Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Monoidal/Cartesian/Basic.lean

Statistics

MetricCount
DefinitionsofCartesianMonoidalCategory, CartesianMonoidalCategory, fullSubcategory, homEquivToProd, isLimitCartesianMonoidalCategoryOfPreservesLimits, ofChosenFiniteProducts, tensorHom, tensorObj, ofHasFiniteProducts, preservesTerminalIso, prodComparison, prodComparisonBifunctorNatIso, prodComparisonBifunctorNatTrans, prodComparisonIso, prodComparisonNatIso, prodComparisonNatTrans, tensorLeftIsoProd, tensorProductIsBinaryProduct, terminalComparison, toSemiCartesianMonoidalCategory, toSymmetricCategory, ofChosenFiniteProducts, ofChosenFiniteProducts, ofChosenFiniteProducts, SemiCartesianMonoidalCategory, fst, instUniqueHomTensorUnit, isTerminalTensorUnit, snd, toMonoidalCategory, toUnit
31
Theoremsassociator_hom_fst, associator_hom_fst_assoc, associator_hom_snd_fst, associator_hom_snd_fst_assoc, associator_hom_snd_snd, associator_hom_snd_snd_assoc, associator_inv_fst_fst, associator_inv_fst_fst_assoc, associator_inv_fst_snd, associator_inv_fst_snd_assoc, associator_inv_snd, associator_inv_snd_assoc, braiding_hom_fst, braiding_hom_fst_assoc, braiding_hom_snd, braiding_hom_snd_assoc, braiding_inv_fst, braiding_inv_fst_assoc, braiding_inv_snd, braiding_inv_snd_assoc, comp_lift, comp_lift_assoc, fullSubcategory_associator_hom_hom, fullSubcategory_associator_inv_hom, fullSubcategory_fst_hom, fullSubcategory_isTerminalTensorUnit_lift_hom, fullSubcategory_leftUnitor_hom_hom, fullSubcategory_leftUnitor_inv_hom, fullSubcategory_rightUnitor_hom_hom, fullSubcategory_rightUnitor_inv_hom, fullSubcategory_snd_hom, fullSubcategory_tensorHom_hom, fullSubcategory_tensorObj_obj, fullSubcategory_tensorProductIsBinaryProduct_lift_hom, fullSubcategory_tensorUnit_obj, fullSubcategory_whiskerLeft_hom, fullSubcategory_whiskerRight_hom, homEquivToProd_apply, homEquivToProd_symm_apply, hom_ext, hom_ext_iff, instHasFiniteProducts, instIsIsoFunctorProdComparisonBifunctorNatTransOfProdComparison, instIsIsoFunctorProdComparisonNatTransOfProdComparison, instNonemptyBraidedCategory, instSubsingletonBraidedCategory, instSubsingletonSymmetricCategory, inv_prodComparison_map_fst, inv_prodComparison_map_fst_assoc, inv_prodComparison_map_snd, inv_prodComparison_map_snd_assoc, isIso_prodComparison_of_preservesLimit_pair, leftUnitor_hom, leftUnitor_inv_fst, leftUnitor_inv_fst_assoc, leftUnitor_inv_snd, leftUnitor_inv_snd_assoc, lift_braiding_hom, lift_braiding_hom_assoc, lift_braiding_inv, lift_braiding_inv_assoc, lift_comp_fst_snd, lift_fst, lift_fst_assoc, lift_fst_comp_snd_comp, lift_fst_snd, lift_leftUnitor_hom, lift_leftUnitor_hom_assoc, lift_lift_associator_hom, lift_lift_associator_hom_assoc, lift_lift_associator_inv, lift_lift_associator_inv_assoc, lift_map, lift_map_assoc, lift_rightUnitor_hom, lift_rightUnitor_hom_assoc, lift_snd, lift_snd_assoc, lift_snd_comp_fst_comp, lift_snd_comp_fst_comp_assoc, lift_snd_fst, lift_whiskerLeft, lift_whiskerLeft_assoc, lift_whiskerRight, lift_whiskerRight_assoc, map_toUnit_comp_terminalComparison, map_toUnit_comp_terminalComparison_assoc, mono_lift_of_mono_left, mono_lift_of_mono_right, associator_naturality, id_tensorHom_id, leftUnitor_naturality, pentagon, rightUnitor_naturality, tensorHom_comp_tensorHom, triangle, preservesLimit_empty_of_isIso_terminalComparison, preservesLimit_pair_of_isIso_prodComparison, preservesLimitsOfShape_discrete_walkingPair_of_isIso_prodComparison, preservesTerminalIso_comp, preservesTerminalIso_hom, preservesTerminalIso_id, prodComparisonBifunctorNatIso_hom, prodComparisonBifunctorNatIso_inv, prodComparisonBifunctorNatTrans_app, prodComparisonBifunctorNatTrans_comp, prodComparisonIso_comp, prodComparisonIso_hom, prodComparisonIso_id, prodComparisonNatIso_hom, prodComparisonNatIso_inv, prodComparisonNatTrans_app, prodComparisonNatTrans_comp, prodComparisonNatTrans_id, prodComparison_comp, prodComparison_fst, prodComparison_fst_assoc, prodComparison_id, prodComparison_inv_natural, prodComparison_inv_natural_assoc, prodComparison_inv_natural_whiskerLeft, prodComparison_inv_natural_whiskerLeft_assoc, prodComparison_inv_natural_whiskerRight, prodComparison_inv_natural_whiskerRight_assoc, prodComparison_natural, prodComparison_natural_assoc, prodComparison_natural_whiskerLeft, prodComparison_natural_whiskerLeft_assoc, prodComparison_natural_whiskerRight, prodComparison_natural_whiskerRight_assoc, prodComparison_snd, prodComparison_snd_assoc, rightUnitor_hom, rightUnitor_inv_fst, rightUnitor_inv_fst_assoc, rightUnitor_inv_snd, rightUnitor_inv_snd_assoc, tensorHom_fst, tensorHom_fst_assoc, tensorHom_snd, tensorHom_snd_assoc, tensorδ_fst, tensorδ_fst_assoc, tensorδ_snd, tensorδ_snd_assoc, tensorμ_fst, tensorμ_fst_assoc, tensorμ_snd, tensorμ_snd_assoc, terminalComparison_isIso_of_preservesLimits, whiskerLeft_fst, whiskerLeft_fst_assoc, whiskerLeft_snd, whiskerLeft_snd_assoc, whiskerLeft_toUnit_comp_rightUnitor_hom, whiskerLeft_toUnit_comp_rightUnitor_hom_assoc, whiskerRight_fst, whiskerRight_fst_assoc, whiskerRight_snd, whiskerRight_snd_assoc, whiskerRight_toUnit_comp_leftUnitor_hom, whiskerRight_toUnit_comp_leftUnitor_hom_assoc, instSubsingleton, associator_hom_def, associator_inv_def, lift_def, tensor_obj, toUnit_def, instPreservesFiniteProducts, instSubsingleton, lift_μ, lift_μ_assoc, nonempty_monoidal_iff_preservesFiniteProducts, toUnit_ε, toUnit_ε_assoc, ε_of_cartesianMonoidalCategory, μ_comp, μ_comp_assoc, μ_fst, μ_fst_assoc, μ_of_cartesianMonoidalCategory, μ_snd, μ_snd_assoc, instIsIsoδ, instIsIsoη, instSubsingleton, lift_δ, lift_δ_assoc, δ_fst, δ_fst_assoc, δ_of_cartesianMonoidalCategory, δ_snd, δ_snd_assoc, η_of_cartesianMonoidalCategory, of_cartesianMonoidalCategory, comp_toUnit, comp_toUnit_assoc, default_eq_toUnit, fst_def, snd_def, toUnit_unique, toUnit_unique_iff, toUnit_unit
203
Total234

CategoryTheory

Definitions

NameCategoryTheorems
CartesianMonoidalCategory 📖CompData
SemiCartesianMonoidalCategory 📖CompData

