Documentation Verification Report

Mon_

πŸ“ Source: Mathlib/CategoryTheory/Monoidal/Cartesian/Mon_.lean

Statistics

MetricCount
DefinitionshomMulEquiv, homMonoidHom, commMonoid, monoid, mulEquivCongrRight, instCartesianMonoidalCategory, instMonObjOfIsCommMonObjX, ofRepresentableBy, ofRepresentableBy, Mon_ClassOfRepresentableBy, yonedaMon, yonedaMonFullyFaithful, yonedaMonObj, yonedaMonObjIsoOfRepresentableBy, yonedaMonObjRepresentableBy
15
TheoremshomMulEquiv_apply, homMulEquiv_symm_apply, homMonoidHom_apply, map_mul, map_one, mulEquivCongrRight_apply, mulEquivCongrRight_symm_apply, mul_def, one_def, hom_mul, hom_one, hom_pow, fst_hom, hom_mul, hom_one, instIsCommMonObj, lift_hom, snd_hom, comp_mul, comp_mul_assoc, comp_one, comp_one_assoc, comp_pow, comp_pow_assoc, instIsMonHomFst, instIsMonHomLift, instIsMonHomMulOfIsCommMonObj, instIsMonHomOne, instIsMonHomSnd, instIsMonHomToUnit, lift_comp_one_left, lift_comp_one_left_assoc, lift_comp_one_right, lift_comp_one_right_assoc, lift_lift_assoc, mul_comp, mul_comp_assoc, mul_eq_mul, ofRepresentableBy_mul, ofRepresentableBy_one, ofRepresentableBy_yonedaMonObjRepresentableBy, one_comp, one_comp_assoc, one_eq_one, pow_comp, pow_comp_assoc, comp_mul, comp_one, comp_pow, mul_comp, mul_eq_mul, ofRepresentableBy_yonedaMonObjRepresentableBy, one_comp, one_eq_one, pow_comp, Mon_ClassOfRepresentableBy_yonedaMonObjRepresentableBy, essImage_yonedaMon, instFaithfulMonFunctorOppositeMonCatYonedaMon, instFullMonFunctorOppositeMonCatYonedaMon, isCommMonObj_iff_isMulCommutative, yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, yonedaMonObj_map, yonedaMonObj_obj_coe, yonedaMon_map_app, yonedaMon_naturality, yonedaMon_naturality_assoc, yonedaMon_obj
68
Total83

CategoryTheory

Definitions

NameCategoryTheorems
Mon_ClassOfRepresentableBy πŸ“–CompOpβ€”
yonedaMon πŸ“–CompOp
6 mathmath: instFullMonFunctorOppositeMonCatYonedaMon, essImage_yonedaMon, instFaithfulMonFunctorOppositeMonCatYonedaMon, yonedaMon_map_app, yonedaGrp_map_app, yonedaMon_obj
yonedaMonFullyFaithful πŸ“–CompOpβ€”
yonedaMonObj πŸ“–CompOp
12 mathmath: yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, yonedaMon_naturality_assoc, yonedaMonObj_map, yonedaMon_naturality, yonedaMonObj_obj_coe, Mon_ClassOfRepresentableBy_yonedaMonObjRepresentableBy, yonedaMon_map_app, yonedaGrpObj_map, MonObj.ofRepresentableBy_yonedaMonObjRepresentableBy, yonedaMon_obj, Mon_Class.ofRepresentableBy_yonedaMonObjRepresentableBy
yonedaMonObjIsoOfRepresentableBy πŸ“–CompOp
2 mathmath: yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply
yonedaMonObjRepresentableBy πŸ“–CompOp
3 mathmath: Mon_ClassOfRepresentableBy_yonedaMonObjRepresentableBy, MonObj.ofRepresentableBy_yonedaMonObjRepresentableBy, Mon_Class.ofRepresentableBy_yonedaMonObjRepresentableBy

