toSemiCartesianMonoidalCategory 📖 | CompOp | 844 mathmath: CategoryTheory.Sheaf.cartesianMonoidalCategoryLift_val, CategoryTheory.Grp.Hom.hom_div, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Grp.comp', CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_inv_toFunctor, CategoryTheory.Enriched.Functor.associator_inv_apply, CategoryTheory.GrpObj.lift_inv_comp_left, LightCondensed.free_internallyProjective_iff_tensor_condition, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.Functor.natTransEquiv_apply_app, CategoryTheory.Grp.instIsIsoHomHomMon, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.homObjEquiv_apply_app, CategoryTheory.Grp.homMk'_hom, prodComparison_snd, tensorδ_snd, CategoryTheory.CartesianCopyDiscard.instDeterministic, CategoryTheory.CommGrp.instFullCommMonForget₂CommMon, CategoryTheory.comonEquiv_unitIso, SSet.Truncated.tensor_map_apply_snd, Action.leftRegularTensorIso_inv_hom, CategoryTheory.Equivalence.mapGrp_counitIso, CategoryTheory.Functor.Monoidal.rightUnitor_inv_app, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, AlgebraicGeometry.isCommMonObj_of_isProper_of_geometricallyIntegral, CategoryTheory.Grp.Hom.hom_hom_zpow, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst_assoc, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Over.associator_inv_left_snd, SSet.ι₀_snd_assoc, CategoryTheory.CommGrp.comm, CategoryTheory.instFullMonFunctorOppositeMonCatYonedaMon, CategoryTheory.SimplicialThickening.SimplicialCategory.comp_id, associator_inv_fst_fst, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, CategoryTheory.Functor.map_mul, CategoryTheory.zeroMul_hom, associator_hom_fst_assoc, prodComparison_fst, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.Functor.Monoidal.tensorHom_app_fst_assoc, associator_hom_snd_fst_assoc, CategoryTheory.Grp.id', CategoryTheory.Enriched.Functor.whiskerLeft_app_apply, CategoryTheory.GrpObj.lift_inv_right_eq, CategoryTheory.prodComparison_iso, SSet.iSup_subcomplexOfSimplex_prod_eq_top, CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, CategoryTheory.Functor.OplaxMonoidal.δ_snd_assoc, tensorδ_snd_assoc, CategoryTheory.toOver_obj_hom, CategoryTheory.counit_eq_toUnit, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, CategoryTheory.μ_def, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, lift_leftUnitor_hom_assoc, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CategoryTheory.Functor.EssImageSubcategory.associator_inv_def, CategoryTheory.Grp.trivial_grp_inv, Action.diagonalSuccIsoTensorDiagonal_inv_hom, fullSubcategory_rightUnitor_hom_hom, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Over.whiskerLeft_left, whiskerLeft_toUnit_comp_rightUnitor_hom, SSet.instHasDimensionLETensorUnitOfNatNat, CategoryTheory.Grp.whiskerLeft_hom_hom, CategoryTheory.GrpObj.left_inv_assoc, CategoryTheory.Functor.mapGrp_id_mul, fullSubcategory_leftUnitor_inv_hom, CategoryTheory.MonObj.instIsMonHomOne, SSet.tensorHom_app_apply, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.MonObj.instIsMonHomToUnit, CategoryTheory.Functor.FullyFaithful.homMulEquiv_apply, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, instSubsingletonBraidedCategory, CategoryTheory.Over.grpObjMkPullbackSnd_one, associator_inv_snd, CategoryTheory.Functor.EssImageSubcategory.associator_hom_def, SSet.prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, SSet.Truncated.Edge.map_fst, fullSubcategory_tensorObj_obj, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.Functor.Monoidal.toUnit_ε_assoc, CategoryTheory.Functor.OplaxMonoidal.η_of_cartesianMonoidalCategory, CategoryTheory.Grp.leftUnitor_hom_hom, CategoryTheory.CartesianCopyDiscard.instIsCommComonObjOfCartesian, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst_assoc, braiding_hom_snd_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, whiskerRight_snd_assoc, CategoryTheory.comonEquiv_functor, CategoryTheory.CommGrp.toCommMon_X, CategoryTheory.Monoidal.whiskerRight_fst, CategoryTheory.MonObj.lift_comp_one_right, CategoryTheory.Functor.Monoidal.tensorObj_map, CategoryTheory.Functor.Monoidal.lift_μ_assoc, CategoryTheory.Functor.OplaxMonoidal.