CategoryTheory.BraidedCategory

Definitions

NameCategoryTheorems
ofCartesianMonoidalCategory 📖CompOp

CategoryTheory.CartesianMonoidalCategory

Definitions

NameCategoryTheorems
fullSubcategory 📖CompOp
20 mathmath: CategoryTheory.Functor.EssImageSubcategory.associator_inv_def, fullSubcategory_rightUnitor_hom_hom, fullSubcategory_leftUnitor_inv_hom, CategoryTheory.Functor.EssImageSubcategory.associator_hom_def, fullSubcategory_tensorObj_obj, fullSubcategory_snd_hom, fullSubcategory_isTerminalTensorUnit_lift_hom, fullSubcategory_fst_hom, fullSubcategory_associator_inv_hom, CategoryTheory.Functor.EssImageSubcategory.tensor_obj, fullSubcategory_tensorUnit_obj, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, fullSubcategory_leftUnitor_hom_hom, fullSubcategory_associator_hom_hom, fullSubcategory_whiskerRight_hom, fullSubcategory_tensorProductIsBinaryProduct_lift_hom, fullSubcategory_whiskerLeft_hom, CategoryTheory.Functor.EssImageSubcategory.lift_def, fullSubcategory_tensorHom_hom, fullSubcategory_rightUnitor_inv_hom
homEquivToProd 📖CompOp
3 mathmath: CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, homEquivToProd_apply, homEquivToProd_symm_apply
isLimitCartesianMonoidalCategoryOfPreservesLimits 📖CompOp
ofChosenFiniteProducts 📖CompOp
ofHasFiniteProducts 📖CompOp
6 mathmath: CategoryTheory.monoidalOfHasFiniteProducts.δ_eq, CategoryTheory.symmetricOfHasFiniteProducts_braiding_hom, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoδ, CategoryTheory.symmetricOfHasFiniteProducts_braiding_inv, CategoryTheory.monoidalOfHasFiniteProducts.η_eq, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoη
preservesTerminalIso 📖CompOp
5 mathmath: CategoryTheory.Over.preservesTerminalIso_pullback, preservesTerminalIso_hom, preservesTerminalIso_comp, CategoryTheory.Functor.Monoidal.ε_of_cartesianMonoidalCategory, preservesTerminalIso_id
prodComparison 📖CompOp
34 mathmath: prodComparison_snd, prodComparison_fst, CategoryTheory.prodComparison_iso, CategoryTheory.Functor.OplaxMonoidal.δ_of_cartesianMonoidalCategory, CategoryTheory.Functor.Monoidal.tensorObjComp_hom_app, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.IsSifted.instIsIsoObjFunctorTypeColimTensorObjProdComparison, CategoryTheory.coev_expComparison, prodComparisonIso_hom, prodComparison_id, prodComparison_natural, prodComparison_natural_whiskerLeft_assoc, prodComparison_snd_assoc, prodComparison_natural_assoc, CategoryTheory.bijection_symm_apply_id, inv_prodComparison_map_fst_assoc, prodComparison_comp, inv_prodComparison_map_snd_assoc, prodComparison_natural_whiskerRight, prodComparison_natural_whiskerRight_assoc, CategoryTheory.uncurry_expComparison, prodComparison_inv_natural_whiskerLeft, prodComparison_inv_natural_whiskerRight_assoc, CategoryTheory.expComparison_ev, inv_prodComparison_map_snd, prodComparison_inv_natural, inv_prodComparison_map_fst, prodComparison_fst_assoc, prodComparison_inv_natural_whiskerRight, prodComparison_inv_natural_whiskerLeft_assoc, prodComparisonNatTrans_app, prodComparison_inv_natural_assoc, isIso_prodComparison_of_preservesLimit_pair, prodComparison_natural_whiskerLeft
prodComparisonBifunctorNatIso 📖CompOp
2 mathmath: prodComparisonBifunctorNatIso_inv, prodComparisonBifunctorNatIso_hom
prodComparisonBifunctorNatTrans 📖CompOp
5 mathmath: prodComparisonBifunctorNatIso_inv, prodComparisonBifunctorNatIso_hom, prodComparisonBifunctorNatTrans_app, prodComparisonBifunctorNatTrans_comp, instIsIsoFunctorProdComparisonBifunctorNatTransOfProdComparison
prodComparisonIso 📖CompOp
9 mathmath: prodComparisonIso_hom, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.Functor.Monoidal.μ_of_cartesianMonoidalCategory, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, CategoryTheory.Functor.Monoidal.tensorObjComp_inv_app, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', prodComparisonIso_comp, prodComparisonIso_id, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd'
prodComparisonNatIso 📖CompOp
2 mathmath: prodComparisonNatIso_hom, prodComparisonNatIso_inv
prodComparisonNatTrans 📖CompOp
7 mathmath: prodComparisonNatTrans_comp, prodComparisonNatIso_hom, prodComparisonNatTrans_id, prodComparisonNatIso_inv, instIsIsoFunctorProdComparisonNatTransOfProdComparison, prodComparisonBifunctorNatTrans_app, prodComparisonNatTrans_app
tensorLeftIsoProd 📖CompOp
tensorProductIsBinaryProduct 📖CompOp
1 mathmath: fullSubcategory_tensorProductIsBinaryProduct_lift_hom
terminalComparison 📖CompOp
5 mathmath: CategoryTheory.Functor.OplaxMonoidal.η_of_cartesianMonoidalCategory, map_toUnit_comp_terminalComparison_assoc, map_toUnit_comp_terminalComparison, terminalComparison_isIso_of_preservesLimits, preservesTerminalIso_hom
toSemiCartesianMonoidalCategory 📖CompOp
844 mathmath: CategoryTheory.Sheaf.cartesianMonoidalCategoryLift_val, CategoryTheory.Grp.Hom.hom_div, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Grp.comp', CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_inv_toFunctor, CategoryTheory.Enriched.Functor.associator_inv_apply, CategoryTheory.GrpObj.lift_inv_comp_left, LightCondensed.free_internallyProjective_iff_tensor_condition, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.Functor.natTransEquiv_apply_app, CategoryTheory.Grp.instIsIsoHomHomMon, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.homObjEquiv_apply_app, CategoryTheory.Grp.homMk'_hom, prodComparison_snd, tensorδ_snd, CategoryTheory.CartesianCopyDiscard.instDeterministic, CategoryTheory.CommGrp.instFullCommMonForget₂CommMon, CategoryTheory.comonEquiv_unitIso, SSet.Truncated.tensor_map_apply_snd, Action.leftRegularTensorIso_inv_hom, CategoryTheory.Equivalence.mapGrp_counitIso, CategoryTheory.Functor.Monoidal.rightUnitor_inv_app, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, AlgebraicGeometry.isCommMonObj_of_isProper_of_geometricallyIntegral, CategoryTheory.Grp.Hom.hom_hom_zpow, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst_assoc, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Over.associator_inv_left_snd, SSet.ι₀_snd_assoc, CategoryTheory.CommGrp.comm, CategoryTheory.instFullMonFunctorOppositeMonCatYonedaMon, CategoryTheory.SimplicialThickening.SimplicialCategory.comp_id, associator_inv_fst_fst, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, CategoryTheory.Functor.map_mul, CategoryTheory.zeroMul_hom, associator_hom_fst_assoc, prodComparison_fst, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.Functor.Monoidal.tensorHom_app_fst_assoc, associator_hom_snd_fst_assoc, CategoryTheory.Grp.id', CategoryTheory.Enriched.Functor.whiskerLeft_app_apply, CategoryTheory.GrpObj.lift_inv_right_eq, CategoryTheory.prodComparison_iso, SSet.iSup_subcomplexOfSimplex_prod_eq_top, CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, CategoryTheory.Functor.OplaxMonoidal.δ_snd_assoc, tensorδ_snd_assoc, CategoryTheory.toOver_obj_hom, CategoryTheory.counit_eq_toUnit, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, CategoryTheory.μ_def, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, lift_leftUnitor_hom_assoc, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CategoryTheory.Functor.EssImageSubcategory.associator_inv_def, CategoryTheory.Grp.trivial_grp_inv, Action.diagonalSuccIsoTensorDiagonal_inv_hom, fullSubcategory_rightUnitor_hom_hom, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Over.whiskerLeft_left, whiskerLeft_toUnit_comp_rightUnitor_hom, SSet.instHasDimensionLETensorUnitOfNatNat, CategoryTheory.Grp.whiskerLeft_hom_hom, CategoryTheory.GrpObj.left_inv_assoc, CategoryTheory.Functor.mapGrp_id_mul, fullSubcategory_leftUnitor_inv_hom, CategoryTheory.MonObj.instIsMonHomOne, SSet.tensorHom_app_apply, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.MonObj.instIsMonHomToUnit, CategoryTheory.Functor.FullyFaithful.homMulEquiv_apply, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, instSubsingletonBraidedCategory, CategoryTheory.Over.grpObjMkPullbackSnd_one, associator_inv_snd, CategoryTheory.Functor.EssImageSubcategory.associator_hom_def, SSet.prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, SSet.Truncated.Edge.map_fst, fullSubcategory_tensorObj_obj, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.Functor.Monoidal.toUnit_ε_assoc, CategoryTheory.Functor.OplaxMonoidal.η_of_cartesianMonoidalCategory, CategoryTheory.Grp.leftUnitor_hom_hom, CategoryTheory.CartesianCopyDiscard.instIsCommComonObjOfCartesian, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst_assoc, braiding_hom_snd_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, whiskerRight_snd_assoc, CategoryTheory.comonEquiv_functor, CategoryTheory.CommGrp.toCommMon_X, CategoryTheory.Monoidal.whiskerRight_fst, CategoryTheory.MonObj.lift_comp_one_right, CategoryTheory.Functor.Monoidal.tensorObj_map, CategoryTheory.Functor.Monoidal.lift_μ_assoc, CategoryTheory.Functor.OplaxMonoidal.δ_of_cartesianMonoidalCategory, CategoryTheory.toOver_obj_left, CategoryTheory.Functor.Monoidal.tensorObjComp_hom_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, associator_inv_fst_snd, CategoryTheory.Functor.OplaxMonoidal.δ_snd, CategoryTheory.Over.toUnit_left, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, fullSubcategory_snd_hom, CategoryTheory.Functor.Monoidal.nonempty_monoidal_iff_preservesFiniteProducts, SSet.hasDimensionLT_prod, CategoryTheory.monoidalOfHasFiniteProducts.δ_eq, CategoryTheory.Over.braiding_inv_left, CategoryTheory.leftUnitor_hom_apply, SSet.RelativeMorphism.Homotopy.h₀_assoc, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.Grp.ε_def, CategoryTheory.toOverUnit_map_left, CategoryTheory.Grp.rightUnitor_hom_hom_hom, SSet.prodStdSimplex.objEquiv_apply_fst, CategoryTheory.MonObj.ofRepresentableBy_one, CategoryTheory.GrpObj.lift_inv_comp_right, AddGrpCat.tensorObj_eq, CategoryTheory.IsSifted.instIsIsoObjFunctorTypeColimTensorObjProdComparison, CategoryTheory.sheafToPresheaf_μ, CategoryTheory.symmetricOfHasFiniteProducts_braiding_hom, fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.comul_eq_lift, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Grp.lift_hom, tensorμ_fst_assoc, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, associator_hom_snd_snd_assoc, CategoryTheory.Over.tensorObj_ext_iff, prodComparisonBifunctorNatIso_inv, CategoryTheory.Grp.hom_mul, CategoryTheory.coev_expComparison, CategoryTheory.types_tensorUnit_def, CategoryTheory.frobeniusMorphism_mate, fullSubcategory_fst_hom, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.Functor.OplaxMonoidal.δ_fst_assoc, CategoryTheory.MonoidalClosedFunctor.comparison_iso, SSet.instFiniteTensorUnit, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, prodComparisonIso_hom, CategoryTheory.MonObj.lift_lift_assoc, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.MonObj.lift_comp_one_right_assoc, lift_braiding_hom, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.Grp.Hom.hom_zpow, braiding_inv_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.Preadditive.instIsCommMonObj, instSubsingletonSymmetricCategory, CategoryTheory.GrpObj.one_inv_assoc, CategoryTheory.Functor.mapGrp_obj_grp_one, SSet.prodStdSimplex.strictMono_orderHomOfSimplex_iff, CategoryTheory.NatTrans.IsMonoidal.of_cartesianMonoidalCategory, CommGrpCat.μ_forget_apply, CategoryTheory.Cat.ihom_obj, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, SSet.Subcomplex.ofSimplexProd_eq_range, CategoryTheory.Over.whiskerRight_left_fst, SSet.Truncated.Edge.CompStruct.tensor_simplex_snd, CategoryTheory.Functor.homObjEquiv_symm_apply_app, CategoryTheory.Over.preservesTerminalIso_pullback, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, SSet.prodStdSimplex.objEquiv_δ_apply, CategoryTheory.Adjunction.mapCommGrp_unit, comp_lift, fullSubcategory_associator_inv_hom, CategoryTheory.Functor.mapGrp_id_one, CategoryTheory.Grp.associator_inv_hom_hom, CategoryTheory.Functor.Monoidal.μ_comp_assoc, CategoryTheory.GrpObj.η_whiskerRight_commutator_assoc, prodComparison_id, CategoryTheory.associator_inv_apply, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.bijection_natural, lift_lift_associator_inv_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, SSet.Truncated.Edge.id_tensor_id, braiding_hom_fst, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.IsCommMonObj.ofRepresentableBy, CategoryTheory.Grp.Hom.hom_hom_div, lift_lift_associator_inv, CategoryTheory.Grp.leftUnitor_hom_hom_hom, SSet.prodStdSimplex.objEquiv_naturality, CategoryTheory.CommGrp.instIsIsoMonHomGrp, CategoryTheory.Sheaf.tensorProd_isSheaf, CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_η, CategoryTheory.toOverUnit_obj_left, CategoryTheory.Functor.Monoidal.μ_fst_assoc, CategoryTheory.Grp.forget_map, tensorHom_fst, prodComparison_natural, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.Mon.lift_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.IsCommMon.ofRepresentableBy, CategoryTheory.CommGrp.forget₂CommMon_map_hom, CategoryTheory.Functor.EssImageSubcategory.tensor_obj, CategoryTheory.essImage_yonedaMon, CategoryTheory.CommGrp.trivial_X, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.MonObj.instIsMonHomSnd, prodComparison_natural_whiskerLeft_assoc, CategoryTheory.CommGrp.forget₂Grp_obj_mul, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', lift_braiding_inv, tensorHom_snd_assoc, map_toUnit_comp_terminalComparison_assoc, SSet.instFiniteTensorObj, CategoryTheory.Adjunction.mapGrp_unit, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, CategoryTheory.Functor.OplaxMonoidal.instSubsingleton, prodComparison_snd_assoc, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.Grp.rightUnitor_inv_hom_hom, CategoryTheory.Monoidal.whiskerRight, CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.Grp.forget₂Mon_map_hom, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, prodComparison_natural_assoc, SSet.prodStdSimplex.objEquiv_apply_snd, SSet.hoFunctor.unitHomEquiv_eq, CategoryTheory.GrpObj.tensorHom_inv_inv_mul_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.instFaithfulMonFunctorOppositeMonCatYonedaMon, fullSubcategory_tensorUnit_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_hom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.leftUnitor_inv_apply, CommAlgCat.lift_unop_hom, lift_rightUnitor_hom_assoc, CategoryTheory.Over.tensorUnit_hom, CategoryTheory.Grp.whiskerRight_hom_hom, SSet.instFiniteObjOppositeSimplexCategoryTensorObj, CategoryTheory.Over.leftUnitor_inv_left_fst, associator_hom_snd_fst, CategoryTheory.Monoidal.tensorHom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, CategoryTheory.Sheaf.cartesianMonoidalCategorySnd_val, CategoryTheory.Hom.mul_def, CategoryTheory.Grp.Hom.hom_hom_inv, CategoryTheory.associator_hom_apply_1, SSet.leftUnitor_inv_app_apply, SSet.ι₀_fst_assoc, SSet.ι₁_comp, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_obj, CategoryTheory.CatEnrichedOrdinary.Hom.mk_comp, CategoryTheory.expComparison_whiskerLeft, tensorμ_snd, CommAlgCat.fst_unop_hom, CategoryTheory.Mon.fst_hom, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.MonObj.lift_comp_one_left, CategoryTheory.Grp.μ_def, CategoryTheory.Grp.snd_hom, CategoryTheory.Functor.OplaxMonoidal.lift_δ, CategoryTheory.Grp.tensorUnit_mul, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, leftUnitor_inv_snd, prodComparisonBifunctorNatIso_hom, SSet.whiskerRight_app_apply, CategoryTheory.braiding_hom_apply, whiskerLeft_snd_assoc, CategoryTheory.CommGrp.trivial_grp_one, SSet.rightUnitor_inv_app_apply, CategoryTheory.Over.leftUnitor_inv_left_snd, SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, associator_inv_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.MonObj.instIsMonHomLift, GrpCat.tensorObj_eq, CategoryTheory.Monoidal.rightUnitor_hom, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.bijection_symm_apply_id, CategoryTheory.Enriched.Functor.associator_hom_apply, CategoryTheory.Over.μ_pullback_left_fst_snd', SSet.ι₀_snd, rightUnitor_inv_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_left, CategoryTheory.sheafToPresheaf_δ, SSet.Truncated.Edge.CompStruct.tensor_simplex_fst, CategoryTheory.Grp.tensorUnit_X, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, CategoryTheory.Grp.whiskerLeft_hom, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', SSet.Truncated.HomotopyCategory.BinaryProduct.inverseCompFunctorIso_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.Functor.chosenProd_obj, rightUnitor_inv_snd_assoc, CategoryTheory.CatEnrichedOrdinary.Hom.id_eq, CategoryTheory.Mon_Class.mul_eq_mul, SSet.Truncated.Edge.map_associator_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.Monoidal.μ_of_cartesianMonoidalCategory, CategoryTheory.SimplicialThickening.functor_map, CategoryTheory.Grp.leftUnitor_inv_hom_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_map, CategoryTheory.Equivalence.mapCommGrp_unitIso, CategoryTheory.GrpObj.one_inv, CategoryTheory.GrpObj.mulRight_one, CategoryTheory.yonedaMon_map_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, leftUnitor_inv_snd_assoc, inv_prodComparison_map_fst_assoc, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, CategoryTheory.Enriched.Functor.whiskerRight_app_apply, prodComparison_comp, SSet.ι₁_snd_assoc, CategoryTheory.Functor.OplaxMonoidal.instIsIsoη, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.GrpObj.tensorObj.inv_def, CategoryTheory.MonObj.instIsMonHomFst, ModuleCat.free_ε_one, CategoryTheory.Grp.rightUnitor_inv_hom, CategoryTheory.Functor.Monoidal.toUnit_ε, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst, inv_prodComparison_map_snd_assoc, SSet.instHasDimensionLETensorObjHAddNat, map_toUnit_comp_terminalComparison, SSet.ι₁_app_fst, SSet.