHomLeft
CategoryTheory.IsIso.inv_hom_id
isIso_actionHomLeft 📖mathematicalCategoryTheory.IsIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
hom_inv_actionHomLeft'
inv_hom_actionHomLeft'
isIso_actionHomRight 📖mathematicalCategoryTheory.IsIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
actionHomRight_hom_inv'
actionHomRight_inv_hom'
leftUnitor_actionHom 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
leftUnitor_actionHom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_actionHom
rightUnitor_actionHom 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
rightUnitor_actionHom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_actionHom
tensor_actionHomRight 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
actionAssocIso_hom_naturality
id_actionHom
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
tensor_actionHomRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensor_actionHomRight
unit_actionHomRight 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
actionUnitIso_hom_naturality
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
unit_actionHomRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_actionHomRight
whiskerLeft_actionHomLeft 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.inv
whiskerLeft_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_actionHomLeft
whiskerRight_actionHomLeft 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.Iso.inv

CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct

Definitions

NameCategoryTheorems
actionAssocIso 📖CompOp
48 mathmath: CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, CategoryTheory.ModObj.mul_smul_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftUnitor_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocNatIso_hom_app_app_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomLeft_action_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_μ_unmop_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomLeft_action, CategoryTheory.ModObj.mul_smul'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso_mop_mop, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerLeft_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.tensor_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocNatIso_inv_app_app_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftUnitor_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.associator_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.tensor_actionHomRight_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerLeft_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_hom_naturality_assoc, CategoryTheory.ModObj.assoc_flip, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_δ_unmop_app, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerRight_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso_op, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionAssocIso, CategoryTheory.Mod_.assoc_flip, CategoryTheory.MonoidalCategory.MonoidalLeftAction.associator_actionHom, CategoryTheory.MonoidalCategory.selfLeftAction_actionAssocIso, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, CategoryTheory.ModObj.mul_smul, CategoryTheory.ModObj.mul_smul', CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso_mop_mop, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv_assoc
actionHom 📖CompOp
26 mathmath: CategoryTheory.MonoidalCategory.MonoidalLeftAction.isIso_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom, CategoryTheory.MonoidalCategory.selfLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.id_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom_mop_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom_op, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom_mop_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def', CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_comp, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def'_assoc
actionHomLeft 📖CompOp
62 mathmath: CategoryTheory.ModObj.one_smul_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomLeft, CategoryTheory.ModObj.mul_smul_assoc, CategoryTheory.MonoidalCategory.selfLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftUnitor_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.action_exchange, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomLeft_action_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.isIso_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomLeft_action, CategoryTheory.ModObj.mul_smul'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_left_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.id_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerLeft_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.action_exchange_assoc, CategoryTheory.ModObj.one_smul'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.hom_inv_actionHomLeft'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.id_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft_op, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedAction_map_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftUnitor_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.associator_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.hom_inv_actionHomLeft_assoc, CategoryTheory.ModObj.one_smul', CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerLeft_actionHomLeft, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_left, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_map_unmop_app, CategoryTheory.ModObj.assoc_flip, CategoryTheory.ModObj.one_smul, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerRight_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.comp_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.comp_actionHomLeft_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_left, CategoryTheory.Mod_.scalarRestriction_smul, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_hom_actionHomLeft'_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_left_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def', CategoryTheory.Mod_.assoc_flip, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.associator_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionRight_map, CategoryTheory.ModObj.mul_smul, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_hom_actionHomLeft_assoc, CategoryTheory.ModObj.mul_smul', CategoryTheory.MonoidalCategory.MonoidalLeftAction.hom_inv_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.hom_inv_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_hom_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_hom_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def'_assoc
actionHomRight 📖CompOp