δ_of_cartesianMonoidalCategory, CategoryTheory.toOver_obj_left, CategoryTheory.Functor.Monoidal.tensorObjComp_hom_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, associator_inv_fst_snd, CategoryTheory.Functor.OplaxMonoidal.δ_snd, CategoryTheory.Over.toUnit_left, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, fullSubcategory_snd_hom, CategoryTheory.Functor.Monoidal.nonempty_monoidal_iff_preservesFiniteProducts, SSet.hasDimensionLT_prod, CategoryTheory.monoidalOfHasFiniteProducts.δ_eq, CategoryTheory.Over.braiding_inv_left, CategoryTheory.leftUnitor_hom_apply, SSet.RelativeMorphism.Homotopy.h₀_assoc, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.Grp.ε_def, CategoryTheory.toOverUnit_map_left, CategoryTheory.Grp.rightUnitor_hom_hom_hom, SSet.prodStdSimplex.objEquiv_apply_fst, CategoryTheory.MonObj.ofRepresentableBy_one, CategoryTheory.GrpObj.lift_inv_comp_right, AddGrpCat.tensorObj_eq, CategoryTheory.IsSifted.instIsIsoObjFunctorTypeColimTensorObjProdComparison, CategoryTheory.sheafToPresheaf_μ, CategoryTheory.symmetricOfHasFiniteProducts_braiding_hom, fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.comul_eq_lift, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Grp.lift_hom, tensorμ_fst_assoc, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, associator_hom_snd_snd_assoc, CategoryTheory.Over.tensorObj_ext_iff, prodComparisonBifunctorNatIso_inv, CategoryTheory.Grp.hom_mul, CategoryTheory.coev_expComparison, CategoryTheory.types_tensorUnit_def, CategoryTheory.frobeniusMorphism_mate, fullSubcategory_fst_hom, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.Functor.OplaxMonoidal.δ_fst_assoc, CategoryTheory.MonoidalClosedFunctor.comparison_iso, SSet.instFiniteTensorUnit, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, prodComparisonIso_hom, CategoryTheory.MonObj.lift_lift_assoc, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.MonObj.lift_comp_one_right_assoc, lift_braiding_hom, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.Grp.Hom.hom_zpow, braiding_inv_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.Preadditive.instIsCommMonObj, instSubsingletonSymmetricCategory, CategoryTheory.GrpObj.one_inv_assoc, CategoryTheory.Functor.mapGrp_obj_grp_one, SSet.prodStdSimplex.strictMono_orderHomOfSimplex_iff, CategoryTheory.NatTrans.IsMonoidal.of_cartesianMonoidalCategory, CommGrpCat.μ_forget_apply, CategoryTheory.Cat.ihom_obj, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, SSet.Subcomplex.ofSimplexProd_eq_range, CategoryTheory.Over.whiskerRight_left_fst, SSet.Truncated.Edge.CompStruct.tensor_simplex_snd, CategoryTheory.Functor.homObjEquiv_symm_apply_app, CategoryTheory.Over.preservesTerminalIso_pullback, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, SSet.prodStdSimplex.objEquiv_δ_apply, CategoryTheory.Adjunction.mapCommGrp_unit, comp_lift, fullSubcategory_associator_inv_hom, CategoryTheory.Functor.mapGrp_id_one, CategoryTheory.Grp.associator_inv_hom_hom, CategoryTheory.Functor.Monoidal.μ_comp_assoc, CategoryTheory.GrpObj.η_whiskerRight_commutator_assoc, prodComparison_id, CategoryTheory.associator_inv_apply, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.bijection_natural, lift_lift_associator_inv_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, SSet.Truncated.Edge.id_tensor_id, braiding_hom_fst, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.IsCommMonObj.ofRepresentableBy, CategoryTheory.Grp.Hom.hom_hom_div, lift_lift_associator_inv, CategoryTheory.Grp.leftUnitor_hom_hom_hom, SSet.prodStdSimplex.objEquiv_naturality, CategoryTheory.CommGrp.instIsIsoMonHomGrp, CategoryTheory.Sheaf.tensorProd_isSheaf, CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_η, CategoryTheory.toOverUnit_obj_left, CategoryTheory.Functor.Monoidal.