ι₁_snd, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.CommGrp.instFaithfulCommMonForget₂CommMon, CategoryTheory.Monoidal.associator_hom, Rep.linearization_η_hom_apply, CategoryTheory.CommGrp.hom_ext_iff, CategoryTheory.associator_inv_apply_1_2, CategoryTheory.Grp.forget₂Mon_obj_mul, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_hom_toFunctor, prodComparisonNatTrans_comp, prodComparison_natural_whiskerRight, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.Grp.Hom.hom_pow, lift_lift_associator_hom, CategoryTheory.Grp.δ_def, SSet.whiskerLeft_app_apply, CategoryTheory.GrpObj.whiskerLeft_η_commutator, CategoryTheory.Grp.associator_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv, CategoryTheory.isoCartesianComon_hom_hom, ModuleCat.FreeMonoidal.εIso_inv_freeMk, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, CategoryTheory.Grp.toMon_X, CategoryTheory.frobeniusMorphism_iso_of_preserves_binary_products, CategoryTheory.instIsMonHomInvOfIsCommMonObj, CategoryTheory.Grp.braiding_inv_hom, CategoryTheory.Monoidal.whiskerLeft_snd, CategoryTheory.Over.sections_obj, CategoryTheory.Grp.mkIso'_hom_hom_hom, CategoryTheory.GrpObj.lift_inv_left_eq, CategoryTheory.Functor.comp_mapCommGrp_mul, SSet.Subcomplex.prod_obj, prodComparisonNatIso_hom, CommAlgCat.snd_unop_hom, CategoryTheory.Grp.id_hom, CategoryTheory.Functor.Monoidal.tensorObjComp_inv_app, tensorδ_fst_assoc, SSet.Truncated.Edge.map_whiskerLeft, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, AddCommGrpCat.μ_forget_apply, Action.leftRegularTensorIso_hom_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_comp, CategoryTheory.equivToOverUnit_counitIso, SSet.Truncated.HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, ModuleCat.free_η_freeMk, CategoryTheory.Over.tensorHom_left, SSet.Truncated.Edge.map_snd, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Grp.fst_hom, associator_hom_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_comp_inverse, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.isCommMonObj_iff_isMulCommutative, CategoryTheory.Functor.chosenProd_map, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, lift_whiskerLeft, LightCondensed.free_internallyProjective_iff_tensor_condition', SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, AddCommGrpCat.tensorObj_eq, associator_inv_fst_snd_assoc, lift_fst_snd, CategoryTheory.Equivalence.mapGrp_unitIso, prodComparison_natural_whiskerRight_assoc, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, SSet.instHasDimensionLTTensorObjHAddNat, CategoryTheory.Mon.instIsCommMonObj, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.Grp.tensorUnit_one, CategoryTheory.Mon.Hom.hom_mul, prodComparisonNatTrans_id, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd_assoc, braiding_inv_snd, terminalComparison_isIso_of_preservesLimits, tensorHom_snd, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.instIsMonHomInvHomOfIsCommMonObj, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_functor, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, CategoryTheory.Over.monObjMkPullbackSnd_one, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.GrpObj.whiskerLeft_η_commutator_assoc, ModuleCat.free_μ_freeMk_tmul_freeMk, CategoryTheory.GrpObj.isPullback, CategoryTheory.uncurry_expComparison, AddGrpCat.μ_forget_apply, prodComparison_inv_natural_whiskerLeft, CategoryTheory.Functor.FullyFaithful.homMulEquiv_symm_apply, whiskerLeft_toUnit_comp_rightUnitor_hom_assoc, CategoryTheory.toOverIsoToOverUnit_hom_app_left, whiskerLeft_snd, CommGrpCat.tensorObj_eq, ModuleCat.FreeMonoidal.μIso_hom_freeMk_tmul_freeMk, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.Cat.ihom_map, SSet.prodStdSimplex.objEquiv_map_apply, associator_inv_fst_fst_assoc, prodComparisonNatIso_inv, CategoryTheory.types_tensorObj_def, whiskerRight_toUnit_comp_leftUnitor_hom, CategoryTheory.Functor.mapCommGrp_id_one, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, lift_braiding_hom_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_fst, SSet.Truncated.Edge.map_tensorHom, lift_snd, CategoryTheory.associator_hom_apply, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.SimplicialThickening.SimplicialCategory.assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.SemilatticeInf.tensorUnit, preservesTerminalIso_hom, CategoryTheory.Functor.Monoidal.μ_comp, CategoryTheory.CommGrp.forget₂Grp_map_hom, CategoryTheory.Over.snd_left, CategoryTheory.Monoidal.tensorUnit, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Grp.comp_hom_hom, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, CategoryTheory.GrpObj.toMon_Class_injective, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoδ, lift_snd_assoc, CategoryTheory.CommGrp.forget₂CommMon_obj_mul, CategoryTheory.Over.tensorHom_left_fst, associator_hom_snd_snd, CategoryTheory.CatEnrichedOrdinary.Hom.comp_eq, CategoryTheory.Grp.braiding_inv_hom_hom, CategoryTheory.Over.whiskerRight_left_snd, braiding_hom_fst_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.GrpObj.eq_lift_inv_right, SSet.prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.Functor.Monoidal.μ_fst, preservesTerminalIso_comp, CategoryTheory.MonObj.ofRepresentableBy_mul, braiding_inv_fst, CommAlgCat.toUnit_unop_hom, SSet.Subcomplex.prod_monotone, SSet.ι₀_comp_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_snd, CategoryTheory.CatEnriched.comp_eq, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerRight_val, CategoryTheory.GrpObj.left_inv, CategoryTheory.Functor.OplaxMonoidal.δ_fst, CategoryTheory.Grp.tensorObj_X, SSet.ι₀_comp, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, rightUnitor_inv_snd, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Functor.Monoidal.ε_of_cartesianMonoidalCategory, CategoryTheory.Grp.Hom.hom_mul, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.Mon.Hom.hom_pow, CategoryTheory.GrpObj.mul_inv_rev_assoc, prodComparison_inv_natural_whiskerRight_assoc, comp_lift_assoc, CategoryTheory.ε_def, CategoryTheory.Over.η_pullback_left, CategoryTheory.CommGrpObj.toIsCommMonObj, CategoryTheory.Grp.tensorObj_mul, CategoryTheory.Grp.rightUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.Grp.forget₂Mon_obj_X, CategoryTheory.Grp.hom_ext_iff, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, SSet.RelativeMorphism.Homotopy.h₁_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.expComparison_ev, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, inv_prodComparison_map_snd, CategoryTheory.Functor.Monoidal.snd_app, CategoryTheory.CatEnrichedOrdinary.homEquiv_comp, CategoryTheory.Functor.Monoidal.fst_app, SSet.RelativeMorphism.Homotopy.ofEq_h, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, instNonemptyBraidedCategory, prodComparison_inv_natural, fullSubcategory_leftUnitor_hom_hom, CategoryTheory.GrpObj.tensorHom_inv_inv_mul, leftUnitor_inv_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, SSet.rightUnitor_hom_app_apply, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv_assoc, lift_whiskerRight_assoc, CategoryTheory.Grp.forget₂Mon_comp_forget, CategoryTheory.associator_hom_apply_2_2, hom_ext_iff, SSet.Truncated.tensor_map_apply_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_obj, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.GrpObj.mul_inv, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, inv_prodComparison_map_fst, ModuleCat.free_δ_freeMk, SSet.ι₁_fst, CategoryTheory.zeroMul_inv, CategoryTheory.Grp.tensorObj_one, CategoryTheory.Functor.Monoidal.tensorObj_obj, SSet.Truncated.Edge.tensor_edge, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_obj, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_snd_assoc, prodComparisonIso_comp, CategoryTheory.Functor.Monoidal.associator_inv_app, CategoryTheory.GrpObj.inv_def, lift_comp_fst_snd, lift_whiskerRight, CategoryTheory.Grp.leftUnitor_inv_hom, mono_lift_of_mono_right, SSet.Truncated.HomotopyCategory.BinaryProduct.square, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, prodComparisonBifunctorNatTrans_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.expComparison_iso_of_frobeniusMorphism_iso, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Functor.mapCommpGrp_id_mul, CategoryTheory.CommGrp.forget₂CommMon_obj_one, CategoryTheory.sheafToPresheaf_η, ModuleCat.FreeMonoidal.μIso_inv_freeMk, Rep.linearization_δ_hom, CategoryTheory.equivToOverUnit_inverse, prodComparison_fst_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverseCompFunctorIso_hom_app, CategoryTheory.GrpObj.mul_inv_rev, CategoryTheory.GrpObj.mulRight_hom, SSet.prodStdSimplex.nonDegenerate_iff_injective_objEquiv, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, fullSubcategory_associator_hom_hom, CategoryTheory.Preadditive.mul_def, CategoryTheory.Grp.trivial_grp_one, CategoryTheory.Grp.snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, SSet.RelativeMorphism.Homotopy.h₀, CategoryTheory.Grp.hom_one, CategoryTheory.Grp.forget₂Mon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.Mod_.trivialAction_X, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.CatEnriched.id_eq, CategoryTheory.Sheaf.cartesianMonoidalCategoryFst_val, CategoryTheory.toOver_map_left, CategoryTheory.Over.sections_map, lift_fst, SSet.RelativeMorphism.Homotopy.precomp_h, prodComparisonIso_id, CategoryTheory.Hom.one_def, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Grp.associator_inv_hom, SSet.ι₀_fst, leftUnitor_inv_fst, CategoryTheory.Grp.homMk_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.Functor.Monoidal.μ_snd, CategoryTheory.Monoidal.whiskerRight_snd, CategoryTheory.Functor.FullyFaithful.grpObj_mul, SSet.associator_hom_app_apply, lift_leftUnitor_hom, CategoryTheory.GrpObj.mulRight_inv, CategoryTheory.symmetricOfHasFiniteProducts_braiding_inv, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity, CategoryTheory.sheafToPresheaf_ε, CategoryTheory.GrpObj.mul_inv_assoc, whiskerLeft_fst, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.Monoidal.μ_snd_assoc, CategoryTheory.Mon.hom_mul, CategoryTheory.Over.braiding_hom_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, SSet.RelativeMorphism.Homotopy.h₁, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd, CategoryTheory.GrpObj.η_whiskerRight_commutator, SSet.Subcomplex.range_tensorHom, lift_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.Functor.homMonoidHom_apply, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.whiskerLeft_apply, lift_lift_associator_hom_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst, SSet.RelativeMorphism.Homotopy.postcomp_h, mono_lift_of_mono_left, fullSubcategory_whiskerRight_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.ExponentialIdeal.exp_closed, CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.Over.tensorUnit_left, CategoryTheory.GrpObj.eq_lift_inv_left, CategoryTheory.Grp.Hom.hom_inv, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, Action.diagonalSuccIsoTensorDiagonal_hom_hom, CategoryTheory.Equivalence.mapCommGrp_counitIso, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, lift_snd_comp_fst_comp_assoc, lift_map, CategoryTheory.MonObj.lift_comp_one_left_assoc, SSet.prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, Action.diagonalSuccIsoTensorTrivial_hom_hom_apply, CategoryTheory.Grp.instFaithfulMonForget₂Mon, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, CategoryTheory.Monoidal.associator_inv, CategoryTheory.frobeniusMorphism_iso_of_expComparison_iso, CategoryTheory.Monoidal.rightUnitor_inv, CategoryTheory.Monoidal.whiskerLeft, CategoryTheory.Functor.Monoidal.associator_hom_app, prodComparison_inv_natural_whiskerRight, CategoryTheory.Grp.braiding_hom_hom, CategoryTheory.Over.whiskerRight_left_fst_assoc, SSet.RelativeMorphism.Homotopy.rel, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, lift_map_assoc, CategoryTheory.monoidalOfHasFiniteProducts.η_eq, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.Grp.η_def, SSet.Truncated.HomotopyCategory.BinaryProduct.associativityIso_hom_app, CategoryTheory.equivToOverUnit_functor, CategoryTheory.Functor.FullyFaithful.grpObj_one, lift_fst_comp_snd_comp, SSet.Truncated.Edge.map_whiskerRight, ModuleCat.FreeMonoidal.εIso_hom_one, CategoryTheory.CommGrp.trivial_grp_mul, CategoryTheory.Grp.associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, SSet.RelativeMorphism.Homotopy.refl_h, braiding_inv_snd_assoc, CategoryTheory.associator_hom_apply_2_1, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Monoidal.tensorObj, CategoryTheory.Preadditive.one_def, CategoryTheory.Over.lift_left, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, fullSubcategory_tensorProductIsBinaryProduct_lift_hom, whiskerRight_fst, preservesTerminalIso_id, CategoryTheory.whiskerRight_apply, CategoryTheory.instIsLeftAdjointTensorLeft, lift_snd_comp_fst_comp, CategoryTheory.CommGrp.trivial_grp_inv, CategoryTheory.SimplicialThickening.functor_id, CategoryTheory.GrpObj.ofIso_mul, CategoryTheory.Functor.Monoidal.leftUnitor_hom_app, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.GrpObj.lift_comp_inv_right, CategoryTheory.Functor.Monoidal.lift_μ, prodComparison_inv_natural_whiskerLeft_assoc, CategoryTheory.yonedaGrp_map_app, CategoryTheory.Functor.Monoidal.leftUnitor_inv_app, SSet.hasDimensionLE_prod, SSet.ι₁_fst_assoc, CategoryTheory.Monoidal.whiskerLeft_fst, CategoryTheory.MonObj.one_eq_one, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', SSet.Truncated.HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse, rightUnitor_inv_fst_assoc, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, CategoryTheory.braiding_inv_apply, homEquivToProd_apply, CategoryTheory.Functor.Monoidal.rightUnitor_hom_app, CategoryTheory.Grp.whiskerRight_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Over.fst_left, CategoryTheory.Over.associator_hom_left_fst_assoc, fullSubcategory_whiskerLeft_hom, SSet.leftUnitor_hom_app_apply, CategoryTheory.rightUnitor_inv_apply, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Functor.OplaxMonoidal.lift_δ_assoc, CategoryTheory.Grp.tensorHom_hom, CategoryTheory.GrpObj.toMonObj_injective, tensorμ_fst, CategoryTheory.GrpObj.ofIso_one, CategoryTheory.Grp.Hom.hom_one, CategoryTheory.Functor.Braided.instSubsingleton, CategoryTheory.Over.tensorObj_left, CategoryTheory.Grp.fst_hom_hom, lift_snd_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.toOverUnitPullback_hom_app_left, CategoryTheory.Functor.EssImageSubcategory.lift_def, CategoryTheory.Mod_.trivialAction_mod_smul, CategoryTheory.Grp.mkIso'_inv_hom_hom, CategoryTheory.Over.ε_pullback_left, lift_rightUnitor_hom, CategoryTheory.isoCartesianComon_inv_hom, SSet.associator_inv_app_apply, CategoryTheory.Grp.trivial_grp_mul, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerLeft_val, GrpCat.μ_forget_apply, CategoryTheory.Monoidal.leftUnitor_inv, whiskerRight_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.tensor_apply, CategoryTheory.Grp.trivial_X, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.SimplicialThickening.functor_obj_as, prodComparisonBifunctorNatTrans_comp, prodComparisonNatTrans_app, braiding_hom_snd, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_obj, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Grp.braiding_hom_hom_hom, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.CommGrp.forget₂CommMon_comp_forget, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.comonEquiv_inverse, CategoryTheory.toOverUnitPullback_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.CatEnrichedOrdinary.homEquiv_id, Rep.linearization_ε_hom, CategoryTheory.SimplicialThickening.SimplicialCategory.id_comp, AlgebraicGeometry.isCommMonObj_of_isProper_of_isIntegral_tensorObj_of_isAlgClosed, CategoryTheory.MonObj.instIsMonHomMulOfIsCommMonObj, CategoryTheory.SimplicialThickening.functor_comp, CategoryTheory.Sheaf.tensorUnit_isSheaf, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd_assoc, CategoryTheory.Functor.map_one, CategoryTheory.associator_inv_apply_2, whiskerLeft_fst_assoc, CategoryTheory.Monoidal.leftUnitor_hom, rightUnitor_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_eqToHom, fullSubcategory_tensorHom_hom, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoη, CategoryTheory.Mon.hom_one, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.yonedaMon_obj, CategoryTheory.toOver_map, CategoryTheory.rightUnitor_hom_apply, CategoryTheory.Functor.Monoidal.instSubsingleton, homEquivToProd_symm_apply, lift_whiskerLeft_assoc, SSet.ι₀_app_fst, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.forgetAdjToOver_counit_app, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, prodComparison_inv_natural_assoc, tensorδ_fst, CategoryTheory.toUnit_comp_curryRightUnitorHom, CategoryTheory.MonObj.mul_eq_mul, CategoryTheory.Grp.comp_hom, CategoryTheory.Grp.instFullMonForget₂Mon, tensorHom_fst_assoc, CategoryTheory.Grp.id_hom_hom, CategoryTheory.Adjunction.mapCommGrp_counit, CategoryTheory.associator_inv_apply_1_1, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.Over.tensorObj_hom, tensorμ_snd_assoc, SSet.ι₁_comp_assoc, isIso_prodComparison_of_preservesLimit_pair, CategoryTheory.toOverUnit_obj_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, prodComparison_natural_whiskerLeft, CategoryTheory.Adjunction.mapGrp_counit, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.SemilatticeInf.tensorObj, CategoryTheory.Mon.snd_hom, CategoryTheory.Mon.Hom.hom_one, CategoryTheory.Functor.OplaxMonoidal.instIsIsoδ, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.CommGrp.forget_map, CategoryTheory.comonEquiv_counitIso, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, Rep.linearization_μ_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_map, fullSubcategory_rightUnitor_inv_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_id, SSet.RelativeMorphism.Homotopy.rel_assoc, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, leftUnitor_hom, lift_braiding_inv_assoc, whiskerRight_snd, whiskerRight_toUnit_comp_leftUnitor_hom_assoc
toSymmetricCategory 📖CompOp
1 mathmath: CategoryTheory.Mon.instIsCommMonObj