Theorems

NameKindAssumesProvesValidatesDepends On
Mon_ClassOfRepresentableBy_yonedaMonObjRepresentableBy πŸ“–mathematicalβ€”MonObj.ofRepresentableBy
yonedaMonObj
yonedaMonObjRepresentableBy
β€”MonObj.ofRepresentableBy_yonedaMonObjRepresentableBy
essImage_yonedaMon πŸ“–mathematicalβ€”Functor.essImage
Mon
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Functor
Opposite
Category.opposite
MonCat
MonCat.instCategory
Mon.instCategory
Functor.category
yonedaMon
Set.preimage
types
Functor.comp
forget
MonoidHom
MonCat.carrier
MulOneClass.toMulOne
Monoid.toMulOneClass
MonCat.str
MonoidHom.instFunLike
MonCat.instConcreteCategoryMonoidHomCarrier
setOf
Functor.IsRepresentable
β€”β€”
instFaithfulMonFunctorOppositeMonCatYonedaMon πŸ“–mathematicalβ€”Functor.Faithful
Mon
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Mon.instCategory
Functor
Opposite
Category.opposite
MonCat
MonCat.instCategory
Functor.category
yonedaMon
β€”Functor.FullyFaithful.faithful
instFullMonFunctorOppositeMonCatYonedaMon πŸ“–mathematicalβ€”Functor.Full
Mon
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Mon.instCategory
Functor
Opposite
Category.opposite
MonCat
MonCat.instCategory
Functor.category
yonedaMon
β€”Functor.FullyFaithful.full
isCommMonObj_iff_isMulCommutative πŸ“–mathematicalβ€”IsCommMonObj
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
IsMulCommutative
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Hom.monoid
β€”mul_comm
MonObj.mul_eq_mul
MonObj.comp_mul
CartesianMonoidalCategory.braiding_hom_fst
CartesianMonoidalCategory.braiding_hom_snd
yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
MonCat.carrier
MulOneClass.toMulOne
Monoid.toMulOneClass
Hom.monoid
MonObj.ofRepresentableBy
MonCat.str
MonoidHom.instFunLike
MonCat.Hom.hom
Functor.obj
Opposite
Category.opposite
MonCat
MonCat.instCategory
yonedaMonObj
NatTrans.app
Iso.hom
Functor
Functor.category
yonedaMonObjIsoOfRepresentableBy
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Functor.RepresentableBy.homEquiv
Functor.comp
types
forget
MonCat.instConcreteCategoryMonoidHomCarrier
β€”β€”
yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MonCat.carrier
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
MulOneClass.toMulOne
Monoid.toMulOneClass
MonCat.str
Hom.monoid
MonObj.ofRepresentableBy
MonoidHom.instFunLike
MonCat.Hom.hom
Functor.obj
Opposite
Category.opposite
MonCat
MonCat.instCategory
yonedaMonObj
NatTrans.app
Iso.inv
Functor
Functor.category
yonedaMonObjIsoOfRepresentableBy
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Functor.RepresentableBy.homEquiv
Functor.comp
types
forget
MonCat.instConcreteCategoryMonoidHomCarrier
β€”β€”
yonedaMonObj_map πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
MonCat
MonCat.instCategory
yonedaMonObj
MonCat.ofHom
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Hom.monoid
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
CategoryStruct.comp
Quiver.Hom.unop
β€”β€”
yonedaMonObj_obj_coe πŸ“–mathematicalβ€”MonCat.carrier
Functor.obj
Opposite
Category.opposite
MonCat
MonCat.instCategory
yonedaMonObj
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
β€”β€”
yonedaMon_map_app πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
MonCat
MonCat.instCategory
yonedaMonObj
Mon.X
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Mon.mon
Functor.map
Mon
Mon.instCategory
Functor
Functor.category
yonedaMon
MonCat.ofHom
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Hom.monoid
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
CategoryStruct.comp
Mon.Hom.hom
β€”β€”
yonedaMon_naturality πŸ“–mathematicalβ€”DFunLike.coe
Functor.obj
Opposite
Category.opposite
MonCat
MonCat.instCategory
yonedaMonObj
Opposite.op
MonCat.carrier
ConcreteCategory.hom
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonCat.str
MonoidHom.instFunLike
MonCat.instConcreteCategoryMonoidHomCarrier
NatTrans.app
CategoryStruct.comp
Category.toCategoryStruct
Opposite.unop
β€”NatTrans.naturality
yonedaMon_naturality_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
DFunLike.coe
MonoidHom
MonCat.carrier
Functor.obj
Opposite
Category.opposite
MonCat
MonCat.instCategory
yonedaMonObj
Opposite.op
MulOneClass.toMulOne
Monoid.toMulOneClass
MonCat.str
MonoidHom.instFunLike
ConcreteCategory.hom
MonCat.instConcreteCategoryMonoidHomCarrier
NatTrans.app
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
yonedaMon_naturality
yonedaMon_obj πŸ“–mathematicalβ€”Functor.obj
Mon
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Mon.instCategory
Functor
Opposite
Category.opposite
MonCat
MonCat.instCategory
Functor.category
yonedaMon
yonedaMonObj
Mon.X
Mon.mon
β€”β€”