71 mathmath: CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_hom_inv_assoc, CategoryTheory.ModObj.mul_smul_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionLeft_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomRight, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_right, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomLeft, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.action_exchange, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_id_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_hom_inv, CategoryTheory.ModObj.mul_smul'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomRight, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom_assoc, CategoryTheory.IsMod_Hom.smul_hom, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_right_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerLeft_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.action_exchange_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.id_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.tensor_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity, CategoryTheory.IsMod_Hom.smul_hom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.unit_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedAction_map_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom', CategoryTheory.MonoidalCategory.MonoidalLeftAction.associator_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.tensor_actionHomRight_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_hom_inv'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerLeft_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_comp, CategoryTheory.ModObj.assoc_flip, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_hom_inv', CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_right, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionRight_op, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_actionHomRight, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.unit_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionRight_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionRight_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def', CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_right_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_obj_unmop_map, CategoryTheory.Mod_.assoc_flip, CategoryTheory.MonoidalCategory.MonoidalLeftAction.associator_actionHom, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_assoc, CategoryTheory.ModObj.mul_smul, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionRight_mop, CategoryTheory.ModObj.mul_smul', CategoryTheory.MonoidalCategory.selfLeftAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_inv_naturality, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedAction_obj_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.isIso_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def'_assoc
actionObj 📖CompOp
150 mathmath: CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitNatIso_inv_app, CategoryTheory.ModObj.one_smul_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_hom_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitNatIso_hom_app, CategoryTheory.ModObj.mul_smul_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_right, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.isIso_actionHom, CategoryTheory.Functor.LeftLinear.instIsIsoδₗ, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftUnitor_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.action_exchange, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocNatIso_hom_app_app_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_id_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomLeft_action_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_hom_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_μ_unmop_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.isIso_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomLeft_action, CategoryTheory.ModObj.mul_smul'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_hom_naturality_assoc, CategoryTheory.Functor.LeftLinear.μₗ_comp_δₗ_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_inv_naturality_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_comp_assoc, CategoryTheory.Functor.LeftLinear.inv_μₗ, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom_assoc, CategoryTheory.IsMod_Hom.smul_hom, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_right_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_left_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.id_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerLeft_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.action_exchange_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_hom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.tensor_actionHomRight, CategoryTheory.ModObj.one_smul'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionObj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom_unop, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionObj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity, CategoryTheory.Functor.LeftLinear.δₗ_comp_μₗ, CategoryTheory.MonoidalCategory.MonoidalLeftAction.hom_inv_actionHomLeft'_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocNatIso_inv_app_app_app, CategoryTheory.IsMod_Hom.smul_hom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.id_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft_op, CategoryTheory.MonoidalCategory.MonoidalLeftAction.unit_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedAction_map_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftUnitor_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom', CategoryTheory.MonoidalCategory.MonoidalLeftAction.associator_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionRight_obj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.hom_inv_actionHomLeft_assoc, CategoryTheory.ModObj.one_smul', CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.tensor_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionObj, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_hom_inv'_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerLeft_actionHomLeft, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_left, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_comp, CategoryTheory.ModObj.assoc_flip, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHomRight_hom_inv', CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_δ_unmop_app, CategoryTheory.MonoidalCategory.selfLeftAction_actionObj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_right, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionRight_op, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj_mop, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.unit_actionHomRight, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom_op, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_obj_unmop_obj, CategoryTheory.ModObj.one_smul, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionRight_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_inv_naturality_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.whiskerRight_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionObj_unop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_inv_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.comp_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.comp_actionHomLeft_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_left, CategoryTheory.Mod_.scalarRestriction_smul, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionAssocIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_hom_actionHomLeft'_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_left_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_hom_naturality, CategoryTheory.ModObj.smul_def, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso_op, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def', CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_right_assoc, CategoryTheory.Functor.LeftLinear.inv_δₗ, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_actionHom, CategoryTheory.Functor.LeftLinear.