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsTerminal.comp_from
associator_hom_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_hom_fst
associator_hom_snd_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Category.assoc
whiskerLeft_snd
whiskerLeft_snd_assoc
associator_hom_snd_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_hom_snd_fst
associator_hom_snd_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsTerminal.comp_from
CategoryTheory.Iso.hom_inv_id_assoc
associator_hom_snd_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_hom_snd_snd
associator_inv_fst_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsTerminal.comp_from
CategoryTheory.Iso.inv_hom_id_assoc
associator_inv_fst_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_fst_fst
associator_inv_fst_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Category.assoc
whiskerLeft_snd
whiskerLeft_snd_assoc
CategoryTheory.Iso.inv_hom_id_assoc
associator_inv_fst_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_fst_snd
associator_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsTerminal.comp_from
associator_inv_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_snd
braiding_hom_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.braiding_tensorUnit_left
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
braiding_hom_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
braiding_hom_fst
braiding_hom_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
CategoryTheory.braiding_tensorUnit_right
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
braiding_hom_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
braiding_hom_snd
braiding_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.braiding_inv_tensorUnit_right
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
braiding_inv_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
braiding_inv_fst
braiding_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
CategoryTheory.braiding_inv_tensorUnit_left
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
braiding_inv_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
braiding_inv_snd
comp_lift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
hom_ext
CategoryTheory.Category.assoc
lift_fst
lift_snd
comp_lift_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_lift
fullSubcategory_associator_hom_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategoryStruct.associator
fullSubcategory
fullSubcategory_associator_inv_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategoryStruct.associator
fullSubcategory
fullSubcategory_fst_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.fullSubcategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
fullSubcategory
fullSubcategory_isTerminalTensorUnit_lift_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.empty
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.fullSubcategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Limits.IsLimit.lift
CategoryTheory.Limits.asEmptyCone
CategoryTheory.SemiCartesianMonoidalCategory.isTerminalTensorUnit
fullSubcategory
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
fullSubcategory_leftUnitor_hom_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategoryStruct.leftUnitor
fullSubcategory
fullSubcategory_leftUnitor_inv_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategoryStruct.leftUnitor
fullSubcategory
fullSubcategory_rightUnitor_hom_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategoryStruct.rightUnitor
fullSubcategory
fullSubcategory_rightUnitor_inv_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategoryStruct.rightUnitor
fullSubcategory
fullSubcategory_snd_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.fullSubcategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.snd
fullSubcategory
fullSubcategory_tensorHom_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.ObjectProperty.FullSubcategory.category
fullSubcategory
fullSubcategory_tensorObj_obj 📖mathematicalCategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
fullSubcategory
fullSubcategory_tensorProductIsBinaryProduct_lift_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Limits.pair
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.fullSubcategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.ObjectProperty.homMk
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Limits.IsLimit.lift
tensorProductIsBinaryProduct
fullSubcategory
lift
CategoryTheory.Limits.BinaryFan.fst
CategoryTheory.Limits.BinaryFan.snd
fullSubcategory_tensorUnit_obj 📖mathematicalCategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
fullSubcategory
fullSubcategory_whiskerLeft_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.ObjectProperty.FullSubcategory.category
fullSubcategory
fullSubcategory_whiskerRight_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.ObjectProperty.FullSubcategory.category
fullSubcategory
homEquivToProd_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
EquivLike.toFunLike
Equiv.instEquivLike
homEquivToProd
CategoryTheory.CategoryStruct.comp
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
homEquivToProd_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquivToProd
lift
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Limits.BinaryFan.IsLimit.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
hom_ext
instHasFiniteProducts 📖mathematicalCategoryTheory.Limits.HasFiniteProductsCategoryTheory.hasFiniteProducts_of_has_binary_and_terminal
CategoryTheory.Limits.hasBinaryProducts_of_hasLimit_pair
CategoryTheory.Limits.hasTerminal_of_unique
Unique.instSubsingleton
instIsIsoFunctorProdComparisonBifunctorNatTransOfProdComparison 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparison
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
prodComparisonBifunctorNatTrans
CategoryTheory.NatIso.isIso_of_isIso_app
CategoryTheory.NatIso.isIso_app_of_isIso
instIsIsoFunctorProdComparisonNatTransOfProdComparison
instIsIsoFunctorProdComparisonNatTransOfProdComparison 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparison
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.curriedTensor
prodComparisonNatTrans
CategoryTheory.NatIso.isIso_of_isIso_app
instNonemptyBraidedCategory 📖mathematicalCategoryTheory.BraidedCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
instSubsingletonBraidedCategory 📖mathematicalCategoryTheory.BraidedCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.ext
hom_ext
braiding_hom_fst
braiding_hom_snd
instSubsingletonSymmetricCategory 📖mathematicalCategoryTheory.SymmetricCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
instSubsingletonBraidedCategory
inv_prodComparison_map_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.fst
prodComparison_fst
inv_prodComparison_map_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inv_prodComparison_map_fst
inv_prodComparison_map_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.snd
prodComparison_snd
inv_prodComparison_map_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inv_prodComparison_map_snd
isIso_prodComparison_of_preservesLimit_pair 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparison
prodComparisonIso_hom
CategoryTheory.Iso.isIso_hom
leftUnitor_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
CategoryTheory.Limits.IsTerminal.from_self
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
leftUnitor_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
leftUnitor_inv_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_inv_fst
leftUnitor_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.CategoryStruct.id
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
CategoryTheory.Limits.IsTerminal.from_self
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id
leftUnitor_inv_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_inv_snd
lift_braiding_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
hom_ext
CategoryTheory.Category.assoc
braiding_hom_fst
lift_snd
lift_fst
braiding_hom_snd
lift_braiding_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_braiding_hom
lift_braiding_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
hom_ext
CategoryTheory.Category.assoc
braiding_inv_fst
lift_snd
lift_fst
braiding_inv_snd
lift_braiding_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_braiding_inv
lift_comp_fst_snd 📖mathematicallift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
hom_ext
lift_fst
lift_snd
lift_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.SemiCartesianMonoidalCategory.fst
lift_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_fst
lift_fst_comp_snd_comp 📖mathematicallift
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.MonoidalCategoryStruct.tensorHom
hom_ext
lift_fst
tensorHom_fst
lift_snd
tensorHom_snd
lift_fst_snd 📖mathematicallift
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
hom_ext
lift_fst
CategoryTheory.Category.id_comp
lift_snd
lift_leftUnitor_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
lift
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.eq_comp_inv
hom_ext
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
lift_snd
CategoryTheory.Category.assoc
leftUnitor_inv_snd
CategoryTheory.Category.comp_id
lift_leftUnitor_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
lift
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_leftUnitor_hom
lift_lift_associator_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
hom_ext
CategoryTheory.Category.assoc
associator_hom_fst
lift_fst_assoc
lift_fst
associator_hom_snd_fst
lift_snd
associator_hom_snd_snd
lift_lift_associator_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_lift_associator_hom
lift_lift_associator_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
hom_ext
CategoryTheory.Category.assoc
associator_inv_fst_fst
lift_fst
associator_inv_fst_snd
lift_snd_assoc
lift_snd
associator_inv_snd
lift_lift_associator_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_lift_associator_inv
lift_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.MonoidalCategoryStruct.tensorHom
hom_ext
CategoryTheory.Category.assoc
tensorHom_fst
lift_fst_assoc
lift_fst
tensorHom_snd
lift_snd_assoc
lift_snd
lift_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_map
lift_rightUnitor_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
lift
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Iso.eq_comp_inv
hom_ext
lift_fst
CategoryTheory.Category.assoc
rightUnitor_inv_fst
CategoryTheory.Category.comp_id
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
lift_rightUnitor_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
lift
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_rightUnitor_hom
lift_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.SemiCartesianMonoidalCategory.snd
lift_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_snd
lift_snd_comp_fst_comp 📖mathematicallift
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonoidalCategoryStruct.tensorHom
hom_ext
lift_fst
CategoryTheory.Category.assoc
tensorHom_fst
braiding_hom_fst_assoc
lift_snd
tensorHom_snd
braiding_hom_snd_assoc
lift_snd_comp_fst_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_snd_comp_fst_comp
lift_snd_fst 📖mathematicallift
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
hom_ext
lift_fst
braiding_hom_fst
lift_snd
braiding_hom_snd
lift_whiskerLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
hom_ext
CategoryTheory.Category.assoc
whiskerLeft_fst
lift_fst
whiskerLeft_snd
lift_snd_assoc
lift_snd
lift_whiskerLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_whiskerLeft
lift_whiskerRight 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.MonoidalCategoryStruct.whiskerRight
hom_ext
CategoryTheory.Category.assoc
whiskerRight_fst
lift_fst_assoc
lift_fst
whiskerRight_snd
lift_snd
lift_whiskerRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_whiskerRight
map_toUnit_comp_terminalComparison 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
terminalComparison
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
map_toUnit_comp_terminalComparison_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
terminalComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_toUnit_comp_terminalComparison
mono_lift_of_mono_left 📖mathematicalCategoryTheory.Mono
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.mono_of_mono_fac
lift_fst
mono_lift_of_mono_right 📖mathematicalCategoryTheory.Mono
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift
CategoryTheory.mono_of_mono_fac
lift_snd
preservesLimit_empty_of_isIso_terminalComparison 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Limits.preservesLimit_of_preserves_limit_cone
preservesLimit_pair_of_isIso_prodComparison 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.preservesLimit_of_preserves_limit_cone
CategoryTheory.Category.comp_id
prodComparison_fst
CategoryTheory.Category.id_comp
prodComparison_snd
preservesLimitsOfShape_discrete_walkingPair_of_isIso_prodComparison 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparison
CategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.preservesLimit_of_iso_diagram
preservesLimit_pair_of_isIso_prodComparison
preservesTerminalIso_comp 📖mathematicalpreservesTerminalIso
CategoryTheory.Functor.comp
CategoryTheory.Iso.trans
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.ext
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
preservesTerminalIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
preservesTerminalIso
terminalComparison
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
preservesTerminalIso_id 📖mathematicalpreservesTerminalIso
CategoryTheory.Functor.id
CategoryTheory.preservesLimit_of_createsLimit_and_hasLimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.CreatesLimitsOfShape.CreatesLimit
CategoryTheory.CreatesLimitsOfSize.CreatesLimitsOfShape
CategoryTheory.idCreatesLimits
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
instHasFiniteProducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Functor.comp
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.preservesLimit_of_createsLimit_and_hasLimit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Iso.ext
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
prodComparisonBifunctorNatIso_hom 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
prodComparisonBifunctorNatIso
prodComparisonBifunctorNatTrans
prodComparisonBifunctorNatIso_inv 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
prodComparisonBifunctorNatIso
CategoryTheory.inv
prodComparisonBifunctorNatTrans
prodComparisonBifunctorNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
prodComparisonBifunctorNatTrans
prodComparisonNatTrans
prodComparisonBifunctorNatTrans_comp 📖mathematicalprodComparisonBifunctorNatTrans
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
CategoryTheory.NatTrans.ext'
prodComparison_comp
prodComparisonIso_comp 📖mathematicalprodComparisonIso
CategoryTheory.Functor.comp
CategoryTheory.Iso.trans
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.ext
hom_ext
lift_fst
comp_lift
CategoryTheory.Functor.map_comp
lift_snd
prodComparisonIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparisonIso
prodComparison
prodComparisonIso_id 📖mathematicalprodComparisonIso
CategoryTheory.Functor.id
CategoryTheory.preservesLimit_of_createsLimit_and_hasLimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.CreatesLimitsOfShape.CreatesLimit
CategoryTheory.CreatesLimitsOfSize.CreatesLimitsOfShape
CategoryTheory.idCreatesLimits
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Functor.comp
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Iso.ext
CategoryTheory.preservesLimit_of_createsLimit_and_hasLimit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
instHasFiniteProducts
Finite.of_fintype
hom_ext
prodComparison_id
CategoryTheory.Category.id_comp
prodComparisonNatIso_hom 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparisonNatIso
prodComparisonNatTrans
prodComparisonNatIso_inv 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparisonNatIso
CategoryTheory.inv
prodComparisonNatTrans
prodComparisonNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparisonNatTrans
prodComparison
prodComparisonNatTrans_comp 📖mathematicalprodComparisonNatTrans
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.whiskerLeft
CategoryTheory.NatTrans.ext'
prodComparison_comp
prodComparisonNatTrans_id 📖mathematicalprodComparisonNatTrans
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.NatTrans.ext'
prodComparison_id
prodComparison_comp 📖mathematicalprodComparison
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
hom_ext
lift_fst
comp_lift
CategoryTheory.Functor.map_comp
lift_snd
prodComparison_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparison
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Functor.map
lift_fst
prodComparison_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparison
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
prodComparison_fst
prodComparison_id 📖mathematicalprodComparison
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
lift_fst_snd
prodComparison_inv_natural 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.IsIso.eq_comp_inv
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_comp_eq
prodComparison_natural
prodComparison_inv_natural_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
prodComparison_inv_natural
prodComparison_inv_natural_whiskerLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.IsIso.eq_comp_inv
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_comp_eq
prodComparison_natural_whiskerLeft
prodComparison_inv_natural_whiskerLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
prodComparison_inv_natural_whiskerLeft
prodComparison_inv_natural_whiskerRight 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.IsIso.eq_comp_inv
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_comp_eq
prodComparison_natural_whiskerRight
prodComparison_inv_natural_whiskerRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.inv
prodComparison
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
prodComparison_inv_natural_whiskerRight
prodComparison_natural 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorHom
prodComparison
hom_ext
CategoryTheory.Category.assoc
prodComparison_fst
CategoryTheory.Functor.map_comp
tensorHom_fst
prodComparison_fst_assoc
prodComparison_snd
tensorHom_snd
prodComparison_snd_assoc
prodComparison_natural_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorHom
prodComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
prodComparison_natural
prodComparison_natural_whiskerLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
prodComparison
hom_ext
CategoryTheory.Category.assoc
prodComparison_fst
whiskerLeft_fst
prodComparison_snd
whiskerLeft_snd
prodComparison_snd_assoc
prodComparison_natural_whiskerLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
prodComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
prodComparison_natural_whiskerLeft
prodComparison_natural_whiskerRight 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
prodComparison
hom_ext
CategoryTheory.Category.assoc
prodComparison_fst
whiskerRight_fst
prodComparison_fst_assoc
prodComparison_snd
whiskerRight_snd
prodComparison_natural_whiskerRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
prodComparison
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
prodComparison_natural_whiskerRight
prodComparison_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparison
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Functor.map
lift_snd
prodComparison_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
prodComparison
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
prodComparison_snd
rightUnitor_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.Limits.IsTerminal.from_self
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.id_comp
rightUnitor_inv_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.CategoryStruct.id
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.Limits.IsTerminal.from_self
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id
rightUnitor_inv_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_inv_fst
rightUnitor_inv_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
rightUnitor_inv_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_inv_snd
tensorHom_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.Category.assoc
whiskerLeft_fst
whiskerRight_fst
tensorHom_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorHom_fst
tensorHom_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.Category.assoc
whiskerLeft_snd
whiskerRight_snd_assoc
tensorHom_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorHom_snd
tensorδ_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategory.tensorδ
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.MonoidalCategoryStruct.tensorHom
hom_ext
CategoryTheory.Category.assoc
associator_inv_fst_fst
whiskerLeft_fst
associator_hom_fst
tensorHom_fst
associator_inv_fst_snd
whiskerLeft_snd_assoc
whiskerRight_fst_assoc
braiding_inv_fst
associator_hom_snd_snd_assoc
tensorHom_snd
tensorδ_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategory.tensorδ
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorδ_fst
tensorδ_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategory.tensorδ
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.MonoidalCategoryStruct.tensorHom
hom_ext
CategoryTheory.Category.assoc
associator_inv_snd
whiskerLeft_snd_assoc
associator_hom_snd_fst
whiskerRight_fst_assoc
braiding_inv_snd
associator_inv_fst_fst
tensorHom_fst
associator_hom_snd_snd
whiskerRight_snd
associator_hom_snd_snd_assoc
tensorHom_snd
tensorδ_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategory.tensorδ
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorδ_snd
tensorμ_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.MonoidalCategoryStruct.tensorHom
hom_ext
CategoryTheory.Category.assoc
associator_inv_fst_fst
whiskerLeft_fst
associator_hom_fst
tensorHom_fst
associator_inv_fst_snd
whiskerLeft_snd_assoc
whiskerRight_fst_assoc
braiding_hom_fst
associator_hom_snd_snd_assoc
tensorHom_snd
tensorμ_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorμ_fst
tensorμ_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.MonoidalCategoryStruct.tensorHom
hom_ext
CategoryTheory.Category.assoc
associator_inv_snd
whiskerLeft_snd_assoc
associator_hom_snd_fst
whiskerRight_fst_assoc
braiding_hom_snd
associator_inv_fst_fst
tensorHom_fst
associator_hom_snd_snd
whiskerRight_snd
associator_hom_snd_snd_assoc
tensorHom_snd
tensorμ_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorμ_snd
terminalComparison_isIso_of_preservesLimits 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
terminalComparison
preservesTerminalIso_hom
CategoryTheory.Iso.isIso_hom
whiskerLeft_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.Limits.IsTerminal.comp_from
whiskerLeft_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_fst
whiskerLeft_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
CategoryTheory.MonoidalCategory.id_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
whiskerLeft_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_snd
whiskerLeft_toUnit_comp_rightUnitor_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
hom_ext
whiskerLeft_fst
rightUnitor_inv_fst
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
whiskerLeft_toUnit_comp_rightUnitor_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_toUnit_comp_rightUnitor_hom
whiskerRight_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.fst_def
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
whiskerRight_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_fst
whiskerRight_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.SemiCartesianMonoidalCategory.snd_def
CategoryTheory.Limits.IsTerminal.comp_from
whiskerRight_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_snd
whiskerRight_toUnit_comp_leftUnitor_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
hom_ext
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
whiskerRight_snd
leftUnitor_inv_snd
whiskerRight_toUnit_comp_leftUnitor_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_toUnit_comp_leftUnitor_hom