μ_fst_assoc, CategoryTheory.Grp.forget_map, tensorHom_fst, prodComparison_natural, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.Mon.lift_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.IsCommMon.ofRepresentableBy, CategoryTheory.CommGrp.forget₂CommMon_map_hom, CategoryTheory.Functor.EssImageSubcategory.tensor_obj, CategoryTheory.essImage_yonedaMon, CategoryTheory.CommGrp.trivial_X, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.MonObj.instIsMonHomSnd, prodComparison_natural_whiskerLeft_assoc, CategoryTheory.CommGrp.forget₂Grp_obj_mul, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', lift_braiding_inv, tensorHom_snd_assoc, map_toUnit_comp_terminalComparison_assoc, SSet.instFiniteTensorObj, CategoryTheory.Adjunction.mapGrp_unit, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, CategoryTheory.Functor.OplaxMonoidal.instSubsingleton, prodComparison_snd_assoc, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.Grp.rightUnitor_inv_hom_hom, CategoryTheory.Monoidal.whiskerRight, CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.Grp.forget₂Mon_map_hom, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, prodComparison_natural_assoc, SSet.prodStdSimplex.objEquiv_apply_snd, SSet.hoFunctor.unitHomEquiv_eq, CategoryTheory.GrpObj.tensorHom_inv_inv_mul_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.instFaithfulMonFunctorOppositeMonCatYonedaMon, fullSubcategory_tensorUnit_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_hom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.leftUnitor_inv_apply, CommAlgCat.lift_unop_hom, lift_rightUnitor_hom_assoc, CategoryTheory.Over.tensorUnit_hom, CategoryTheory.Grp.whiskerRight_hom_hom, SSet.instFiniteObjOppositeSimplexCategoryTensorObj, CategoryTheory.Over.leftUnitor_inv_left_fst, associator_hom_snd_fst, CategoryTheory.Monoidal.tensorHom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, CategoryTheory.Sheaf.cartesianMonoidalCategorySnd_val, CategoryTheory.Hom.mul_def, CategoryTheory.Grp.Hom.hom_hom_inv, CategoryTheory.associator_hom_apply_1, SSet.leftUnitor_inv_app_apply, SSet.ι₀_fst_assoc, SSet.ι₁_comp, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_obj, CategoryTheory.CatEnrichedOrdinary.Hom.mk_comp, CategoryTheory.expComparison_whiskerLeft, tensorμ_snd, CommAlgCat.fst_unop_hom, CategoryTheory.Mon.fst_hom, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.MonObj.lift_comp_one_left, CategoryTheory.Grp.μ_def, CategoryTheory.Grp.snd_hom, CategoryTheory.Functor.OplaxMonoidal.lift_δ, CategoryTheory.Grp.tensorUnit_mul, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, leftUnitor_inv_snd, prodComparisonBifunctorNatIso_hom, SSet.whiskerRight_app_apply, CategoryTheory.braiding_hom_apply, whiskerLeft_snd_assoc, CategoryTheory.CommGrp.trivial_grp_one, SSet.rightUnitor_inv_app_apply, CategoryTheory.Over.leftUnitor_inv_left_snd, SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, associator_inv_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.MonObj.instIsMonHomLift, GrpCat.tensorObj_eq, CategoryTheory.Monoidal.rightUnitor_hom, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.bijection_symm_apply_id, CategoryTheory.Enriched.Functor.associator_hom_apply, CategoryTheory.Over.μ_pullback_left_fst_snd', SSet.ι₀_snd, rightUnitor_inv_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_left, CategoryTheory.sheafToPresheaf_δ, SSet.Truncated.Edge.CompStruct.tensor_simplex_fst, CategoryTheory.Grp.tensorUnit_X, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, CategoryTheory.Grp.whiskerLeft_hom, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', SSet.Truncated.HomotopyCategory.BinaryProduct.inverseCompFunctorIso_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.Functor.chosenProd_obj, rightUnitor_inv_snd_assoc, CategoryTheory.CatEnrichedOrdinary.Hom.id_eq, CategoryTheory.Mon_Class.mul_eq_mul, SSet.Truncated.Edge.map_associator_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.Monoidal.