μₗ_comp_δₗ, CategoryTheory.Mod_.assoc_flip, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.associator_actionHom, CategoryTheory.Functor.LeftLinear.instIsIsoμₗ, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_η_unmop_app, CategoryTheory.ModObj.mul_smul, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ε_unmop_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_hom_actionHomLeft_assoc, CategoryTheory.ModObj.mul_smul', CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionLeft_obj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.hom_inv_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.hom_inv_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionObj_op, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionUnitIso, CategoryTheory.Functor.LeftLinear.δₗ_comp_μₗ_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_comp, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_hom_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedAction_obj_obj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.inv_hom_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalLeftAction.isIso_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionHom_def'_assoc
actionUnitIso 📖CompOp
36 mathmath: CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitNatIso_inv_app, CategoryTheory.ModObj.one_smul_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitNatIso_hom_app, CategoryTheory.MonoidalCategory.selfLeftAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftUnitor_actionHom_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_hom_naturality_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_hom_assoc, CategoryTheory.ModObj.one_smul'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionUnitIso, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.unit_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftUnitor_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionUnitIso, CategoryTheory.ModObj.one_smul', CategoryTheory.MonoidalCategory.MonoidalLeftAction.rightUnitor_actionHom_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.unit_actionHomRight, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_inv, CategoryTheory.ModObj.one_smul, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_inv_naturality_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_inv_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_hom_naturality, CategoryTheory.ModObj.smul_def, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_η_unmop_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ε_unmop_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionUnitIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionUnitIso

CategoryTheory.MonoidalCategory.MonoidalRightAction

Definitions

NameCategoryTheorems
actionAssocNatIso 📖CompOp
2 mathmath: actionAssocNatIso_inv_app_app_app, actionAssocNatIso_hom_app_app_app
actionLeft 📖CompOp
2 mathmath: actionLeft_obj, actionLeft_map
actionRight 📖CompOp
6 mathmath: curriedActionMonoidal_η_app, actionRight_obj, curriedActionMonoidal_ε_app, actionRight_map, actionUnitNatIso_hom_app, actionUnitNatIso_inv_app
actionUnitNatIso 📖CompOp
2 mathmath: actionUnitNatIso_hom_app, actionUnitNatIso_inv_app
curriedAction 📖CompOp
11 mathmath: curriedAction_obj_obj, curriedActionActionOfMonoidalFunctorToEndofunctorIso_inv_app_app, curriedAction_map_app, curriedActionMonoidal_η_app, curriedActionActionOfMonoidalFunctorToEndofunctorIso_hom_app_app, curriedAction_obj_map, actionAssocNatIso_inv_app_app_app, curriedActionMonoidal_ε_app, curriedActionMonoidal_μ_app, curriedActionMonoidal_δ_app, actionAssocNatIso_hom_app_app_app
termαᵣ 📖CompOp
termρᵣ 📖CompOp
toMonoidalRightActionStruct 📖CompOp
186 mathmath: rightActionOfOppositeRightAction_actionRight_unop, unit_actionHomRight_assoc, actionHomRight_hom_inv', actionHomRight_whiskerRight, actionHomRight_comp_assoc, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionHomLeft, id_actionHom, curriedAction_obj_obj, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionObj, actionAssocIso_inv_naturality, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_right_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_right_assoc, oppositeRightAction_actionObj, monoidalOppositeRightAction_actionHomLeft, actionHom_associator, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_inv_assoc, oppositeRightAction_actionHomRight, actionHom_id, actionHom_leftUnitor, actionHomRight_hom_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHom, actionHomRight_comp, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionUnitIso, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv_assoc, hom_inv_actionHomLeft'_assoc, hom_inv_actionHomLeft_assoc, actionHom_def'_assoc, inv_hom_actionHomLeft, isIso_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv, actionHom_def, curriedAction_map_app, actionOfMonoidalFunctorToEndofunctor_actionUnitIso_inv, actionUnitIso_hom_naturality_assoc, curriedActionMonoidal_η_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_hom_assoc, actionHomRight_inv_hom, actionOfMonoidalFunctorToEndofunctor_actionUnitIso_hom, rightActionOfMonoidalOppositeLeftAction_actionHom, monoidalOppositeRightAction_actionAssocIso_mop_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomRight, actionOfMonoidalFunctorToEndofunctor_actionAssocIso_inv, actionHom_comp, monoidalOppositeRightAction_actionHom, actionHom_def', actionAssocIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.selRightfAction_actionHomRight, actionHomLeft_tensor, actionAssocIso_hom_naturality, actionRight_obj, inv_actionHomLeft, CategoryTheory.MonoidalCategory.selRightfAction_actionHom, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_left, CategoryTheory.Functor.RightLinear.