CategoryTheory.CartesianMonoidalCategory.ofChosenFiniteProducts

Definitions

NameCategoryTheorems
tensorHom 📖CompOp
7 mathmath: id_tensorHom_id, associator_naturality, leftUnitor_naturality, triangle, pentagon, tensorHom_comp_tensorHom, rightUnitor_naturality
tensorObj 📖CompOp
7 mathmath: id_tensorHom_id, associator_naturality, leftUnitor_naturality, triangle, pentagon, tensorHom_comp_tensorHom, rightUnitor_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
associator_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
tensorObj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.LimitCone.cone
tensorHom
CategoryTheory.Iso.hom
CategoryTheory.Limits.BinaryFan.associatorOfLimitCone
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
CategoryTheory.Limits.IsLimit.fac_assoc
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp_assoc
id_tensorHom_id 📖mathematicaltensorHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
tensorObj
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftUnitor_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
tensorObj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Limits.LimitCone.cone
tensorHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.BinaryFan.leftUnitor
CategoryTheory.Limits.LimitCone.isLimit
CategoryTheory.Limits.IsLimit.fac
pentagon 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
tensorObj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.LimitCone.cone
tensorHom
CategoryTheory.Iso.hom
CategoryTheory.Limits.BinaryFan.associatorOfLimitCone
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
CategoryTheory.Limits.IsLimit.fac_assoc
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp_assoc
rightUnitor_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
tensorObj
CategoryTheory.Limits.Cone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Limits.LimitCone.cone
tensorHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.BinaryFan.rightUnitor
CategoryTheory.Limits.LimitCone.isLimit
CategoryTheory.Limits.IsLimit.fac
tensorHom_comp_tensorHom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
tensorObj
tensorHom
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Limits.IsLimit.fac_assoc
triangle 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Functor.empty
CategoryTheory.Limits.LimitCone.cone
tensorObj
CategoryTheory.Iso.hom
CategoryTheory.Limits.BinaryFan.associatorOfLimitCone
tensorHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.BinaryFan.leftUnitor
CategoryTheory.Limits.LimitCone.isLimit
CategoryTheory.Limits.BinaryFan.rightUnitor
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp_assoc

CategoryTheory.Functor.Braided

Definitions

NameCategoryTheorems
ofChosenFiniteProducts 📖CompOp
2 mathmath: CategoryTheory.Functor.mapCommGrpFunctor_obj, CategoryTheory.Functor.mapCommGrpFunctor_map

Theorems

NameKindAssumesProvesValidatesDepends On
instSubsingleton 📖mathematicalCategoryTheory.Functor.Braided
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Function.Injective.subsingleton
toMonoidal_injective
CategoryTheory.Functor.Monoidal.instSubsingleton

CategoryTheory.Functor.EssImageSubcategory

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_def 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.essImage
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.fullSubcategory
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.ObjectProperty.homMk
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
associator_inv_def 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.essImage
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.fullSubcategory
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.ObjectProperty.homMk
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
lift_def 📖mathematicalCategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.essImage
CategoryTheory.CartesianMonoidalCategory.fullSubcategory
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.ObjectProperty.homMk
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
tensor_obj 📖mathematicalCategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.essImage
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.fullSubcategory
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
toUnit_def 📖mathematicalCategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.essImage
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.fullSubcategory
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.ObjectProperty.homMk
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts

CategoryTheory.Functor.Monoidal

Definitions

NameCategoryTheorems
ofChosenFiniteProducts 📖CompOp
2 mathmath: CategoryTheory.Functor.mapGrpFunctor_obj, CategoryTheory.Functor.mapGrpFunctor_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
instPreservesFiniteProducts 📖mathematicalCategoryTheory.Limits.PreservesFiniteProductsinstIsIsoδ
CategoryTheory.Functor.OplaxMonoidal.δ_of_cartesianMonoidalCategory
instIsIsoη
CategoryTheory.Functor.OplaxMonoidal.η_of_cartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.preservesLimitsOfShape_discrete_walkingPair_of_isIso_prodComparison
CategoryTheory.CartesianMonoidalCategory.preservesLimit_empty_of_isIso_terminalComparison
CategoryTheory.Limits.preservesLimitsOfShape_pempty_of_preservesTerminal
CategoryTheory.Limits.PreservesFiniteProducts.of_preserves_binary_and_terminal
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
instSubsingleton 📖mathematicalCategoryTheory.Functor.Monoidal
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Function.Injective.subsingleton
toOplaxMonoidal_injective
CategoryTheory.Functor.OplaxMonoidal.instSubsingleton
lift_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
μ_δ
CategoryTheory.Category.comp_id
CategoryTheory.Functor.OplaxMonoidal.lift_δ
lift_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_μ
nonempty_monoidal_iff_preservesFiniteProducts 📖mathematicalCategoryTheory.Functor.Monoidal
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Limits.PreservesFiniteProducts
instPreservesFiniteProducts
toUnit_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
toUnit_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toUnit_ε
ε_of_cartesianMonoidalCategory 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toLaxMonoidal
CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Functor.empty
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
CategoryTheory.Iso.ext
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
μ_comp 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.comp
toLaxMonoidal
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.CartesianMonoidalCategory.hom_ext
μ_δ
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.OplaxMonoidal.δ_fst
μ_fst
CategoryTheory.Functor.OplaxMonoidal.δ_snd
μ_snd
μ_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.comp
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μ_comp
μ_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
δ_μ_assoc
CategoryTheory.Functor.OplaxMonoidal.δ_fst
μ_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μ_fst
μ_of_cartesianMonoidalCategory 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toLaxMonoidal
CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CartesianMonoidalCategory.prodComparisonIso
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
CategoryTheory.Iso.ext
CategoryTheory.Functor.OplaxMonoidal.δ_of_cartesianMonoidalCategory
μ_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
δ_μ_assoc
CategoryTheory.Functor.OplaxMonoidal.δ_snd
μ_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μ_snd

CategoryTheory.Functor.OplaxMonoidal

Definitions

NameCategoryTheorems
ofChosenFiniteProducts 📖CompOp
2 mathmath: CategoryTheory.Over.grpObjMkPullbackSnd_one, CategoryTheory.Over.grpObjMkPullbackSnd_mul

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoδ 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
δ
CategoryTheory.CartesianMonoidalCategory.isIso_prodComparison_of_preservesLimit_pair
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
δ_of_cartesianMonoidalCategory
instIsIsoη 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
η
CategoryTheory.CartesianMonoidalCategory.terminalComparison_isIso_of_preservesLimits
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
η_of_cartesianMonoidalCategory
instSubsingleton 📖mathematicalCategoryTheory.Functor.OplaxMonoidal
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
ext
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
δ_of_cartesianMonoidalCategory
lift_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.CartesianMonoidalCategory.lift
δ
CategoryTheory.CartesianMonoidalCategory.hom_ext
CategoryTheory.Category.assoc
δ_fst
CategoryTheory.CartesianMonoidalCategory.lift_fst
δ_snd
CategoryTheory.CartesianMonoidalCategory.lift_snd
lift_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.map
CategoryTheory.CartesianMonoidalCategory.lift
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_δ
δ_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
δ
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Functor.map
CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst
δ_natural_right_assoc
CategoryTheory.CartesianMonoidalCategory.rightUnitor_hom
δ_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
δ
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_fst
δ_of_cartesianMonoidalCategory 📖mathematicalδ
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.prodComparison
CategoryTheory.CartesianMonoidalCategory.hom_ext
δ_fst
CategoryTheory.CartesianMonoidalCategory.prodComparison_fst
δ_snd
CategoryTheory.CartesianMonoidalCategory.prodComparison_snd
δ_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
δ
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Functor.map
CategoryTheory.CartesianMonoidalCategory.whiskerRight_snd
δ_natural_left_assoc
CategoryTheory.CartesianMonoidalCategory.leftUnitor_hom
δ_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
δ
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_snd
η_of_cartesianMonoidalCategory 📖mathematicalη
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.terminalComparison
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique

CategoryTheory.NatTrans.IsMonoidal

Theorems

NameKindAssumesProvesValidatesDepends On
of_cartesianMonoidalCategory 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.CartesianMonoidalCategory.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Functor.Monoidal.δ_μ_assoc
CategoryTheory.Functor.OplaxMonoidal.δ_fst
CategoryTheory.Functor.Monoidal.μ_δ
CategoryTheory.Category.comp_id
CategoryTheory.CartesianMonoidalCategory.tensorHom_fst
CategoryTheory.Functor.OplaxMonoidal.δ_fst_assoc
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.OplaxMonoidal.δ_snd
CategoryTheory.CartesianMonoidalCategory.tensorHom_snd
CategoryTheory.Functor.OplaxMonoidal.δ_snd_assoc