CategoryTheory.Functor

Definitions

NameCategoryTheorems
homMonoidHom πŸ“–CompOp
1 mathmath: homMonoidHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
homMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
monObjObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Monoidal.toLaxMonoidal
MonoidHom.instFunLike
homMonoidHom
map
β€”β€”
map_mul πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
obj
monObjObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Monoidal.toLaxMonoidal
β€”map_comp
Monoidal.instIsIsoΞΌ
CategoryTheory.IsIso.comp_inv_eq
CategoryTheory.CartesianMonoidalCategory.hom_ext
Monoidal.inv_ΞΌ
OplaxMonoidal.lift_Ξ΄
CategoryTheory.CartesianMonoidalCategory.lift_fst
CategoryTheory.CartesianMonoidalCategory.lift_snd
map_one πŸ“–mathematicalβ€”map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
obj
monObjObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Monoidal.toLaxMonoidal
β€”map_comp
Monoidal.toUnit_Ξ΅_assoc

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
homMulEquiv πŸ“–CompOp
2 mathmath: homMulEquiv_apply, homMulEquiv_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
homMulEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
CategoryTheory.Functor.monObjObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.Monoidal.toLaxMonoidal
EquivLike.toFunLike
MulEquiv.instEquivLike
homMulEquiv
CategoryTheory.Functor.map
β€”β€”
homMulEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
CategoryTheory.Functor.monObjObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.Monoidal.toLaxMonoidal
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
homMulEquiv
preimage
β€”β€”

CategoryTheory.Hom

Definitions

NameCategoryTheorems
commMonoid πŸ“–CompOpβ€”
monoid πŸ“–CompOp
44 mathmath: CategoryTheory.Mon_Class.mul_comp, CategoryTheory.Mon_Class.comp_mul, CategoryTheory.Functor.map_mul, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, CategoryTheory.Functor.FullyFaithful.homMulEquiv_apply, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, CategoryTheory.MonObj.comp_mul_assoc, CategoryTheory.MonObj.comp_one, CategoryTheory.MonObj.one_comp_assoc, CategoryTheory.yonedaMonObj_map, CategoryTheory.MonObj.mul_comp, mul_def, CategoryTheory.Mon_Class.mul_eq_mul, CategoryTheory.yonedaMon_map_app, CategoryTheory.MonObj.one_comp, CategoryTheory.MonObj.comp_pow, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.Grp.Hom.hom_pow, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv, mulEquivCongrRight_symm_apply, CategoryTheory.MonObj.mul_comp_assoc, CategoryTheory.isCommMonObj_iff_isMulCommutative, CategoryTheory.Mon.Hom.hom_mul, CategoryTheory.Functor.FullyFaithful.homMulEquiv_symm_apply, CategoryTheory.Mon_Class.comp_pow, CategoryTheory.MonObj.pow_comp_assoc, CategoryTheory.Grp.Hom.hom_mul, CategoryTheory.Mon.Hom.hom_pow, CategoryTheory.MonObj.comp_mul, CategoryTheory.Mon_Class.pow_comp, CategoryTheory.MonObj.comp_one_assoc, CategoryTheory.Mon_Class.comp_one, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv_assoc, CategoryTheory.MonObj.pow_comp, CategoryTheory.Mon_Class.one_comp, one_def, CategoryTheory.Functor.homMonoidHom_apply, CategoryTheory.MonObj.one_eq_one, mulEquivCongrRight_apply, CategoryTheory.Grp.Hom.hom_one, CategoryTheory.MonObj.comp_pow_assoc, CategoryTheory.Functor.map_one, CategoryTheory.MonObj.mul_eq_mul, CategoryTheory.Mon.Hom.hom_one
mulEquivCongrRight πŸ“–CompOp
2 mathmath: mulEquivCongrRight_symm_apply, mulEquivCongrRight_apply

