Documentation Verification Report

Opposite

šŸ“ Source: Mathlib/CategoryTheory/Monoidal/Braided/Opposite.lean

Statistics

MetricCount
DefinitionsinstBraidedCategoryOpposite
1
Theoremsop_tensorμ, unop_tensorμ
2
Total3

CategoryTheory.BraidedCategory

Theorems

NameKindAssumesProvesValidatesDepends On
op_tensorμ šŸ“–mathematical—Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
Opposite
CategoryTheory.Category.opposite
CategoryTheory.monoidalCategoryOp
instBraidedCategoryOpposite
Opposite.op
—CategoryTheory.Category.assoc
unop_tensorμ šŸ“–mathematical—Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.monoidalCategoryOp
CategoryTheory.MonoidalCategory.tensorμ
instBraidedCategoryOpposite
Opposite.unop
—CategoryTheory.Category.assoc

(root)

Definitions

NameCategoryTheorems
instBraidedCategoryOpposite šŸ“–CompOp
16 mathmath: CategoryTheory.Comon.tensorObj_comul', CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.BraidedCategory.unop_tensorμ, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, CategoryTheory.BraidedCategory.op_tensorμ, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, CategoryTheory.Comon.monoidal_tensorHom_hom, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, CategoryTheory.Comon.monoidal_tensorObj_comon_comul

---

← Back to Index