CategoryTheory.SemiCartesianMonoidalCategory

Definitions

NameCategoryTheorems
fst 📖CompOp
100 mathmath: CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst_assoc, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_fst, CategoryTheory.CartesianMonoidalCategory.associator_hom_fst_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparison_fst, CategoryTheory.Functor.Monoidal.tensorHom_app_fst_assoc, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_fst_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_toUnit_comp_rightUnitor_hom, SSet.Truncated.Edge.map_fst, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst_assoc, CategoryTheory.CartesianMonoidalCategory.braiding_hom_snd_assoc, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_snd, CategoryTheory.symmetricOfHasFiniteProducts_braiding_hom, CategoryTheory.CartesianMonoidalCategory.tensorμ_fst_assoc, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_fst_hom, CategoryTheory.Functor.OplaxMonoidal.δ_fst_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.CartesianMonoidalCategory.braiding_inv_fst_assoc, CategoryTheory.CartesianMonoidalCategory.braiding_hom_fst, CategoryTheory.Functor.Monoidal.μ_fst_assoc, CategoryTheory.CartesianMonoidalCategory.tensorHom_fst, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_fst, SSet.ι₀_fst_assoc, CommAlgCat.fst_unop_hom, CategoryTheory.Mon.fst_hom, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_fst, CategoryTheory.Mon_Class.mul_eq_mul, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_fst_assoc, CategoryTheory.MonObj.instIsMonHomFst, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst, CategoryTheory.CartesianMonoidalCategory.tensorδ_fst_assoc, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Grp.fst_hom, CategoryTheory.CartesianMonoidalCategory.associator_hom_fst, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_snd_assoc, CategoryTheory.CartesianMonoidalCategory.lift_fst_snd, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, CategoryTheory.CartesianMonoidalCategory.braiding_inv_snd, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_toUnit_comp_rightUnitor_hom_assoc, CategoryTheory.toOverIsoToOverUnit_hom_app_left, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_fst_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_fst, CategoryTheory.CartesianMonoidalCategory.braiding_hom_fst_assoc, CategoryTheory.Functor.Monoidal.μ_fst, CategoryTheory.MonObj.ofRepresentableBy_mul, CategoryTheory.CartesianMonoidalCategory.braiding_inv_fst, CategoryTheory.Functor.OplaxMonoidal.δ_fst, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.Functor.Monoidal.fst_app, SSet.RelativeMorphism.Homotopy.ofEq_h, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst_assoc, CategoryTheory.CartesianMonoidalCategory.hom_ext_iff, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_fst, SSet.ι₁_fst, CategoryTheory.CartesianMonoidalCategory.lift_comp_fst_snd, CategoryTheory.CartesianMonoidalCategory.prodComparison_fst_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.Preadditive.mul_def, CategoryTheory.Sheaf.cartesianMonoidalCategoryFst_val, CategoryTheory.CartesianMonoidalCategory.lift_fst, SSet.ι₀_fst, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst, CategoryTheory.symmetricOfHasFiniteProducts_braiding_inv, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst, CategoryTheory.CartesianMonoidalCategory.lift_fst_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.CartesianMonoidalCategory.lift_snd_comp_fst_comp_assoc, SSet.RelativeMorphism.Homotopy.rel, CategoryTheory.CartesianMonoidalCategory.lift_fst_comp_snd_comp, SSet.RelativeMorphism.Homotopy.refl_h, CategoryTheory.CartesianMonoidalCategory.braiding_inv_snd_assoc, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.CartesianMonoidalCategory.whiskerRight_fst, CategoryTheory.CartesianMonoidalCategory.lift_snd_comp_fst_comp, fst_def, SSet.ι₁_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_fst_assoc, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_apply, CategoryTheory.Over.fst_left, CategoryTheory.CartesianMonoidalCategory.tensorμ_fst, CategoryTheory.Grp.fst_hom_hom, CategoryTheory.CartesianMonoidalCategory.lift_snd_fst, CategoryTheory.CartesianMonoidalCategory.whiskerRight_fst_assoc, CategoryTheory.CartesianMonoidalCategory.braiding_hom_snd, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst_assoc, CategoryTheory.CartesianMonoidalCategory.rightUnitor_hom, CategoryTheory.forgetAdjToOver_counit_app, CategoryTheory.CartesianMonoidalCategory.tensorδ_fst, CategoryTheory.toUnit_comp_curryRightUnitorHom, CategoryTheory.MonObj.mul_eq_mul, CategoryTheory.CartesianMonoidalCategory.tensorHom_fst_assoc, SSet.RelativeMorphism.Homotopy.rel_assoc
instUniqueHomTensorUnit 📖CompOp
1 mathmath: default_eq_toUnit
isTerminalTensorUnit 📖CompOp
3 mathmath: CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, fst_def, snd_def
snd 📖CompOp
98 mathmath: CategoryTheory.CartesianMonoidalCategory.prodComparison_snd, CategoryTheory.CartesianMonoidalCategory.tensorδ_snd, SSet.ι₀_snd_assoc, CategoryTheory.zeroMul_hom, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_fst_assoc, CategoryTheory.Functor.OplaxMonoidal.δ_snd_assoc, CategoryTheory.CartesianMonoidalCategory.tensorδ_snd_assoc, CategoryTheory.toOver_obj_hom, CategoryTheory.CartesianMonoidalCategory.associator_inv_snd, CategoryTheory.CartesianMonoidalCategory.braiding_hom_snd_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerRight_snd_assoc, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_snd, CategoryTheory.Functor.OplaxMonoidal.δ_snd, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_snd_hom, CategoryTheory.symmetricOfHasFiniteProducts_braiding_hom, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_snd_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.CartesianMonoidalCategory.braiding_inv_fst_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, CategoryTheory.CartesianMonoidalCategory.braiding_hom_fst, CategoryTheory.MonObj.instIsMonHomSnd, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', CategoryTheory.CartesianMonoidalCategory.tensorHom_snd_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparison_snd_assoc, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_fst, CategoryTheory.Sheaf.cartesianMonoidalCategorySnd_val, CategoryTheory.CartesianMonoidalCategory.tensorμ_snd, CategoryTheory.Grp.snd_hom, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_snd, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_snd_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, CategoryTheory.CartesianMonoidalCategory.associator_inv_snd_assoc, SSet.ι₀_snd, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_snd_assoc, CategoryTheory.Mon_Class.mul_eq_mul, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_snd_assoc, SSet.ι₁_snd_assoc, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_snd_assoc, SSet.ι₁_snd, CommAlgCat.snd_unop_hom, SSet.Truncated.Edge.map_snd, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_snd_assoc, CategoryTheory.CartesianMonoidalCategory.lift_fst_snd, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd_assoc, CategoryTheory.CartesianMonoidalCategory.braiding_inv_snd, CategoryTheory.CartesianMonoidalCategory.tensorHom_snd, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_snd, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.CartesianMonoidalCategory.whiskerRight_toUnit_comp_leftUnitor_hom, CategoryTheory.CartesianMonoidalCategory.lift_snd, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd, CategoryTheory.Over.snd_left, CategoryTheory.CartesianMonoidalCategory.lift_snd_assoc, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_snd, CategoryTheory.CartesianMonoidalCategory.braiding_hom_fst_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.MonObj.ofRepresentableBy_mul, CategoryTheory.CartesianMonoidalCategory.braiding_inv_fst, CategoryTheory.Functor.Monoidal.tensorHom_app_snd, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_snd, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_snd, CategoryTheory.Functor.Monoidal.snd_app, CategoryTheory.CartesianMonoidalCategory.hom_ext_iff, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.Functor.Monoidal.tensorHom_app_snd_assoc, CategoryTheory.CartesianMonoidalCategory.lift_comp_fst_snd, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.Preadditive.mul_def, CategoryTheory.Grp.snd_hom_hom, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, CategoryTheory.toOver_map_left, CategoryTheory.Functor.Monoidal.μ_snd, CategoryTheory.symmetricOfHasFiniteProducts_braiding_inv, CategoryTheory.Functor.Monoidal.μ_snd_assoc, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd, CategoryTheory.CartesianMonoidalCategory.lift_snd_comp_fst_comp_assoc, CategoryTheory.CartesianMonoidalCategory.lift_fst_comp_snd_comp, CategoryTheory.CartesianMonoidalCategory.braiding_inv_snd_assoc, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.CartesianMonoidalCategory.lift_snd_comp_fst_comp, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_apply, CategoryTheory.CartesianMonoidalCategory.lift_snd_fst, CategoryTheory.Mod_.trivialAction_mod_smul, CategoryTheory.CartesianMonoidalCategory.braiding_hom_snd, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd_assoc, snd_def, CategoryTheory.MonObj.mul_eq_mul, CategoryTheory.CartesianMonoidalCategory.tensorμ_snd_assoc, CategoryTheory.Mon.snd_hom, CategoryTheory.CartesianMonoidalCategory.leftUnitor_hom, CategoryTheory.CartesianMonoidalCategory.whiskerRight_snd, CategoryTheory.CartesianMonoidalCategory.whiskerRight_toUnit_comp_leftUnitor_hom_assoc
toMonoidalCategory 📖CompOp
845 mathmath: CategoryTheory.Sheaf.cartesianMonoidalCategoryLift_val, CategoryTheory.Grp.Hom.hom_div, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Grp.comp', CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_inv_toFunctor, CategoryTheory.Enriched.Functor.associator_inv_apply, CategoryTheory.GrpObj.lift_inv_comp_left, LightCondensed.free_internallyProjective_iff_tensor_condition, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.Functor.natTransEquiv_apply_app, CategoryTheory.Grp.instIsIsoHomHomMon, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.homObjEquiv_apply_app, CategoryTheory.Grp.homMk'_hom, CategoryTheory.CartesianMonoidalCategory.prodComparison_snd, CategoryTheory.CartesianMonoidalCategory.tensorδ_snd, CategoryTheory.CartesianCopyDiscard.instDeterministic, CategoryTheory.CommGrp.instFullCommMonForget₂CommMon, CategoryTheory.comonEquiv_unitIso, SSet.Truncated.tensor_map_apply_snd, Action.leftRegularTensorIso_inv_hom, CategoryTheory.Equivalence.mapGrp_counitIso, CategoryTheory.Functor.Monoidal.rightUnitor_inv_app, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, AlgebraicGeometry.isCommMonObj_of_isProper_of_geometricallyIntegral, CategoryTheory.Grp.Hom.hom_hom_zpow, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst_assoc, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Over.associator_inv_left_snd, SSet.ι₀_snd_assoc, CategoryTheory.CommGrp.comm, CategoryTheory.instFullMonFunctorOppositeMonCatYonedaMon, CategoryTheory.SimplicialThickening.SimplicialCategory.comp_id, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_fst, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, CategoryTheory.Functor.map_mul, CategoryTheory.zeroMul_hom, CategoryTheory.CartesianMonoidalCategory.associator_hom_fst_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparison_fst, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.Functor.Monoidal.tensorHom_app_fst_assoc, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_fst_assoc, CategoryTheory.Grp.id', CategoryTheory.Enriched.Functor.whiskerLeft_app_apply, CategoryTheory.GrpObj.lift_inv_right_eq, CategoryTheory.prodComparison_iso, SSet.iSup_subcomplexOfSimplex_prod_eq_top, CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, CategoryTheory.Functor.OplaxMonoidal.δ_snd_assoc, CategoryTheory.CartesianMonoidalCategory.tensorδ_snd_assoc, CategoryTheory.counit_eq_toUnit, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, CategoryTheory.μ_def, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, CategoryTheory.CartesianMonoidalCategory.lift_leftUnitor_hom_assoc, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CategoryTheory.Functor.EssImageSubcategory.associator_inv_def, CategoryTheory.Grp.trivial_grp_inv, Action.diagonalSuccIsoTensorDiagonal_inv_hom, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_rightUnitor_hom_hom, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_toUnit_comp_rightUnitor_hom, SSet.instHasDimensionLETensorUnitOfNatNat, CategoryTheory.Grp.whiskerLeft_hom_hom, CategoryTheory.GrpObj.left_inv_assoc, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_leftUnitor_inv_hom, CategoryTheory.MonObj.instIsMonHomOne, SSet.tensorHom_app_apply, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.MonObj.instIsMonHomToUnit, CategoryTheory.Functor.FullyFaithful.homMulEquiv_apply, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, CategoryTheory.CartesianMonoidalCategory.instSubsingletonBraidedCategory, CategoryTheory.Over.grpObjMkPullbackSnd_one, CategoryTheory.CartesianMonoidalCategory.associator_inv_snd, CategoryTheory.Functor.EssImageSubcategory.associator_hom_def, SSet.prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, SSet.Truncated.Edge.map_fst, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorObj_obj, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.Functor.Monoidal.toUnit_ε_assoc, CategoryTheory.Functor.OplaxMonoidal.η_of_cartesianMonoidalCategory, CategoryTheory.Grp.leftUnitor_hom_hom, CategoryTheory.CartesianCopyDiscard.instIsCommComonObjOfCartesian, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst_assoc, CategoryTheory.CartesianMonoidalCategory.braiding_hom_snd_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, CategoryTheory.CartesianMonoidalCategory.whiskerRight_snd_assoc, CategoryTheory.comonEquiv_functor, CategoryTheory.CommGrp.toCommMon_X, CategoryTheory.Monoidal.whiskerRight_fst, CategoryTheory.MonObj.lift_comp_one_right, CategoryTheory.Functor.Monoidal.tensorObj_map, CategoryTheory.Functor.Monoidal.lift_μ_assoc, CategoryTheory.Functor.OplaxMonoidal.δ_of_cartesianMonoidalCategory, CategoryTheory.toOver_obj_left, CategoryTheory.Functor.Monoidal.tensorObjComp_hom_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_snd, CategoryTheory.Functor.OplaxMonoidal.δ_snd, CategoryTheory.Over.toUnit_left, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_snd_hom, CategoryTheory.Functor.Monoidal.nonempty_monoidal_iff_preservesFiniteProducts, SSet.hasDimensionLT_prod, CategoryTheory.monoidalOfHasFiniteProducts.δ_eq, CategoryTheory.Over.braiding_inv_left, CategoryTheory.leftUnitor_hom_apply, SSet.RelativeMorphism.Homotopy.h₀_assoc, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.Grp.ε_def, CategoryTheory.toOverUnit_map_left, CategoryTheory.Grp.rightUnitor_hom_hom_hom, SSet.prodStdSimplex.objEquiv_apply_fst, CategoryTheory.MonObj.ofRepresentableBy_one, CategoryTheory.GrpObj.lift_inv_comp_right, AddGrpCat.tensorObj_eq, CategoryTheory.IsSifted.instIsIsoObjFunctorTypeColimTensorObjProdComparison, CategoryTheory.sheafToPresheaf_μ, CategoryTheory.symmetricOfHasFiniteProducts_braiding_hom, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.comul_eq_lift, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Grp.lift_hom, CategoryTheory.CartesianMonoidalCategory.tensorμ_fst_assoc, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_snd_assoc, CategoryTheory.Over.tensorObj_ext_iff, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatIso_inv, CategoryTheory.Grp.hom_mul, CategoryTheory.coev_expComparison, CategoryTheory.types_tensorUnit_def, CategoryTheory.frobeniusMorphism_mate, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_fst_hom, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.Functor.OplaxMonoidal.