Documentation Verification Report

Reflection

📁 Source: Mathlib/CategoryTheory/Monoidal/Braided/Reflection.lean

Statistics

MetricCount
Definitionsclosed, monoidalClosed
2
TheoremsinstIsIsoAppUnitObjIhom, instIsIsoMapTensorHomAppUnit, isIso_tfae
3
Total5

CategoryTheory.Monoidal.Reflective

Definitions

NameCategoryTheorems
closed 📖CompOp
monoidalClosed 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoAppUnitObjIhom 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
List.TFAE.out
isIso_tfae
instIsIsoMapTensorHomAppUnit
instIsIsoMapTensorHomAppUnit 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.whisker_eq
CategoryTheory.Functor.LaxMonoidal.μ_natural
CategoryTheory.Functor.Monoidal.δ_μ_assoc
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Functor.Monoidal.instIsIsoδ
CategoryTheory.MonoidalCategory.tensor_isIso
CategoryTheory.Adjunction.instIsIsoMapAppUnitOfFaithfulOfFull
CategoryTheory.Functor.Monoidal.instIsIsoμ
isIso_tfae 📖mathematicalList.TFAECategoryTheory.BraidedCategory.braiding_naturality
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.Iso.eq_comp_inv
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.μ_iso_of_reflective
CategoryTheory.Monad.isSplitMono_iff_isIso_unit
CategoryTheory.isIso_iff_isIso_coyoneda_map
CategoryTheory.types_ext
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Adjunction.homEquiv_counit
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.Adjunction.left_triangle_components_assoc
CategoryTheory.isIso_iff_bijective
CategoryTheory.BraidedCategory.braiding_naturality_right_assoc
CategoryTheory.SymmetricCategory.symmetry_assoc
CategoryTheory.types_comp
CategoryTheory.IsIso.comp_isIso'
CategoryTheory.ihom.coev_naturality_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.ihom.ev_naturality
CategoryTheory.ihom.ev_naturality_assoc
CategoryTheory.ihom.ev_coev_assoc
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.map_preimage
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.Adjunction.right_triangle_components
CategoryTheory.IsIso.of_isIso_comp_right
CategoryTheory.isIso_iff_isIso_yoneda_map
forall_swap
Function.comp_assoc
Equiv.eq_comp_symm
CategoryTheory.MonoidalClosed.coev_app_comp_pre_app_assoc
List.tfae_of_cycle

---

← Back to Index