μᵣ_comp_δᵣ, actionHom_associator_assoc, hom_inv_actionHomLeft', id_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionHomRight, inv_actionHomRight, actionHomRight_whiskerRight_assoc, rightActionOfOppositeRightAction_actionHom, monoidalOppositeRightAction_actionHomRight_mop, monoidalOppositeRightAction_actionAssocIso, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft_mop, inv_actionHom, rightActionOfMonoidalOppositeLeftAction_actionObj, actionHomRight_hom_inv'_assoc, rightActionOfOppositeRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionUnitIso, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity, CategoryTheory.Functor.RightLinear.δᵣ_comp_μᵣ, curriedAction_obj_map, action_exchange_assoc, rightActionOfOppositeRightAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom_mop_mop, actionHom_rightUnitor, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionAssocIso, actionHom_def_assoc, monoidalOppositeRightAction_actionHomRight, rightActionOfOppositeRightAction_actionAssocIso_unop, CategoryTheory.Functor.RightLinear.inv_μᵣ, rightActionOfOppositeRightAction_actionObj_unop, actionHomRight_id_assoc, action_actionHomRight_assoc, actionAssocNatIso_inv_app_app_app, CategoryTheory.MonoidalCategory.selRightfAction_actionUnitIso, oppositeRightAction_actionAssocIso_op, actionHom_rightUnitor_assoc, CategoryTheory.MonoidalCategory.selRightfAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionUnitIso, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_right, action_exchange, CategoryTheory.Functor.RightLinear.instIsIsoμᵣ, curriedActionMonoidal_ε_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_hom, rightActionOfMonoidalOppositeLeftAction_actionHomLeft, CategoryTheory.Functor.RightLinear.instIsIsoδᵣ, inv_hom_actionHomLeft_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_assoc, actionAssocIso_inv_naturality_assoc, oppositeRightAction_actionRight_op, actionUnitIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.selRightfAction_actionAssocIso_hom, id_actionHomLeft, rightActionOfOppositeRightAction_actionHom_unop, actionUnitIso_inv_naturality, actionHom_leftUnitor_assoc, rightActionOfMonoidalOppositeLeftAction_actionUnitIso, actionHomRight_inv_hom', CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomLeft, CategoryTheory.MonoidalCategory.selRightfAction_actionAssocIso_inv, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality, inv_hom_actionHomLeft'_assoc, curriedActionMonoidal_μ_app, actionRight_map, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv_assoc, isIso_actionHomLeft, actionUnitIso_hom_naturality, unit_actionHomRight, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionObj, actionHom_comp_assoc, monoidalOppositeRightAction_actionObj_mop, actionHomLeft_tensor_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_left_assoc, comp_actionHomLeft_assoc, actionHomRight_hom_inv_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity, rightActionOfOppositeRightAction_actionAssocIso, rightActionOfOppositeRightAction_actionHomRight, actionHomRight_inv_hom'_assoc, rightActionOfOppositeRightAction_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_left_assoc, inv_hom_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj, actionUnitNatIso_hom_app, actionHomRight_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj_mop, monoidalOppositeRightAction_actionHom_mop_mop, oppositeRightAction_actionHomLeft, hom_inv_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, actionLeft_obj, curriedActionMonoidal_δ_app, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionAssocIso, actionLeft_map, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionRight_mop, rightActionOfMonoidalOppositeLeftAction_actionHomRight, whiskerRight_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_inv_assoc, CategoryTheory.MonoidalCategory.selRightfAction_actionObj, comp_actionHomLeft, oppositeRightAction_actionHom_op, monoidalOppositeRightAction_actionObj, rightActionOfMonoidalOppositeLeftAction_actionAssocIso, oppositeRightAction_actionHom, actionUnitNatIso_inv_app, actionHomRight_inv_hom_assoc, oppositeRightAction_actionHomLeft_op, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_left, oppositeRightAction_actionAssocIso, actionOfMonoidalFunctorToEndofunctor_actionObj, actionAssocNatIso_hom_app_app_app, actionOfMonoidalFunctorToEndofunctor_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomRight, action_actionHomRight, monoidalOppositeRightAction_actionRight_mop, CategoryTheory.Functor.RightLinear.δᵣ_comp_μᵣ_assoc, actionOfMonoidalFunctorToEndofunctor_actionAssocIso_hom, oppositeRightAction_actionObj_op, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_right, actionOfMonoidalFunctorToEndofunctor_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso_mop_mop, CategoryTheory.Functor.RightLinear.inv_δᵣ, isIso_actionHomRight, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_inv, CategoryTheory.Functor.RightLinear.μᵣ_comp_δᵣ_assoc, rightActionOfOppositeRightAction_actionHomLeft_unop, actionOfMonoidalFunctorToEndofunctor_actionHom, oppositeRightAction_actionUnitIso, monoidalOppositeRightAction_actionUnitIso
«term_⊙ᵣ_» 📖CompOp
«term_⊙ᵣₘ_» 📖CompOp
«term_⊴ᵣ_» 📖CompOp
«term_⊵ᵣ_» 📖CompOp
«termρᵣ[_]» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
actionAssocIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
actionAssocIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionAssocIso_hom_naturality
actionAssocIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_comp_eq
actionAssocIso_hom_naturality
actionAssocIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionAssocIso_inv_naturality
actionAssocNatIso_hom_app_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.bifunctorComp₁₂
CategoryTheory.MonoidalCategory.curriedTensor
curriedAction
CategoryTheory.Functor.flip
CategoryTheory.bifunctorComp₂₃
CategoryTheory.Iso.hom
actionAssocNatIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
actionAssocNatIso_inv_app_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
CategoryTheory.bifunctorComp₂₃
curriedAction
CategoryTheory.bifunctorComp₁₂
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Iso.inv
actionAssocNatIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
actionHomLeft_tensor 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
actionAssocIso_hom_naturality
actionHom_id
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
actionHomLeft_tensor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomLeft_tensor
actionHomRight_comp 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.Category.comp_id
actionHomRight_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_comp
actionHomRight_hom_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
actionHomRight_comp
CategoryTheory.Iso.hom_inv_id
actionHomRight_id
actionHomRight_hom_inv' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.inv
CategoryTheory.CategoryStruct.id
actionHomRight_comp
CategoryTheory.IsIso.hom_inv_id
actionHomRight_id
actionHomRight_hom_inv'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_hom_inv'
actionHomRight_hom_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_hom_inv