δ_fst_assoc, CategoryTheory.MonoidalClosedFunctor.comparison_iso, SSet.instFiniteTensorUnit, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, CategoryTheory.CartesianMonoidalCategory.prodComparisonIso_hom, CategoryTheory.MonObj.lift_lift_assoc, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.MonObj.lift_comp_one_right_assoc, CategoryTheory.CartesianMonoidalCategory.lift_braiding_hom, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.Grp.Hom.hom_zpow, CategoryTheory.CartesianMonoidalCategory.braiding_inv_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.Preadditive.instIsCommMonObj, CategoryTheory.CartesianMonoidalCategory.instSubsingletonSymmetricCategory, CategoryTheory.GrpObj.one_inv_assoc, CategoryTheory.Functor.mapGrp_obj_grp_one, SSet.prodStdSimplex.strictMono_orderHomOfSimplex_iff, CategoryTheory.NatTrans.IsMonoidal.of_cartesianMonoidalCategory, CommGrpCat.μ_forget_apply, CategoryTheory.Cat.ihom_obj, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, SSet.Subcomplex.ofSimplexProd_eq_range, CategoryTheory.Over.whiskerRight_left_fst, SSet.Truncated.Edge.CompStruct.tensor_simplex_snd, CategoryTheory.Functor.homObjEquiv_symm_apply_app, CategoryTheory.Over.preservesTerminalIso_pullback, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, SSet.prodStdSimplex.objEquiv_δ_apply, CategoryTheory.Adjunction.mapCommGrp_unit, CategoryTheory.CartesianMonoidalCategory.comp_lift, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_associator_inv_hom, CategoryTheory.Functor.mapGrp_id_one, CategoryTheory.Grp.associator_inv_hom_hom, CategoryTheory.Functor.Monoidal.μ_comp_assoc, CategoryTheory.GrpObj.η_whiskerRight_commutator_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparison_id, CategoryTheory.associator_inv_apply, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.bijection_natural, CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_inv_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, SSet.Truncated.Edge.id_tensor_id, CategoryTheory.CartesianMonoidalCategory.braiding_hom_fst, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.IsCommMonObj.ofRepresentableBy, CategoryTheory.Grp.Hom.hom_hom_div, CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_inv, CategoryTheory.Grp.leftUnitor_hom_hom_hom, SSet.prodStdSimplex.objEquiv_naturality, CategoryTheory.CommGrp.instIsIsoMonHomGrp, CategoryTheory.Sheaf.tensorProd_isSheaf, CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_η, CategoryTheory.toOverUnit_obj_left, CategoryTheory.Functor.Monoidal.μ_fst_assoc, CategoryTheory.Grp.forget_map, CategoryTheory.CartesianMonoidalCategory.tensorHom_fst, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.Mon.lift_hom, comp_toUnit_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.IsCommMon.ofRepresentableBy, CategoryTheory.CommGrp.forget₂CommMon_map_hom, CategoryTheory.Functor.EssImageSubcategory.tensor_obj, CategoryTheory.essImage_yonedaMon, CategoryTheory.CommGrp.trivial_X, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.MonObj.instIsMonHomSnd, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_whiskerLeft_assoc, CategoryTheory.CommGrp.forget₂Grp_obj_mul, CategoryTheory.CartesianMonoidalCategory.lift_braiding_inv, CategoryTheory.CartesianMonoidalCategory.tensorHom_snd_assoc, CategoryTheory.CartesianMonoidalCategory.map_toUnit_comp_terminalComparison_assoc, SSet.instFiniteTensorObj, CategoryTheory.Adjunction.mapGrp_unit, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, CategoryTheory.Functor.OplaxMonoidal.instSubsingleton, CategoryTheory.CartesianMonoidalCategory.prodComparison_snd_assoc, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.Grp.rightUnitor_inv_hom_hom, CategoryTheory.Monoidal.whiskerRight, CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.Grp.forget₂Mon_map_hom, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_assoc, SSet.prodStdSimplex.objEquiv_apply_snd, SSet.hoFunctor.unitHomEquiv_eq, CategoryTheory.GrpObj.tensorHom_inv_inv_mul_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.instFaithfulMonFunctorOppositeMonCatYonedaMon, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorUnit_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_hom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.leftUnitor_inv_apply, CommAlgCat.lift_unop_hom, CategoryTheory.CartesianMonoidalCategory.lift_rightUnitor_hom_assoc, CategoryTheory.Over.tensorUnit_hom, CategoryTheory.Grp.whiskerRight_hom_hom, SSet.instFiniteObjOppositeSimplexCategoryTensorObj, CategoryTheory.Over.leftUnitor_inv_left_fst, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_fst, CategoryTheory.Monoidal.tensorHom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, CategoryTheory.Sheaf.cartesianMonoidalCategorySnd_val, CategoryTheory.Hom.mul_def, CategoryTheory.Grp.Hom.hom_hom_inv, CategoryTheory.associator_hom_apply_1, SSet.leftUnitor_inv_app_apply, SSet.ι₀_fst_assoc, SSet.ι₁_comp, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_obj, CategoryTheory.CatEnrichedOrdinary.Hom.mk_comp, CategoryTheory.expComparison_whiskerLeft, CategoryTheory.CartesianMonoidalCategory.tensorμ_snd, CommAlgCat.fst_unop_hom, CategoryTheory.Mon.fst_hom, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.MonObj.lift_comp_one_left, CategoryTheory.Grp.μ_def, CategoryTheory.Grp.snd_hom, CategoryTheory.Functor.OplaxMonoidal.lift_δ, CategoryTheory.Grp.tensorUnit_mul, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_snd, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatIso_hom, SSet.whiskerRight_app_apply, CategoryTheory.braiding_hom_apply, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_snd_assoc, CategoryTheory.CommGrp.trivial_grp_one, SSet.rightUnitor_inv_app_apply, CategoryTheory.Over.leftUnitor_inv_left_snd, SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, CategoryTheory.CartesianMonoidalCategory.associator_inv_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.MonObj.instIsMonHomLift, GrpCat.tensorObj_eq, CategoryTheory.Monoidal.rightUnitor_hom, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.bijection_symm_apply_id, CategoryTheory.Enriched.Functor.associator_hom_apply, CategoryTheory.Over.μ_pullback_left_fst_snd', SSet.ι₀_snd, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_left, CategoryTheory.sheafToPresheaf_δ, SSet.Truncated.Edge.CompStruct.tensor_simplex_fst, CategoryTheory.Grp.tensorUnit_X, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, CategoryTheory.Grp.whiskerLeft_hom, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', SSet.Truncated.HomotopyCategory.BinaryProduct.inverseCompFunctorIso_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.Functor.chosenProd_obj, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_snd_assoc, CategoryTheory.CatEnrichedOrdinary.Hom.id_eq, CategoryTheory.Mon_Class.mul_eq_mul, SSet.Truncated.Edge.map_associator_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.Monoidal.μ_of_cartesianMonoidalCategory, CategoryTheory.SimplicialThickening.functor_map, CategoryTheory.Grp.leftUnitor_inv_hom_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_map, CategoryTheory.Equivalence.mapCommGrp_unitIso, CategoryTheory.GrpObj.one_inv, CategoryTheory.GrpObj.mulRight_one, CategoryTheory.yonedaMon_map_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_snd_assoc, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_fst_assoc, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, CategoryTheory.Enriched.Functor.whiskerRight_app_apply, CategoryTheory.CartesianMonoidalCategory.prodComparison_comp, SSet.ι₁_snd_assoc, CategoryTheory.Functor.OplaxMonoidal.instIsIsoη, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.GrpObj.tensorObj.inv_def, CategoryTheory.MonObj.instIsMonHomFst, ModuleCat.free_ε_one, CategoryTheory.Grp.rightUnitor_inv_hom, CategoryTheory.Functor.Monoidal.toUnit_ε, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_snd_assoc, SSet.instHasDimensionLETensorObjHAddNat, CategoryTheory.CartesianMonoidalCategory.map_toUnit_comp_terminalComparison, SSet.ι₁_app_fst, SSet.ι₁_snd, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.CommGrp.instFaithfulCommMonForget₂CommMon, CategoryTheory.Monoidal.associator_hom, Rep.linearization_η_hom_apply, CategoryTheory.CommGrp.hom_ext_iff, CategoryTheory.associator_inv_apply_1_2, CategoryTheory.Grp.forget₂Mon_obj_mul, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_hom_toFunctor, CategoryTheory.CartesianMonoidalCategory.prodComparisonNatTrans_comp, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_whiskerRight, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.Grp.Hom.hom_pow, CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_hom, CategoryTheory.Grp.δ_def, SSet.whiskerLeft_app_apply, CategoryTheory.GrpObj.whiskerLeft_η_commutator, CategoryTheory.Grp.associator_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv, CategoryTheory.isoCartesianComon_hom_hom, ModuleCat.FreeMonoidal.εIso_inv_freeMk, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, CategoryTheory.Grp.toMon_X, CategoryTheory.frobeniusMorphism_iso_of_preserves_binary_products, CategoryTheory.instIsMonHomInvOfIsCommMonObj, CategoryTheory.Grp.braiding_inv_hom, CategoryTheory.Monoidal.whiskerLeft_snd, CategoryTheory.Over.sections_obj, CategoryTheory.Grp.mkIso'_hom_hom_hom, CategoryTheory.GrpObj.lift_inv_left_eq, CategoryTheory.Functor.comp_mapCommGrp_mul, SSet.Subcomplex.prod_obj, CategoryTheory.CartesianMonoidalCategory.prodComparisonNatIso_hom, CommAlgCat.snd_unop_hom, CategoryTheory.Grp.id_hom, CategoryTheory.Functor.Monoidal.tensorObjComp_inv_app, CategoryTheory.CartesianMonoidalCategory.tensorδ_fst_assoc, SSet.Truncated.Edge.map_whiskerLeft, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, AddCommGrpCat.μ_forget_apply, Action.leftRegularTensorIso_hom_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_comp, CategoryTheory.equivToOverUnit_counitIso, SSet.Truncated.HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, ModuleCat.free_η_freeMk, CategoryTheory.Over.tensorHom_left, SSet.Truncated.Edge.map_snd, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Grp.fst_hom, CategoryTheory.CartesianMonoidalCategory.associator_hom_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_comp_inverse, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.isCommMonObj_iff_isMulCommutative, CategoryTheory.Functor.chosenProd_map, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, CategoryTheory.CartesianMonoidalCategory.lift_whiskerLeft, LightCondensed.free_internallyProjective_iff_tensor_condition', SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, AddCommGrpCat.tensorObj_eq, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_snd_assoc, CategoryTheory.CartesianMonoidalCategory.lift_fst_snd, CategoryTheory.Equivalence.mapGrp_unitIso, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_whiskerRight_assoc, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, SSet.instHasDimensionLTTensorObjHAddNat, CategoryTheory.Mon.instIsCommMonObj, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.Grp.tensorUnit_one, CategoryTheory.Mon.Hom.hom_mul, CategoryTheory.CartesianMonoidalCategory.prodComparisonNatTrans_id, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd_assoc, CategoryTheory.CartesianMonoidalCategory.braiding_inv_snd, CategoryTheory.CartesianMonoidalCategory.terminalComparison_isIso_of_preservesLimits, CategoryTheory.CartesianMonoidalCategory.tensorHom_snd, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.instIsMonHomInvHomOfIsCommMonObj, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_functor, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, CategoryTheory.Over.monObjMkPullbackSnd_one, CategoryTheory.CommGrp.forget₂Grp_obj_one, CategoryTheory.GrpObj.whiskerLeft_η_commutator_assoc, ModuleCat.free_μ_freeMk_tmul_freeMk, CategoryTheory.GrpObj.isPullback, CategoryTheory.uncurry_expComparison, AddGrpCat.μ_forget_apply, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_whiskerLeft, CategoryTheory.Functor.FullyFaithful.homMulEquiv_symm_apply, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_toUnit_comp_rightUnitor_hom_assoc, CategoryTheory.toOverIsoToOverUnit_hom_app_left, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_snd, CommGrpCat.tensorObj_eq, ModuleCat.FreeMonoidal.μIso_hom_freeMk_tmul_freeMk, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.Cat.ihom_map, SSet.prodStdSimplex.objEquiv_map_apply, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_fst_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparisonNatIso_inv, CategoryTheory.types_tensorObj_def, CategoryTheory.CartesianMonoidalCategory.whiskerRight_toUnit_comp_leftUnitor_hom, CategoryTheory.Functor.mapCommGrp_id_one, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, CategoryTheory.CartesianMonoidalCategory.lift_braiding_hom_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_fst, SSet.Truncated.Edge.map_tensorHom, CategoryTheory.CartesianMonoidalCategory.lift_snd, CategoryTheory.associator_hom_apply, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.SimplicialThickening.SimplicialCategory.assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.SemilatticeInf.tensorUnit, CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso_hom, CategoryTheory.Functor.Monoidal.μ_comp, CategoryTheory.CommGrp.forget₂Grp_map_hom, CategoryTheory.Over.snd_left, CategoryTheory.Monoidal.tensorUnit, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Grp.comp_hom_hom, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, CategoryTheory.GrpObj.toMon_Class_injective, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoδ, CategoryTheory.CartesianMonoidalCategory.lift_snd_assoc, CategoryTheory.CommGrp.forget₂CommMon_obj_mul, CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_snd, CategoryTheory.CatEnrichedOrdinary.Hom.comp_eq, CategoryTheory.Grp.braiding_inv_hom_hom, CategoryTheory.Over.whiskerRight_left_snd, CategoryTheory.CartesianMonoidalCategory.braiding_hom_fst_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.GrpObj.eq_lift_inv_right, SSet.prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.Functor.Monoidal.μ_fst, CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso_comp, CategoryTheory.MonObj.ofRepresentableBy_mul, CategoryTheory.CartesianMonoidalCategory.braiding_inv_fst, CommAlgCat.toUnit_unop_hom, SSet.Subcomplex.prod_monotone, SSet.ι₀_comp_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_snd, CategoryTheory.CatEnriched.comp_eq, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerRight_val, CategoryTheory.GrpObj.left_inv, CategoryTheory.Functor.OplaxMonoidal.δ_fst, CategoryTheory.Grp.tensorObj_X, SSet.ι₀_comp, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_snd, CategoryTheory.Functor.Monoidal.ε_of_cartesianMonoidalCategory, CategoryTheory.Grp.Hom.hom_mul, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.Mon.Hom.hom_pow, CategoryTheory.GrpObj.mul_inv_rev_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_whiskerRight_assoc, CategoryTheory.CartesianMonoidalCategory.comp_lift_assoc, CategoryTheory.ε_def, CategoryTheory.Over.η_pullback_left, CategoryTheory.CommGrpObj.toIsCommMonObj, CategoryTheory.Grp.tensorObj_mul, CategoryTheory.Grp.rightUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.Grp.forget₂Mon_obj_X, CategoryTheory.Grp.hom_ext_iff, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, SSet.RelativeMorphism.Homotopy.h₁_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.expComparison_ev, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_snd, CategoryTheory.Functor.Monoidal.snd_app, CategoryTheory.CatEnrichedOrdinary.homEquiv_comp, CategoryTheory.Functor.Monoidal.fst_app, SSet.RelativeMorphism.Homotopy.ofEq_h, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, CategoryTheory.CartesianMonoidalCategory.instNonemptyBraidedCategory, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_leftUnitor_hom_hom, CategoryTheory.GrpObj.tensorHom_inv_inv_mul, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, SSet.rightUnitor_hom_app_apply, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv_assoc, CategoryTheory.CartesianMonoidalCategory.lift_whiskerRight_assoc, CategoryTheory.Grp.forget₂Mon_comp_forget, CategoryTheory.associator_hom_apply_2_2, CategoryTheory.CartesianMonoidalCategory.hom_ext_iff, SSet.Truncated.tensor_map_apply_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_obj, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.GrpObj.mul_inv, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_fst, ModuleCat.free_δ_freeMk, SSet.