Theorems

NameKindAssumesProvesValidatesDepends On
mulEquivCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivCongrRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
β€”β€”
mulEquivCongrRight_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
mulEquivCongrRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.inv
β€”β€”
mul_def πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.MonObj.mul
β€”β€”
one_def πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
CategoryTheory.MonObj.one
β€”β€”

CategoryTheory.Mon

Definitions

NameCategoryTheorems
instCartesianMonoidalCategory πŸ“–CompOp
10 mathmath: CategoryTheory.Grp.lift_hom, lift_hom, fst_hom, CategoryTheory.Grp.Hom.hom_pow, Hom.hom_mul, CategoryTheory.Grp.Hom.hom_mul, Hom.hom_pow, CategoryTheory.Grp.Hom.hom_one, snd_hom, Hom.hom_one
instMonObjOfIsCommMonObjX πŸ“–CompOp
9 mathmath: CategoryTheory.Grp.Hom.hom_pow, instIsCommMonObj, Hom.hom_mul, CategoryTheory.Grp.Hom.hom_mul, Hom.hom_pow, hom_mul, CategoryTheory.Grp.Hom.hom_one, hom_one, Hom.hom_one

Theorems

NameKindAssumesProvesValidatesDepends On
fst_hom πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
X
β€”β€”
hom_mul πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
monMonoidal
CategoryTheory.MonObj.mul
instMonObjOfIsCommMonObjX
X
mon
β€”β€”
hom_one πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Mon
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
monMonoidal
CategoryTheory.MonObj.one
instMonObjOfIsCommMonObjX
X
mon
β€”β€”
instIsCommMonObj πŸ“–mathematicalβ€”CategoryTheory.IsCommMonObj
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCategory
monMonoidal
CategoryTheory.SymmetricCategory.toBraidedCategory
instSymmetricCategory
CategoryTheory.CartesianMonoidalCategory.toSymmetricCategory
instMonObjOfIsCommMonObjX
β€”Hom.ext'
CategoryTheory.IsCommMonObj.mul_comm
lift_hom πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
X
β€”β€”
snd_hom πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instCartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.snd
X
β€”β€”

CategoryTheory.Mon.Hom

Theorems

NameKindAssumesProvesValidatesDepends On
hom_mul πŸ“–mathematicalβ€”hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Quiver.Hom
CategoryTheory.Mon
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.instCategory
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
CategoryTheory.Mon.instCartesianMonoidalCategory
CategoryTheory.Mon.instMonObjOfIsCommMonObjX
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
β€”β€”
hom_one πŸ“–mathematicalβ€”hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Quiver.Hom
CategoryTheory.Mon
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.instCategory
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
CategoryTheory.Mon.instCartesianMonoidalCategory
CategoryTheory.Mon.instMonObjOfIsCommMonObjX
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
β€”β€”
hom_pow πŸ“–mathematicalβ€”hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Quiver.Hom
CategoryTheory.Mon
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.instCategory
Monoid.toNatPow
CategoryTheory.Hom.monoid
CategoryTheory.Mon.instCartesianMonoidalCategory
CategoryTheory.Mon.instMonObjOfIsCommMonObjX
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
β€”pow_zero
pow_succ

