toMonoidalCategoryStruct 📖 | CompOp | 2792 mathmath: CategoryTheory.Sheaf.cartesianMonoidalCategoryLift_val, CategoryTheory.Localization.Monoidal.leftUnitor_hom_app, CategoryTheory.Comon.tensorObj_comul', CategoryTheory.Discrete.monoidal_associator, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, Action.forget_η, leftUnitor_tensor_inv_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, Representation.repOfTprodIso_inv_apply, tensor_left_unitality, CategoryTheory.Monoidal.tensorHom_app, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_inv_toFunctor, CategoryTheory.Enriched.Functor.associator_inv_apply, DayConvolutionInternalHom.hπ_assoc, CategoryTheory.GrpObj.lift_inv_comp_left, associator_naturality_middle_assoc, CategoryTheory.BraidedCategory.braiding_naturality_right, MonoidalLeftAction.actionUnitNatIso_inv_app, CategoryTheory.biproduct_ι_comp_leftDistributor_hom_assoc, CategoryTheory.MonObj.instIsMonHomHomAssociator, LightCondensed.free_internallyProjective_iff_tensor_condition, CategoryTheory.Over.μ_pullback_left_snd', DayConvolution.braidingHomCorepresenting_app, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.firstMap₂_app_app_app, CategoryTheory.Monoidal.InducingFunctorData.rightUnitor_eq, CategoryTheory.ModObj.one_smul_assoc, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft, leftAssocTensor_obj, CategoryTheory.Functor.OplaxMonoidal.δ_comp_tensorHom_η, CategoryTheory.eHom_whisker_cancel, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, MonoidalRightAction.rightActionOfOppositeRightAction_actionRight_unop, CategoryTheory.Functor.LaxMonoidal.associativity_assoc, ModuleCat.MonoidalCategory.braiding_hom_apply, MonoidalRightAction.unit_actionHomRight_assoc, CategoryTheory.BraidedCategory.yang_baxter', CategoryTheory.Functor.OplaxMonoidal.associativity, CategoryTheory.CommComon.trivial_comon_comul, CategoryTheory.sum_whiskerRight, Mathlib.Tactic.Monoidal.structuralIsoOfExpr_horizontalComp, CategoryTheory.CartesianMonoidalCategory.prodComparison_snd, CategoryTheory.CartesianMonoidalCategory.tensorδ_snd, CategoryTheory.endofunctorMonoidalCategory_tensorUnit_obj, hom_inv_whiskerRight', MonoidalLeftAction.actionHomRight_hom_inv_assoc, CategoryTheory.ihom.coev_naturality, CategoryTheory.obj_ε_app_assoc, HomologicalComplex.rightUnitor'_inv, CategoryTheory.Comon.monoidal_tensorUnit_X, tensorμ_natural_assoc, MonoidalRightAction.actionHomRight_hom_inv', CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Functor.OplaxMonoidal.δ_natural_left_assoc, CategoryTheory.Bimon.Bimon_ClassAux_comul, tensorμ_tensorδ_assoc, MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomLeft, CategoryTheory.mop_hom_leftUnitor, Rep.MonoidalClosed.linearHomEquiv_symm_hom, SSet.Truncated.tensor_map_apply_snd, CategoryTheory.BraidedCategory.braiding_tensor_right_hom, CategoryTheory.Functor.LaxMonoidal.whiskerLeft_μ_comp_μ_assoc, Action.leftRegularTensorIso_inv_hom, CategoryTheory.EnrichedOrdinaryCategory.homEquiv_comp, DayConvolution.unit_naturality, CategoryTheory.Iso.eHomCongr_inv_comp_assoc, CategoryTheory.op_hom_leftUnitor, MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, CategoryTheory.MonoidalOpposite.unmop_hom_braiding, CategoryTheory.ExactPairing.coevaluation_evaluation'', rightUnitor_monoidal_assoc, CategoryTheory.Functor.Monoidal.rightUnitor_inv_app, CategoryTheory.Center.whiskerLeft_f, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.MonoidalOpposite.unmopFunctor_δ, CategoryTheory.unmop_hom_rightUnitor, Bimod.TensorBimod.