ι₁_fst, CategoryTheory.zeroMul_inv, CategoryTheory.Grp.tensorObj_one, CategoryTheory.Functor.Monoidal.tensorObj_obj, SSet.Truncated.Edge.tensor_edge, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_obj, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_snd_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparisonIso_comp, CategoryTheory.Functor.Monoidal.associator_inv_app, CategoryTheory.GrpObj.inv_def, CategoryTheory.CartesianMonoidalCategory.lift_comp_fst_snd, CategoryTheory.CartesianMonoidalCategory.lift_whiskerRight, CategoryTheory.Grp.leftUnitor_inv_hom, CategoryTheory.CartesianMonoidalCategory.mono_lift_of_mono_right, SSet.Truncated.HomotopyCategory.BinaryProduct.square, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatTrans_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.expComparison_iso_of_frobeniusMorphism_iso, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Functor.mapCommpGrp_id_mul, CategoryTheory.CommGrp.forget₂CommMon_obj_one, CategoryTheory.sheafToPresheaf_η, ModuleCat.FreeMonoidal.μIso_inv_freeMk, Rep.linearization_δ_hom, CategoryTheory.equivToOverUnit_inverse, CategoryTheory.CartesianMonoidalCategory.prodComparison_fst_assoc, default_eq_toUnit, SSet.Truncated.HomotopyCategory.BinaryProduct.inverseCompFunctorIso_hom_app, CategoryTheory.GrpObj.mul_inv_rev, CategoryTheory.GrpObj.mulRight_hom, SSet.prodStdSimplex.nonDegenerate_iff_injective_objEquiv, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_associator_hom_hom, CategoryTheory.Preadditive.mul_def, CategoryTheory.Grp.trivial_grp_one, CategoryTheory.Grp.snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, SSet.RelativeMorphism.Homotopy.h₀, CategoryTheory.Grp.hom_one, CategoryTheory.Grp.forget₂Mon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.Mod_.trivialAction_X, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.CatEnriched.id_eq, CategoryTheory.Sheaf.cartesianMonoidalCategoryFst_val, CategoryTheory.toOver_map_left, CategoryTheory.Over.sections_map, CategoryTheory.CartesianMonoidalCategory.lift_fst, SSet.RelativeMorphism.Homotopy.precomp_h, CategoryTheory.CartesianMonoidalCategory.prodComparisonIso_id, CategoryTheory.Hom.one_def, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Grp.associator_inv_hom, SSet.ι₀_fst, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst, CategoryTheory.Grp.homMk_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.Functor.Monoidal.μ_snd, CategoryTheory.Monoidal.whiskerRight_snd, CategoryTheory.Functor.FullyFaithful.grpObj_mul, SSet.associator_hom_app_apply, CategoryTheory.CartesianMonoidalCategory.lift_leftUnitor_hom, toUnit_unit, CategoryTheory.GrpObj.mulRight_inv, CategoryTheory.symmetricOfHasFiniteProducts_braiding_inv, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity, CategoryTheory.sheafToPresheaf_ε, CategoryTheory.GrpObj.mul_inv_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Functor.Monoidal.μ_snd_assoc, CategoryTheory.Mon.hom_mul, CategoryTheory.Over.braiding_hom_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, SSet.RelativeMorphism.Homotopy.h₁, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd, CategoryTheory.GrpObj.η_whiskerRight_commutator, SSet.Subcomplex.range_tensorHom, CategoryTheory.CartesianMonoidalCategory.lift_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.Functor.homMonoidHom_apply, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.whiskerLeft_apply, CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_hom_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst, SSet.RelativeMorphism.Homotopy.postcomp_h, CategoryTheory.CartesianMonoidalCategory.mono_lift_of_mono_left, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_whiskerRight_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.ExponentialIdeal.exp_closed, CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.Over.tensorUnit_left, CategoryTheory.GrpObj.eq_lift_inv_left, CategoryTheory.Grp.Hom.hom_inv, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, Action.diagonalSuccIsoTensorDiagonal_hom_hom, CategoryTheory.Equivalence.mapCommGrp_counitIso, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CategoryTheory.CartesianMonoidalCategory.lift_snd_comp_fst_comp_assoc, CategoryTheory.CartesianMonoidalCategory.lift_map, CategoryTheory.MonObj.lift_comp_one_left_assoc, SSet.prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, Action.diagonalSuccIsoTensorTrivial_hom_hom_apply, CategoryTheory.Grp.instFaithfulMonForget₂Mon, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, CategoryTheory.Monoidal.associator_inv, CategoryTheory.frobeniusMorphism_iso_of_expComparison_iso, CategoryTheory.Monoidal.rightUnitor_inv, CategoryTheory.Monoidal.whiskerLeft, CategoryTheory.Functor.Monoidal.associator_hom_app, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_whiskerRight, CategoryTheory.Grp.braiding_hom_hom, CategoryTheory.Over.whiskerRight_left_fst_assoc, SSet.RelativeMorphism.Homotopy.rel, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.CartesianMonoidalCategory.lift_map_assoc, CategoryTheory.monoidalOfHasFiniteProducts.η_eq, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.Grp.η_def, SSet.Truncated.HomotopyCategory.BinaryProduct.associativityIso_hom_app, CategoryTheory.equivToOverUnit_functor, CategoryTheory.Functor.FullyFaithful.grpObj_one, CategoryTheory.CartesianMonoidalCategory.lift_fst_comp_snd_comp, SSet.Truncated.Edge.map_whiskerRight, ModuleCat.FreeMonoidal.εIso_hom_one, CategoryTheory.CommGrp.trivial_grp_mul, CategoryTheory.Grp.associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, SSet.RelativeMorphism.Homotopy.refl_h, CategoryTheory.CartesianMonoidalCategory.braiding_inv_snd_assoc, CategoryTheory.associator_hom_apply_2_1, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Monoidal.tensorObj, CategoryTheory.Preadditive.one_def, CategoryTheory.Over.lift_left, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.CartesianMonoidalCategory.whiskerRight_fst, CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso_id, CategoryTheory.whiskerRight_apply, CategoryTheory.instIsLeftAdjointTensorLeft, CategoryTheory.CartesianMonoidalCategory.lift_snd_comp_fst_comp, CategoryTheory.CommGrp.trivial_grp_inv, CategoryTheory.SimplicialThickening.functor_id, CategoryTheory.GrpObj.ofIso_mul, CategoryTheory.Functor.Monoidal.leftUnitor_hom_app, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.GrpObj.lift_comp_inv_right, CategoryTheory.Functor.Monoidal.lift_μ, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_whiskerLeft_assoc, fst_def, CategoryTheory.yonedaGrp_map_app, CategoryTheory.Functor.Monoidal.leftUnitor_inv_app, SSet.hasDimensionLE_prod, SSet.ι₁_fst_assoc, CategoryTheory.Monoidal.whiskerLeft_fst, CategoryTheory.MonObj.one_eq_one, SSet.Truncated.HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_fst_assoc, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, CategoryTheory.braiding_inv_apply, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_apply, CategoryTheory.Functor.Monoidal.rightUnitor_hom_app, CategoryTheory.Grp.whiskerRight_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Over.fst_left, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_whiskerLeft_hom, SSet.leftUnitor_hom_app_apply, CategoryTheory.rightUnitor_inv_apply, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Functor.OplaxMonoidal.lift_δ_assoc, CategoryTheory.Grp.tensorHom_hom, CategoryTheory.GrpObj.toMonObj_injective, CategoryTheory.CartesianMonoidalCategory.tensorμ_fst, CategoryTheory.GrpObj.ofIso_one, CategoryTheory.Grp.Hom.hom_one, CategoryTheory.Functor.Braided.instSubsingleton, CategoryTheory.Over.tensorObj_left, CategoryTheory.Grp.fst_hom_hom, CategoryTheory.CartesianMonoidalCategory.lift_snd_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.toOverUnitPullback_hom_app_left, CategoryTheory.Functor.EssImageSubcategory.lift_def, CategoryTheory.Mod_.trivialAction_mod_smul, CategoryTheory.Grp.mkIso'_inv_hom_hom, CategoryTheory.Over.ε_pullback_left, CategoryTheory.CartesianMonoidalCategory.lift_rightUnitor_hom, CategoryTheory.isoCartesianComon_inv_hom, SSet.associator_inv_app_apply, CategoryTheory.Grp.trivial_grp_mul, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerLeft_val, GrpCat.μ_forget_apply, CategoryTheory.Monoidal.leftUnitor_inv, CategoryTheory.CartesianMonoidalCategory.whiskerRight_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.tensor_apply, CategoryTheory.Grp.trivial_X, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.SimplicialThickening.functor_obj_as, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatTrans_comp, CategoryTheory.CartesianMonoidalCategory.prodComparisonNatTrans_app, CategoryTheory.CartesianMonoidalCategory.braiding_hom_snd, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_obj, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Grp.braiding_hom_hom_hom, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.CommGrp.forget₂CommMon_comp_forget, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.comonEquiv_inverse, CategoryTheory.toOverUnitPullback_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.CatEnrichedOrdinary.homEquiv_id, Rep.linearization_ε_hom, CategoryTheory.SimplicialThickening.SimplicialCategory.id_comp, AlgebraicGeometry.isCommMonObj_of_isProper_of_isIntegral_tensorObj_of_isAlgClosed, CategoryTheory.MonObj.instIsMonHomMulOfIsCommMonObj, CategoryTheory.SimplicialThickening.functor_comp, CategoryTheory.Sheaf.tensorUnit_isSheaf, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd_assoc, CategoryTheory.Functor.map_one, CategoryTheory.associator_inv_apply_2, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst_assoc, CategoryTheory.Monoidal.leftUnitor_hom, CategoryTheory.CartesianMonoidalCategory.rightUnitor_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_eqToHom, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorHom_hom, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoη, CategoryTheory.Mon.hom_one, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.yonedaMon_obj, CategoryTheory.toOver_map, CategoryTheory.rightUnitor_hom_apply, CategoryTheory.Functor.Monoidal.instSubsingleton, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_symm_apply, CategoryTheory.CartesianMonoidalCategory.lift_whiskerLeft_assoc, SSet.ι₀_app_fst, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, snd_def, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_assoc, CategoryTheory.CartesianMonoidalCategory.tensorδ_fst, CategoryTheory.toUnit_comp_curryRightUnitorHom, CategoryTheory.MonObj.mul_eq_mul, CategoryTheory.Grp.comp_hom, CategoryTheory.Grp.instFullMonForget₂Mon, CategoryTheory.CartesianMonoidalCategory.tensorHom_fst_assoc, CategoryTheory.Grp.id_hom_hom, CategoryTheory.Adjunction.mapCommGrp_counit, CategoryTheory.associator_inv_apply_1_1, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.Over.tensorObj_hom, CategoryTheory.CartesianMonoidalCategory.tensorμ_snd_assoc, SSet.ι₁_comp_assoc, CategoryTheory.CartesianMonoidalCategory.isIso_prodComparison_of_preservesLimit_pair, CategoryTheory.toOverUnit_obj_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_whiskerLeft, CategoryTheory.Adjunction.mapGrp_counit, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.SemilatticeInf.tensorObj, CategoryTheory.Mon.snd_hom, comp_toUnit, CategoryTheory.Mon.Hom.hom_one, CategoryTheory.Functor.OplaxMonoidal.instIsIsoδ, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.CommGrp.forget_map, CategoryTheory.comonEquiv_counitIso, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, Rep.linearization_μ_hom, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_map, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_rightUnitor_inv_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_id, SSet.RelativeMorphism.Homotopy.rel_assoc, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.CartesianMonoidalCategory.leftUnitor_hom, CategoryTheory.CartesianMonoidalCategory.lift_braiding_inv_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerRight_snd, CategoryTheory.CartesianMonoidalCategory.whiskerRight_toUnit_comp_leftUnitor_hom_assoc
toUnit 📖CompOp
48 mathmath: CategoryTheory.GrpObj.lift_inv_comp_left, CategoryTheory.counit_eq_toUnit, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_toUnit_comp_rightUnitor_hom, CategoryTheory.GrpObj.left_inv_assoc, CategoryTheory.MonObj.instIsMonHomToUnit, CategoryTheory.Functor.Monoidal.toUnit_ε_assoc, CategoryTheory.Over.toUnit_left, CategoryTheory.toOverUnit_map_left, CategoryTheory.GrpObj.lift_inv_comp_right, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.GrpObj.η_whiskerRight_commutator_assoc, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_η, comp_toUnit_assoc, CategoryTheory.CartesianMonoidalCategory.map_toUnit_comp_terminalComparison_assoc, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_snd_assoc, CategoryTheory.Functor.Monoidal.toUnit_ε, CategoryTheory.CartesianMonoidalCategory.map_toUnit_comp_terminalComparison, CategoryTheory.GrpObj.whiskerLeft_η_commutator, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, CategoryTheory.GrpObj.whiskerLeft_η_commutator_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_toUnit_comp_rightUnitor_hom_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerRight_toUnit_comp_leftUnitor_hom, CommAlgCat.toUnit_unop_hom, CategoryTheory.GrpObj.left_inv, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_snd, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst_assoc, default_eq_toUnit, CategoryTheory.GrpObj.mulRight_hom, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Hom.one_def, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, toUnit_unit, CategoryTheory.GrpObj.mulRight_inv, CategoryTheory.GrpObj.η_whiskerRight_commutator, CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.GrpObj.lift_comp_inv_right, CategoryTheory.toOverUnitPullback_hom_app_left, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.toOverUnitPullback_inv_app_left, CategoryTheory.toUnit_comp_curryRightUnitorHom, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.toOverUnit_obj_hom, comp_toUnit, CategoryTheory.CartesianMonoidalCategory.whiskerRight_toUnit_comp_leftUnitor_hom_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
comp_toUnit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalCategory
toUnit
toUnit_unique
comp_toUnit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalCategory
toUnit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_toUnit
default_eq_toUnit 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalCategory
Unique.instInhabited
instUniqueHomTensorUnit
toUnit
fst_def 📖mathematicalfst
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Limits.IsTerminal.from
isTerminalTensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
snd_def 📖mathematicalsnd
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Limits.IsTerminal.from
isTerminalTensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
toUnit_unique 📖Unique.instSubsingleton
toUnit_unique_iff 📖toUnit_unique
toUnit_unit 📖mathematicaltoUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
toMonoidalCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toUnit_unique

---

← Back to Index