CategoryTheory.MonObj

Definitions

NameCategoryTheorems
ofRepresentableBy πŸ“–CompOp
9 mathmath: CategoryTheory.yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, ofRepresentableBy_one, CategoryTheory.IsCommMonObj.ofRepresentableBy, CategoryTheory.IsCommMon.ofRepresentableBy, CategoryTheory.Mon_ClassOfRepresentableBy_yonedaMonObjRepresentableBy, ofRepresentableBy_yonedaMonObjRepresentableBy, ofRepresentableBy_mul, CategoryTheory.Mon_Class.ofRepresentableBy_yonedaMonObjRepresentableBy

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mul πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”MonoidHom.map_mul
comp_mul_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_mul
comp_one πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”MonoidHom.map_one
comp_one_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_one
comp_pow πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Monoid.toNatPow
CategoryTheory.Hom.monoid
β€”pow_zero
comp_one
pow_succ
comp_mul
comp_pow_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Monoid.toNatPow
CategoryTheory.Hom.monoid
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_pow
instIsMonHomFst πŸ“–mathematicalβ€”CategoryTheory.IsMonHom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.instMonObjTensorObj
CategoryTheory.SemiCartesianMonoidalCategory.fst
β€”CategoryTheory.Category.assoc
CategoryTheory.CartesianMonoidalCategory.tensorHom_fst
CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst_assoc
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unit
CategoryTheory.Category.id_comp
CategoryTheory.CartesianMonoidalCategory.tensorΞΌ_fst_assoc
instIsMonHomLift πŸ“–mathematicalβ€”CategoryTheory.IsMonHom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.instMonObjTensorObj
CategoryTheory.CartesianMonoidalCategory.lift
β€”CategoryTheory.CartesianMonoidalCategory.comp_lift
CategoryTheory.IsMonHom.one_hom
CategoryTheory.CartesianMonoidalCategory.hom_ext
CategoryTheory.CartesianMonoidalCategory.lift_fst
CategoryTheory.Category.assoc
CategoryTheory.CartesianMonoidalCategory.tensorHom_fst
CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst_assoc
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unit
CategoryTheory.Category.id_comp
CategoryTheory.CartesianMonoidalCategory.lift_snd
CategoryTheory.CartesianMonoidalCategory.tensorHom_snd
CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_snd_assoc
CategoryTheory.IsMonHom.mul_hom
CategoryTheory.CartesianMonoidalCategory.tensorΞΌ_fst_assoc
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
CategoryTheory.CartesianMonoidalCategory.tensorΞΌ_snd_assoc
instIsMonHomMulOfIsCommMonObj πŸ“–mathematicalβ€”CategoryTheory.IsMonHom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.instMonObjTensorObj
mul
β€”CategoryTheory.Category.assoc
mul_one_hom
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
CategoryTheory.Iso.inv_hom_id_assoc
mul_mul_mul_comm
instIsMonHomOne πŸ“–mathematicalβ€”CategoryTheory.IsMonHom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instTensorUnit
one
β€”CategoryTheory.Category.id_comp
mul_one_hom
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
instIsMonHomSnd πŸ“–mathematicalβ€”CategoryTheory.IsMonHom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.instMonObjTensorObj
CategoryTheory.SemiCartesianMonoidalCategory.snd
β€”CategoryTheory.Category.assoc
CategoryTheory.CartesianMonoidalCategory.tensorHom_snd
CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_snd_assoc
CategoryTheory.CartesianMonoidalCategory.tensorΞΌ_snd_assoc
instIsMonHomToUnit πŸ“–mathematicalβ€”CategoryTheory.IsMonHom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instTensorUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit
β€”CategoryTheory.SemiCartesianMonoidalCategory.comp_toUnit
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unit
Unique.instSubsingleton
lift_comp_one_left πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.MonoidalCategoryStruct.tensorUnit
one
mul
β€”CategoryTheory.whisker_eq
one_mul
CategoryTheory.CartesianMonoidalCategory.lift_leftUnitor_hom
CategoryTheory.CartesianMonoidalCategory.lift_whiskerRight_assoc
lift_comp_one_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.MonoidalCategoryStruct.tensorUnit
one
mul
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_one_left