π_tensor_id_actRight, CategoryTheory.FreeMonoidalCategory.mk_ρ_hom, pentagon_inv_inv_hom_hom_inv, CategoryTheory.e_comp_id, Bimod.AssociatorBimod.hom_left_act_hom', tensor_inv_hom_id_assoc, MonoidalRightAction.actionHomRight_whiskerRight, Bimod.RightUnitorBimod.hom_right_act_hom', CategoryTheory.MonoidalOpposite.tensorLeftMopIso_hom_app_unmop, MonoidalRightAction.actionHomRight_comp_assoc, whiskerLeft_hom_inv'_assoc, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.Functor.OplaxMonoidal.δ_comp_η_tensorHom_assoc, LightCondensed.ihomPoints_apply, CategoryTheory.Enriched.FunctorCategory.enriched_id_comp, Bimod.LeftUnitorBimod.hom_right_act_hom', FDRep.char_tensor, MonoidalLeftAction.actionUnitNatIso_hom_app, CategoryTheory.biproduct_ι_comp_rightDistributor_inv, CategoryTheory.sum_tensor, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.Functor.LaxMonoidal.μ_natural_right, whiskerLeft_inv_hom'_assoc, CategoryTheory.Functor.LaxMonoidal.right_unitality, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_η_ε, CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst_assoc, CategoryTheory.ExactPairing.evaluation_coevaluation, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.ExactPairing.coevaluation_evaluation', whiskerLeft_inv_hom, CategoryTheory.Monoidal.leftUnitor_hom_app, CategoryTheory.monoidalOfHasFiniteCoproducts.whiskerLeft, CategoryTheory.Over.associator_inv_left_snd, SSet.ι₀_snd_assoc, whisker_exchange, externalProductBifunctor_obj_obj, inv_hom_id_tensor_assoc, CategoryTheory.Mon.leftUnitor_inv_hom, CategoryTheory.SimplicialThickening.SimplicialCategory.comp_id, CategoryTheory.Functor.mapCommMon_obj_mon_mul, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_fst, endofunctorMonoidalCategory.evaluationRightAction_actionHomLeft, CategoryTheory.whiskerLeft_coprod_inr_leftDistrib_inv, CategoryTheory.ObjectProperty.rightUnitor_def, tensorRightTensor_hom_app, tensorLeftTensor_inv_app, Representation.repOfTprodIso_apply, CategoryTheory.Mon.forget_μ, CategoryTheory.Center.braiding_inv_f, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv_symm, CategoryTheory.HalfBraiding.naturality_assoc, CategoryTheory.BraidedCategory.braiding_tensor_right_hom_assoc, CategoryTheory.Adjunction.map_ε_comp_counit_app_unit_assoc, CategoryTheory.op_inv_associator, CategoryTheory.ModObj.mul_smul_assoc, CategoryTheory.Functor.OplaxMonoidal.left_unitality, MonoidalRightAction.id_actionHom, MonoidalRightAction.curriedAction_obj_obj, CategoryTheory.coprod_inr_rightDistrib_hom_assoc, CategoryTheory.Bimon.ofMonComonObjX_mul, CategoryTheory.zeroMul_hom, CategoryTheory.CartesianMonoidalCategory.associator_hom_fst_assoc, pentagon_hom_inv_inv_inv_hom, CommAlgCat.braiding_hom_hom, CategoryTheory.CartesianMonoidalCategory.prodComparison_fst, whiskerLeft_eqToHom, CategoryTheory.FreeMonoidalCategory.normalizeIsoAux_inv_app, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, CategoryTheory.Monoidal.transportStruct_associator, MonoidalLeftAction.actionLeft_map, CategoryTheory.Center.associator_hom_f, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.Functor.Monoidal.