μ_of_cartesianMonoidalCategory, CategoryTheory.SimplicialThickening.functor_map, CategoryTheory.Grp.leftUnitor_inv_hom_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_map, CategoryTheory.Equivalence.mapCommGrp_unitIso, CategoryTheory.GrpObj.one_inv, CategoryTheory.GrpObj.mulRight_one, CategoryTheory.yonedaMon_map_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, leftUnitor_inv_snd_assoc, inv_prodComparison_map_fst_assoc, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, CategoryTheory.Enriched.Functor.whiskerRight_app_apply, prodComparison_comp, SSet.ι₁_snd_assoc, CategoryTheory.Functor.OplaxMonoidal.instIsIsoη, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.GrpObj.tensorObj.inv_def, CategoryTheory.MonObj.instIsMonHomFst, ModuleCat.free_ε_one, CategoryTheory.Grp.rightUnitor_inv_hom, CategoryTheory.Functor.Monoidal.toUnit_ε, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst, inv_prodComparison_map_snd_assoc, SSet.instHasDimensionLETensorObjHAddNat, map_toUnit_comp_terminalComparison, SSet.ι₁_app_fst, SSet.ι₁_snd, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.CommGrp.instFaithfulCommMonForget₂CommMon, CategoryTheory.Monoidal.associator_hom, Rep.linearization_η_hom_apply, CategoryTheory.CommGrp.hom_ext_iff, CategoryTheory.associator_inv_apply_1_2, CategoryTheory.Grp.forget₂Mon_obj_mul, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_hom_toFunctor, prodComparisonNatTrans_comp, prodComparison_natural_whiskerRight, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.Grp.Hom.hom_pow, lift_lift_associator_hom, CategoryTheory.Grp.δ_def, SSet.whiskerLeft_app_apply, CategoryTheory.GrpObj.whiskerLeft_η_commutator, CategoryTheory.Grp.associator_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv, CategoryTheory.isoCartesianComon_hom_hom, ModuleCat.FreeMonoidal.εIso_inv_freeMk, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, CategoryTheory.Grp.toMon_X, CategoryTheory.frobeniusMorphism_iso_of_preserves_binary_products, CategoryTheory.instIsMonHomInvOfIsCommMonObj, CategoryTheory.Grp.braiding_inv_hom, CategoryTheory.Monoidal.whiskerLeft_snd, CategoryTheory.Over.sections_obj, CategoryTheory.Grp.mkIso'_hom_hom_hom, CategoryTheory.GrpObj.lift_inv_left_eq, CategoryTheory.Functor.comp_mapCommGrp_mul, SSet.Subcomplex.prod_obj, prodComparisonNatIso_hom, CommAlgCat.snd_unop_hom, CategoryTheory.Grp.id_hom, CategoryTheory.Functor.Monoidal.tensorObjComp_inv_app, tensorδ_fst_assoc, SSet.Truncated.Edge.map_whiskerLeft, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, AddCommGrpCat.μ_forget_apply, Action.leftRegularTensorIso_hom_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_comp, CategoryTheory.equivToOverUnit_counitIso, SSet.Truncated.HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, ModuleCat.free_η_freeMk, CategoryTheory.Over.tensorHom_left, SSet.Truncated.Edge.map_snd, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Grp.fst_hom, associator_hom_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_comp_inverse, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.isCommMonObj_iff_isMulCommutative, CategoryTheory.Functor.chosenProd_map, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, lift_whiskerLeft, LightCondensed.free_internallyProjective_iff_tensor_condition', SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, AddCommGrpCat.tensorObj_eq, associator_inv_fst_snd_assoc, lift_fst_snd, CategoryTheory.Equivalence.mapGrp_unitIso, prodComparison_natural_whiskerRight_assoc, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, SSet.instHasDimensionLTTensorObjHAddNat, CategoryTheory.Mon.instIsCommMonObj, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.Grp.tensorUnit_one, CategoryTheory.Mon.Hom.hom_mul, prodComparisonNatTrans_id, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd_assoc, braiding_inv_snd, terminalComparison_isIso_of_preservesLimits, tensorHom_snd, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.instIsMonHomInvHomOfIsCommMonObj, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_functor, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, CategoryTheory.Over.monObjMkPullbackSnd_one, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.GrpObj.whiskerLeft_η_commutator_assoc, ModuleCat.free_μ_freeMk_tmul_freeMk, CategoryTheory.GrpObj.isPullback, CategoryTheory.uncurry_expComparison, AddGrpCat.μ_forget_apply, prodComparison_inv_natural_whiskerLeft, CategoryTheory.Functor.FullyFaithful.homMulEquiv_symm_apply, whiskerLeft_toUnit_comp_rightUnitor_hom_assoc, CategoryTheory.toOverIsoToOverUnit_hom_app_left, whiskerLeft_snd, CommGrpCat.tensorObj_eq, ModuleCat.FreeMonoidal.μIso_hom_freeMk_tmul_freeMk, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.Cat.ihom_map, SSet.prodStdSimplex.objEquiv_map_apply, associator_inv_fst_fst_assoc, prodComparisonNatIso_inv, CategoryTheory.types_tensorObj_def, whiskerRight_toUnit_comp_leftUnitor_hom, CategoryTheory.Functor.mapCommGrp_id_one, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, lift_braiding_hom_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_fst, SSet.Truncated.Edge.map_tensorHom, lift_snd, CategoryTheory.associator_hom_apply, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.SimplicialThickening.SimplicialCategory.assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.SemilatticeInf.tensorUnit, preservesTerminalIso_hom, CategoryTheory.Functor.Monoidal.μ_comp, CategoryTheory.CommGrp.forget₂Grp_map_hom, CategoryTheory.Over.snd_left, CategoryTheory.Monoidal.tensorUnit, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Grp.comp_hom_hom, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, CategoryTheory.GrpObj.toMon_Class_injective, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoδ, lift_snd_assoc, CategoryTheory.CommGrp.forget₂CommMon_obj_mul, CategoryTheory.Over.tensorHom_left_fst, associator_hom_snd_snd, CategoryTheory.CatEnrichedOrdinary.Hom.comp_eq, CategoryTheory.Grp.braiding_inv_hom_hom, CategoryTheory.Over.whiskerRight_left_snd, braiding_hom_fst_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.GrpObj.eq_lift_inv_right, SSet.prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.Functor.Monoidal.μ_fst, preservesTerminalIso_comp, CategoryTheory.MonObj.ofRepresentableBy_mul, braiding_inv_fst, CommAlgCat.toUnit_unop_hom, SSet.Subcomplex.prod_monotone, SSet.ι₀_comp_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_snd, CategoryTheory.CatEnriched.comp_eq, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerRight_val, CategoryTheory.GrpObj.left_inv, CategoryTheory.Functor.OplaxMonoidal.δ_fst, CategoryTheory.Grp.tensorObj_X, SSet.ι₀_comp, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, rightUnitor_inv_snd, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Functor.Monoidal.ε_of_cartesianMonoidalCategory, CategoryTheory.Grp.Hom.hom_mul, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.Mon.Hom.hom_pow, CategoryTheory.GrpObj.mul_inv_rev_assoc, prodComparison_inv_natural_whiskerRight_assoc, comp_lift_assoc, CategoryTheory.ε_def, CategoryTheory.Over.