lift_comp_one_right πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.MonoidalCategoryStruct.tensorUnit
one
mul
β€”CategoryTheory.whisker_eq
mul_one
CategoryTheory.CartesianMonoidalCategory.lift_rightUnitor_hom
CategoryTheory.CartesianMonoidalCategory.lift_whiskerLeft_assoc
lift_comp_one_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.MonoidalCategoryStruct.tensorUnit
one
mul
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_one_right
lift_lift_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
mul
β€”CategoryTheory.whisker_eq
mul_assoc
CategoryTheory.CartesianMonoidalCategory.lift_whiskerLeft_assoc
CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_hom_assoc
CategoryTheory.CartesianMonoidalCategory.lift_whiskerRight_assoc
mul_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.Category.assoc
CategoryTheory.IsMonHom.mul_hom
CategoryTheory.CartesianMonoidalCategory.lift_map_assoc
mul_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_comp
mul_eq_mul πŸ“–mathematicalβ€”mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
β€”CategoryTheory.CartesianMonoidalCategory.lift_fst_snd
CategoryTheory.Category.id_comp
ofRepresentableBy_mul πŸ“–mathematicalβ€”mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
ofRepresentableBy
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.comp
MonCat
MonCat.instCategory
CategoryTheory.forget
MonoidHom
MonCat.carrier
MulOneClass.toMulOne
Monoid.toMulOneClass
MonCat.str
MonoidHom.instFunLike
MonCat.instConcreteCategoryMonoidHomCarrier
Opposite.op
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.RepresentableBy.homEquiv
MulOne.toMul
MonCat.monoidObj
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
β€”β€”
ofRepresentableBy_one πŸ“–mathematicalβ€”one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
ofRepresentableBy
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.comp
MonCat
MonCat.instCategory
CategoryTheory.forget
MonoidHom
MonCat.carrier
MulOneClass.toMulOne
Monoid.toMulOneClass
MonCat.str
MonoidHom.instFunLike
MonCat.instConcreteCategoryMonoidHomCarrier
Opposite.op
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.RepresentableBy.homEquiv
MulOne.toOne
MonCat.monoidObj
β€”β€”
ofRepresentableBy_yonedaMonObjRepresentableBy πŸ“–mathematicalβ€”ofRepresentableBy
CategoryTheory.yonedaMonObj
CategoryTheory.yonedaMonObjRepresentableBy
β€”ext
CategoryTheory.CartesianMonoidalCategory.lift_fst_snd
CategoryTheory.Category.id_comp
one_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.Category.assoc
CategoryTheory.IsMonHom.one_hom
one_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
one_comp
one_eq_one πŸ“–mathematicalβ€”one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unique
CategoryTheory.Category.id_comp
pow_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Monoid.toNatPow
CategoryTheory.Hom.monoid
β€”pow_zero
one_comp
pow_succ
mul_comp
pow_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Monoid.toNatPow
CategoryTheory.Hom.monoid
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pow_comp

CategoryTheory.Mon_Class

Definitions

NameCategoryTheorems
ofRepresentableBy πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mul πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.MonObj.comp_mul
comp_one πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.MonObj.comp_one
comp_pow πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Monoid.toNatPow
CategoryTheory.Hom.monoid
β€”CategoryTheory.MonObj.comp_pow
mul_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.MonObj.mul_comp
mul_eq_mul πŸ“–mathematicalβ€”CategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.SemiCartesianMonoidalCategory.snd
β€”CategoryTheory.MonObj.mul_eq_mul
ofRepresentableBy_yonedaMonObjRepresentableBy πŸ“–mathematicalβ€”CategoryTheory.MonObj.ofRepresentableBy
CategoryTheory.yonedaMonObj
CategoryTheory.yonedaMonObjRepresentableBy
β€”CategoryTheory.MonObj.ofRepresentableBy_yonedaMonObjRepresentableBy
one_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.MonObj.one_comp
one_eq_one πŸ“–mathematicalβ€”CategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Hom.monoid
β€”CategoryTheory.MonObj.one_eq_one
pow_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Monoid.toNatPow
CategoryTheory.Hom.monoid
β€”CategoryTheory.MonObj.pow_comp

---

← Back to Index