εIso_hom, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_inv, CategoryTheory.eHomEquiv_id, CategoryTheory.Functor.Monoidal.tensorHom_app_fst_assoc, leftUnitor_naturality, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_fst_assoc, CategoryTheory.MonObj.instIsMonHomHomBraiding, CategoryTheory.IsCommMonObj.instTensorUnit, associator_inv_naturality_right_assoc, CategoryTheory.GrpObj.lift_inv_right_eq, CategoryTheory.prodComparison_iso, pentagon_hom_inv_assoc, MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionObj, MonoidalLeftAction.oppositeLeftAction_actionHomRight, CategoryTheory.Comon.tensorObj_comul, MonoidalRightAction.actionAssocIso_inv_naturality, CategoryTheory.op_tensorHom, CategoryTheory.Functor.Monoidal.whiskerLeft_μ_δ_assoc, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_right_assoc, CategoryTheory.BimonObj.one_comul, MonoidalLeftAction.oppositeLeftAction_actionAssocIso, SSet.iSup_subcomplexOfSimplex_prod_eq_top, tensorHom_comp_whiskerRight_assoc, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, LightCondensed.ihomPoints_symm_comp, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_right, CategoryTheory.Functor.OplaxMonoidal.δ_snd_assoc, CategoryTheory.unop_tensorHom, CategoryTheory.CartesianMonoidalCategory.tensorδ_snd_assoc, CategoryTheory.TransportEnrichment.eId_eq, CategoryTheory.FreeMonoidalCategory.tensor_eq_tensor, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition', CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_right_assoc, MonoidalRightAction.oppositeRightAction_actionObj, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, CategoryTheory.MonObj.mul_assoc, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, associator_naturality_assoc, CategoryTheory.MonObj.ofIso_mul, CategoryTheory.Discrete.monoidal_tensorObj_as, CategoryTheory.MonoidalClosed.uncurry_natural_right, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomRight, CategoryTheory.monoidalOfHasFiniteProducts.associator_inv_fst_snd, CategoryTheory.CartesianMonoidalCategory.lift_leftUnitor_hom_assoc, CategoryTheory.FreeMonoidalCategory.normalizeObj_tensor, CategoryTheory.Pi.monoidalCategoryStruct_tensorHom, CategoryTheory.Functor.prod'_μ_fst, CategoryTheory.Functor.EssImageSubcategory.associator_inv_def, Bimod.whiskerLeft_hom, selfLeftAction_actionUnitIso, CategoryTheory.Functor.mapMon_obj_mon_mul, CategoryTheory.Mon.forget_ε, CategoryTheory.Grp.trivial_grp_inv, CategoryTheory.BraidedCategory.braiding_tensor_left_inv, Action.diagonalSuccIsoTensorDiagonal_inv_hom, triangle_assoc_comp_left_inv, CategoryTheory.Functor.OplaxMonoidal.associativity_assoc, externalProductBifunctor_map_app, MonoidalRightAction.monoidalOppositeRightAction_actionHomLeft, pentagon_hom_inv_inv_inv_inv_assoc, MonoidalLeftAction.isIso_actionHom, CategoryTheory.Deterministic.discard_natural, whiskerRightIso_inv, CategoryTheory.Monoidal.FunctorCategory.whiskerLeft_app, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, whiskerRight_tensor_symm, CategoryTheory.BraidedCategory.Hexagon.functor₁₂₃_obj_obj_obj, ModuleCat.monoidalClosed_uncurry, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_rightUnitor_hom_hom, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.leftMapₗ_app, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app, CategoryTheory.Functor.mapAction_δ_hom, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.MonoidalOpposite.mopFunctor_ε, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_toUnit_comp_rightUnitor_hom, Bimod.TensorBimod.right_assoc', Action.tensorObj_V, CategoryTheory.BraidedCategory.Hexagon.functor₂₃₁_map_app_app, CategoryTheory.rightDistributor_ext₂_right_iff, CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul, CategoryTheory.BraidedCategory.ofBifunctor.Forward.secondMap₃_app_app_app, CategoryTheory.Functor.Monoidal.instIsIsoδ, SSet.instHasDimensionLETensorUnitOfNatNat, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CategoryTheory.Grp.whiskerLeft_hom_hom, CategoryTheory.Functor.Monoidal.