η_pullback_left, CategoryTheory.CommGrpObj.toIsCommMonObj, CategoryTheory.Grp.tensorObj_mul, CategoryTheory.Grp.rightUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.Grp.forget₂Mon_obj_X, CategoryTheory.Grp.hom_ext_iff, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, SSet.RelativeMorphism.Homotopy.h₁_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.expComparison_ev, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, inv_prodComparison_map_snd, CategoryTheory.Functor.Monoidal.snd_app, CategoryTheory.CatEnrichedOrdinary.homEquiv_comp, CategoryTheory.Functor.Monoidal.fst_app, SSet.RelativeMorphism.Homotopy.ofEq_h, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, instNonemptyBraidedCategory, prodComparison_inv_natural, fullSubcategory_leftUnitor_hom_hom, CategoryTheory.GrpObj.tensorHom_inv_inv_mul, leftUnitor_inv_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, SSet.rightUnitor_hom_app_apply, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv_assoc, lift_whiskerRight_assoc, CategoryTheory.Grp.forget₂Mon_comp_forget, CategoryTheory.associator_hom_apply_2_2, hom_ext_iff, SSet.Truncated.tensor_map_apply_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_obj, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.GrpObj.mul_inv, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, inv_prodComparison_map_fst, ModuleCat.free_δ_freeMk, SSet.ι₁_fst, CategoryTheory.zeroMul_inv, CategoryTheory.Grp.tensorObj_one, CategoryTheory.Functor.Monoidal.tensorObj_obj, SSet.Truncated.Edge.tensor_edge, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_obj, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_snd_assoc, prodComparisonIso_comp, CategoryTheory.Functor.Monoidal.associator_inv_app, CategoryTheory.GrpObj.inv_def, lift_comp_fst_snd, lift_whiskerRight, CategoryTheory.Grp.leftUnitor_inv_hom, mono_lift_of_mono_right, SSet.Truncated.HomotopyCategory.BinaryProduct.square, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, prodComparisonBifunctorNatTrans_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.expComparison_iso_of_frobeniusMorphism_iso, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Functor.mapCommpGrp_id_mul, CategoryTheory.CommGrp.forget₂CommMon_obj_one, CategoryTheory.sheafToPresheaf_η, ModuleCat.FreeMonoidal.μIso_inv_freeMk, Rep.linearization_δ_hom, CategoryTheory.equivToOverUnit_inverse, prodComparison_fst_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverseCompFunctorIso_hom_app, CategoryTheory.GrpObj.mul_inv_rev, CategoryTheory.GrpObj.mulRight_hom, SSet.prodStdSimplex.nonDegenerate_iff_injective_objEquiv, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, fullSubcategory_associator_hom_hom, CategoryTheory.Preadditive.mul_def, CategoryTheory.Grp.trivial_grp_one, CategoryTheory.Grp.snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, SSet.RelativeMorphism.Homotopy.h₀, CategoryTheory.Grp.hom_one, CategoryTheory.Grp.forget₂Mon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.Mod_.trivialAction_X, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.CatEnriched.id_eq, CategoryTheory.Sheaf.cartesianMonoidalCategoryFst_val, CategoryTheory.toOver_map_left, CategoryTheory.Over.sections_map, lift_fst, SSet.RelativeMorphism.Homotopy.precomp_h, prodComparisonIso_id, CategoryTheory.Hom.one_def, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Grp.associator_inv_hom, SSet.ι₀_fst, leftUnitor_inv_fst, CategoryTheory.Grp.homMk_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.Functor.Monoidal.μ_snd, CategoryTheory.Monoidal.whiskerRight_snd, CategoryTheory.Functor.FullyFaithful.grpObj_mul, SSet.associator_hom_app_apply, lift_leftUnitor_hom, CategoryTheory.GrpObj.mulRight_inv, CategoryTheory.symmetricOfHasFiniteProducts_braiding_inv, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity, CategoryTheory.sheafToPresheaf_ε, CategoryTheory.GrpObj.mul_inv_assoc, whiskerLeft_fst, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.Monoidal.μ_snd_assoc, CategoryTheory.Mon.hom_mul, CategoryTheory.Over.braiding_hom_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, SSet.RelativeMorphism.Homotopy.h₁, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd, CategoryTheory.GrpObj.