actionHomRight_id 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
actionHomRight_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_id
actionHomRight_inv_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
actionHomRight_comp
CategoryTheory.Iso.inv_hom_id
actionHomRight_id
actionHomRight_inv_hom' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.inv
CategoryTheory.CategoryStruct.id
actionHomRight_comp
CategoryTheory.IsIso.inv_hom_id
actionHomRight_id
actionHomRight_inv_hom'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_inv_hom'
actionHomRight_inv_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_inv_hom
actionHomRight_whiskerRight 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.inv
actionHomRight_whiskerRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHomRight_whiskerRight
actionHom_associator 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
actionHom_associator_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_associator
actionHom_comp 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
actionHom_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_comp
actionHom_def 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
actionHom_def' 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
actionHom_def
action_exchange
actionHom_def'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_def'
actionHom_def_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_def
actionHom_id 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
actionHom_def
actionHomRight_id
CategoryTheory.Category.comp_id
actionHom_leftUnitor 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
actionHom_leftUnitor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_leftUnitor
actionHom_rightUnitor 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
actionHom_rightUnitor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionHom_rightUnitor
actionLeft_map 📖mathematicalCategoryTheory.Functor.map
actionLeft
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
actionLeft_obj 📖mathematicalCategoryTheory.Functor.obj
actionLeft
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
actionRight_map 📖mathematicalCategoryTheory.Functor.map
actionRight
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
actionRight_obj 📖mathematicalCategoryTheory.Functor.obj
actionRight
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
actionUnitIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
actionUnitIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionUnitIso_hom_naturality
actionUnitIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.inv_comp_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.comp_inv_eq
actionUnitIso_hom_naturality
actionUnitIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actionUnitIso_inv_naturality
actionUnitNatIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
actionRight
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
actionUnitNatIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
actionUnitNatIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
actionRight
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
actionUnitNatIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
action_actionHomRight 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
whiskerRight_actionHomLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
action_actionHomRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
action_actionHomRight
action_exchange 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
action_exchange_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
action_exchange
comp_actionHomLeft 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.Category.id_comp
comp_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_actionHomLeft
curriedAction_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
curriedAction
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
curriedAction_obj_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
curriedAction
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
curriedAction_obj_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
curriedAction
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
hom_inv_actionHomLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
comp_actionHomLeft
CategoryTheory.Iso.hom_inv_id
id_actionHomLeft
hom_inv_actionHomLeft' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.inv
CategoryTheory.CategoryStruct.id
comp_actionHomLeft
CategoryTheory.IsIso.hom_inv_id
id_actionHomLeft
hom_inv_actionHomLeft'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_actionHomLeft'
hom_inv_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_actionHomLeft
id_actionHom 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
actionHom_def
id_actionHomLeft
CategoryTheory.Category.id_comp
id_actionHomLeft 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
id_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
id_actionHomLeft
inv_actionHom 📖mathematicalCategoryTheory.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
isIso_actionHom
CategoryTheory.IsIso.inv_eq_of_hom_inv_id
isIso_actionHom
CategoryTheory.IsIso.hom_inv_id
actionHom_id
id_actionHomLeft
inv_actionHomLeft 📖mathematicalCategoryTheory.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
isIso_actionHomLeft
CategoryTheory.IsIso.inv_eq_of_hom_inv_id
isIso_actionHomLeft
hom_inv_actionHomLeft'
inv_actionHomRight 📖mathematicalCategoryTheory.inv
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
isIso_actionHomRight
CategoryTheory.IsIso.inv_eq_of_hom_inv_id
isIso_actionHomRight
actionHomRight_hom_inv'
inv_hom_actionHomLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
comp_actionHomLeft
CategoryTheory.Iso.inv_hom_id
id_actionHomLeft
inv_hom_actionHomLeft' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.inv
CategoryTheory.CategoryStruct.id
comp_actionHomLeft
CategoryTheory.IsIso.inv_hom_id
id_actionHomLeft
inv_hom_actionHomLeft'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.inv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_actionHomLeft'
inv_hom_actionHomLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_actionHomLeft
isIso_actionHom 📖mathematicalCategoryTheory.IsIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHom
CategoryTheory.IsIso.hom_inv_id
actionHom_id
id_actionHomLeft
CategoryTheory.IsIso.inv_hom_id
isIso_actionHomLeft 📖mathematicalCategoryTheory.IsIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
hom_inv_actionHomLeft'
inv_hom_actionHomLeft'
isIso_actionHomRight 📖mathematicalCategoryTheory.IsIso
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
actionHomRight_hom_inv'
actionHomRight_inv_hom'
unit_actionHomRight 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
actionUnitIso_hom_naturality
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
unit_actionHomRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionUnitIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_actionHomRight