η_whiskerRight_commutator, SSet.Subcomplex.range_tensorHom, lift_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.Functor.homMonoidHom_apply, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.whiskerLeft_apply, lift_lift_associator_hom_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst, SSet.RelativeMorphism.Homotopy.postcomp_h, mono_lift_of_mono_left, fullSubcategory_whiskerRight_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.ExponentialIdeal.exp_closed, CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.Over.tensorUnit_left, CategoryTheory.GrpObj.eq_lift_inv_left, CategoryTheory.Grp.Hom.hom_inv, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, Action.diagonalSuccIsoTensorDiagonal_hom_hom, CategoryTheory.Equivalence.mapCommGrp_counitIso, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, lift_snd_comp_fst_comp_assoc, lift_map, CategoryTheory.MonObj.lift_comp_one_left_assoc, SSet.prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, Action.diagonalSuccIsoTensorTrivial_hom_hom_apply, CategoryTheory.Grp.instFaithfulMonForget₂Mon, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, CategoryTheory.Monoidal.associator_inv, CategoryTheory.frobeniusMorphism_iso_of_expComparison_iso, CategoryTheory.Monoidal.rightUnitor_inv, CategoryTheory.Monoidal.whiskerLeft, CategoryTheory.Functor.Monoidal.associator_hom_app, prodComparison_inv_natural_whiskerRight, CategoryTheory.Grp.braiding_hom_hom, CategoryTheory.Over.whiskerRight_left_fst_assoc, SSet.RelativeMorphism.Homotopy.rel, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, lift_map_assoc, CategoryTheory.monoidalOfHasFiniteProducts.η_eq, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.Grp.η_def, SSet.Truncated.HomotopyCategory.BinaryProduct.associativityIso_hom_app, CategoryTheory.equivToOverUnit_functor, CategoryTheory.Functor.FullyFaithful.grpObj_one, lift_fst_comp_snd_comp, SSet.Truncated.Edge.map_whiskerRight, ModuleCat.FreeMonoidal.εIso_hom_one, CategoryTheory.CommGrp.trivial_grp_mul, CategoryTheory.Grp.associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, SSet.RelativeMorphism.Homotopy.refl_h, braiding_inv_snd_assoc, CategoryTheory.associator_hom_apply_2_1, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Monoidal.tensorObj, CategoryTheory.Preadditive.one_def, CategoryTheory.Over.lift_left, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, fullSubcategory_tensorProductIsBinaryProduct_lift_hom, whiskerRight_fst, preservesTerminalIso_id, CategoryTheory.whiskerRight_apply, CategoryTheory.instIsLeftAdjointTensorLeft, lift_snd_comp_fst_comp, CategoryTheory.CommGrp.trivial_grp_inv, CategoryTheory.SimplicialThickening.functor_id, CategoryTheory.GrpObj.ofIso_mul, CategoryTheory.Functor.Monoidal.leftUnitor_hom_app, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.GrpObj.lift_comp_inv_right, CategoryTheory.Functor.Monoidal.lift_μ, prodComparison_inv_natural_whiskerLeft_assoc, CategoryTheory.yonedaGrp_map_app, CategoryTheory.Functor.Monoidal.leftUnitor_inv_app, SSet.hasDimensionLE_prod, SSet.ι₁_fst_assoc, CategoryTheory.Monoidal.whiskerLeft_fst, CategoryTheory.MonObj.one_eq_one, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', SSet.Truncated.HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse, rightUnitor_inv_fst_assoc, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, CategoryTheory.braiding_inv_apply, homEquivToProd_apply, CategoryTheory.Functor.Monoidal.rightUnitor_hom_app, CategoryTheory.Grp.whiskerRight_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Over.fst_left, CategoryTheory.Over.associator_hom_left_fst_assoc, fullSubcategory_whiskerLeft_hom, SSet.leftUnitor_hom_app_apply, CategoryTheory.rightUnitor_inv_apply, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Functor.OplaxMonoidal.lift_δ_assoc, CategoryTheory.Grp.tensorHom_hom, CategoryTheory.GrpObj.toMonObj_injective, tensorμ_fst, CategoryTheory.GrpObj.ofIso_one, CategoryTheory.Grp.Hom.hom_one, CategoryTheory.Functor.Braided.instSubsingleton, CategoryTheory.Over.tensorObj_left, CategoryTheory.Grp.fst_hom_hom, lift_snd_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.toOverUnitPullback_hom_app_left, CategoryTheory.Functor.EssImageSubcategory.lift_def, CategoryTheory.Mod_.trivialAction_mod_smul, CategoryTheory.Grp.mkIso'_inv_hom_hom, CategoryTheory.Over.ε_pullback_left, lift_rightUnitor_hom, CategoryTheory.isoCartesianComon_inv_hom, SSet.associator_inv_app_apply, CategoryTheory.Grp.trivial_grp_mul, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerLeft_val, GrpCat.μ_forget_apply, CategoryTheory.Monoidal.leftUnitor_inv, whiskerRight_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.tensor_apply, CategoryTheory.Grp.trivial_X, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.SimplicialThickening.functor_obj_as, prodComparisonBifunctorNatTrans_comp, prodComparisonNatTrans_app, braiding_hom_snd, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_obj, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Grp.braiding_hom_hom_hom, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.CommGrp.forget₂CommMon_comp_forget, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.comonEquiv_inverse, CategoryTheory.toOverUnitPullback_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.CatEnrichedOrdinary.homEquiv_id, Rep.linearization_ε_hom, CategoryTheory.SimplicialThickening.SimplicialCategory.id_comp, AlgebraicGeometry.isCommMonObj_of_isProper_of_isIntegral_tensorObj_of_isAlgClosed, CategoryTheory.MonObj.instIsMonHomMulOfIsCommMonObj, CategoryTheory.SimplicialThickening.functor_comp, CategoryTheory.Sheaf.tensorUnit_isSheaf, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd_assoc, CategoryTheory.Functor.map_one, CategoryTheory.associator_inv_apply_2, whiskerLeft_fst_assoc, CategoryTheory.Monoidal.leftUnitor_hom, rightUnitor_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_eqToHom, fullSubcategory_tensorHom_hom, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoη, CategoryTheory.Mon.hom_one, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.yonedaMon_obj, CategoryTheory.toOver_map, CategoryTheory.rightUnitor_hom_apply, CategoryTheory.Functor.Monoidal.instSubsingleton, homEquivToProd_symm_apply, lift_whiskerLeft_assoc, SSet.ι₀_app_fst, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.forgetAdjToOver_counit_app, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, prodComparison_inv_natural_assoc, tensorδ_fst, CategoryTheory.toUnit_comp_curryRightUnitorHom, CategoryTheory.MonObj.mul_eq_mul, CategoryTheory.Grp.comp_hom, CategoryTheory.Grp.instFullMonForget₂Mon, tensorHom_fst_assoc, CategoryTheory.Grp.id_hom_hom, CategoryTheory.Adjunction.mapCommGrp_counit, CategoryTheory.associator_inv_apply_1_1, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.Over.tensorObj_hom, tensorμ_snd_assoc, SSet.ι₁_comp_assoc, isIso_prodComparison_of_preservesLimit_pair, CategoryTheory.toOverUnit_obj_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, prodComparison_natural_whiskerLeft, CategoryTheory.Adjunction.mapGrp_counit, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.SemilatticeInf.tensorObj, CategoryTheory.Mon.snd_hom, CategoryTheory.Mon.Hom.hom_one, CategoryTheory.Functor.OplaxMonoidal.instIsIsoδ, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.CommGrp.forget_map, CategoryTheory.comonEquiv_counitIso, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, Rep.linearization_μ_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_map, fullSubcategory_rightUnitor_inv_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_id, SSet.RelativeMorphism.Homotopy.rel_assoc, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, leftUnitor_hom, lift_braiding_inv_assoc, whiskerRight_snd, whiskerRight_toUnit_comp_leftUnitor_hom_assoc
|