whiskerRight_actionHomLeft 📖mathematicalCategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalRightActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionAssocIso
CategoryTheory.Iso.inv

CategoryTheory.MonoidalCategory.MonoidalRightActionStruct

Definitions

NameCategoryTheorems
actionAssocIso 📖CompOp
44 mathmath: CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_whiskerRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_associator, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv_assoc, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso_mop_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionAssocIso_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomLeft_tensor, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_associator_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_whiskerRight_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_rightUnitor, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso_unop, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocNatIso_inv_app_app_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso_op, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_rightUnitor_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.selRightfAction_actionAssocIso_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor_assoc, CategoryTheory.MonoidalCategory.selRightfAction_actionAssocIso_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_μ_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomLeft_tensor_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_δ_app, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionAssocIso, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.whiskerRight_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocNatIso_hom_app_app_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionAssocIso_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso_mop_mop
actionHom 📖CompOp
26 mathmath: CategoryTheory.MonoidalCategory.MonoidalRightAction.id_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.isIso_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_comp, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def', CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_hom_naturality, CategoryTheory.MonoidalCategory.selRightfAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_actionHom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom_mop_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom_unop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom_mop_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom_op, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionHom
actionHomLeft 📖CompOp
63 mathmath: CategoryTheory.MonoidalCategory.MonoidalRightAction.unit_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_whiskerRight, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_associator, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_id, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_hom_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedAction_map_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def', CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomLeft_tensor, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_left, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_associator_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalRightAction.id_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_whiskerRight_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedAction_obj_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_exchange_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def_assoc, CategoryTheory.MonoidalCategory.selRightfAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_exchange, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_hom_actionHomLeft_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.id_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_hom_actionHomLeft'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionRight_map, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.isIso_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.unit_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomLeft_tensor_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_left_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.comp_actionHomLeft_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_left_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_hom_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionRight_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.comp_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft_op, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_left, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionRight_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft_unop
actionHomRight 📖CompOp
51 mathmath: CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionRight_unop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_hom_inv', CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_whiskerRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.id_actionHom, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_right_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_right_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_associator, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_hom_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_comp, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def'_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedAction_map_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_inv_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def', CategoryTheory.MonoidalCategory.selRightfAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_associator_assoc, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_whiskerRight_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_hom_inv'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_exchange_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_rightUnitor, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_id_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_rightUnitor_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_right, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_exchange, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionRight_op, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_inv_hom', CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_hom_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_inv_hom'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_id, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionLeft_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.whiskerRight_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_inv_hom_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_actionHomRight, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_right, CategoryTheory.MonoidalCategory.MonoidalRightAction.isIso_actionHomRight
actionObj 📖CompOp
136 mathmath: CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionRight_unop, CategoryTheory.MonoidalCategory.MonoidalRightAction.unit_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_hom_inv', CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_whiskerRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedAction_obj_obj, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_inv_naturality, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_right_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_right_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_associator, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_hom_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_comp, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_hom_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.isIso_actionHom, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedAction_map_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_η_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_hom_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_inv_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_comp, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def', CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomLeft_tensor, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionRight_obj, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_left, CategoryTheory.Functor.RightLinear.μᵣ_comp_δᵣ, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_associator_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalRightAction.id_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_whiskerRight_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_hom_inv'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionObj, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity, CategoryTheory.Functor.RightLinear.δᵣ_comp_μᵣ, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_exchange_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_rightUnitor, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_def_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso_unop, CategoryTheory.Functor.RightLinear.inv_μᵣ, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionObj_unop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_id_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_actionHomRight_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocNatIso_inv_app_app_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso_op, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_rightUnitor_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_right, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_exchange, CategoryTheory.Functor.RightLinear.instIsIsoμᵣ, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_ε_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_hom, CategoryTheory.Functor.RightLinear.instIsIsoδᵣ, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_hom_actionHomLeft_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionRight_op, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.id_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom_unop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_inv_hom', CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_hom_actionHomLeft'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_μ_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.isIso_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.unit_actionHomRight, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomLeft_tensor_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_left_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.comp_actionHomLeft_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_hom_inv_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_inv_hom'_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_left_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.inv_hom_actionHomLeft', CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitNatIso_hom_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionLeft_obj, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_δ_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_assoc, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.whiskerRight_actionHomLeft, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_inv_assoc, CategoryTheory.MonoidalCategory.selRightfAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.comp_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom_op, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitNatIso_inv_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHomRight_inv_hom_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft_op, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_left, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionAssocNatIso_hom_app_app_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.action_actionHomRight, CategoryTheory.Functor.RightLinear.δᵣ_comp_μᵣ_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionObj_op, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_right, CategoryTheory.Functor.RightLinear.inv_δᵣ, CategoryTheory.MonoidalCategory.MonoidalRightAction.isIso_actionHomRight, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_inv, CategoryTheory.Functor.RightLinear.μᵣ_comp_δᵣ_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft_unop, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionUnitIso
actionUnitIso 📖CompOp
32 mathmath: CategoryTheory.MonoidalCategory.MonoidalRightAction.unit_actionHomRight_assoc, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_inv, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionUnitIso_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_hom_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_η_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_hom_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionUnitIso_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_rightUnitor, CategoryTheory.MonoidalCategory.selRightfAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_rightUnitor_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_ε_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_inv_naturality_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_inv_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionHom_leftUnitor_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionUnitIso, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitIso_hom_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.unit_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitNatIso_hom_app, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_assoc, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionUnitNatIso_inv_app, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionUnitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionUnitIso

---

← Back to Index