η_ε_assoc, CategoryTheory.BraidedCategory.Hexagon.functor₂₁₃'_map_app_app, CategoryTheory.GrpObj.left_inv_assoc, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Functor.LeftLinear.instIsIsoδₗ, tensorLeftTensor_hom_app, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_leftUnitor_inv_hom, CategoryTheory.op_whiskerRight, CategoryTheory.MonObj.instIsMonHomOne, SSet.tensorHom_app_apply, CategoryTheory.MonObj.instIsMonHomToUnit, CategoryTheory.ObjectProperty.tensorUnit_obj, CategoryTheory.unop_inv_associator, CategoryTheory.braiding_tensorUnit_left_assoc, CategoryTheory.mop_hom_rightUnitor, CategoryTheory.Localization.Monoidal.associator_hom_app, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_μ, leftUnitor_inv_comp_tensorHom_assoc, tensor_obj, CategoryTheory.Adjunction.IsMonoidal.leftAdjoint_μ, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, externalProductCompDiagIso_hom_app_app, CategoryTheory.e_id_comp, associator_inv_naturality_right, CategoryTheory.Over.grpObjMkPullbackSnd_one, CategoryTheory.CartesianMonoidalCategory.associator_inv_snd, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_εIso_inv, CategoryTheory.Discrete.monoidal_tensorUnit_as, selfLeftAction_actionHomLeft, CategoryTheory.MonObj.instIsMonHomTensorHom, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv, CategoryTheory.Functor.EssImageSubcategory.associator_hom_def, SSet.prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, CategoryTheory.δ_naturalityₗ_assoc, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.bottomMapₗ_app, SSet.Truncated.Edge.map_fst, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.secondMap₁_app_app_app, inv_hom_id_tensor'_assoc, leftUnitor_inv_whiskerRight, CategoryTheory.Functor.Monoidal.inv_μ, associatorNatIso_hom_app, CategoryTheory.MonObj.ofIso_one, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorObj_obj, CategoryTheory.tensorRightHomEquiv_symm_naturality, Action.leftUnitor_inv_hom, CategoryTheory.η_naturality_assoc, CategoryTheory.endofunctorMonoidalCategory_tensorObj_obj, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.Functor.Monoidal.map_associator_inv_assoc, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃_tensorHom, CategoryTheory.μ_δ_app_assoc, CategoryTheory.Functor.Monoidal.toUnit_ε_assoc, CategoryTheory.Monoidal.associator_hom_app, CategoryTheory.coprod_inl_leftDistrib_hom, rightUnitor_tensor_hom, CategoryTheory.Center.forget_η, CategoryTheory.coevaluation_comp_leftAdjointMate_assoc, CategoryTheory.GradedObject.Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit, CategoryTheory.η_ε_app_assoc, CategoryTheory.Functor.Monoidal.map_associator_assoc, Bimod.TensorBimod.whiskerLeft_π_actLeft, CategoryTheory.MonoidalClosed.coev_app_comp_pre_app, CategoryTheory.Grp.leftUnitor_hom_hom, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst_assoc, CategoryTheory.ForgetEnrichment.equivFunctor_map, hom_inv_id_tensor'_assoc, CategoryTheory.BraidedCategory.ofBifunctor.Reverse.secondMap₁_app_app_app, CategoryTheory.CartesianMonoidalCategory.braiding_hom_snd_assoc, CategoryTheory.MonoidalPreadditive.whiskerLeft_add, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso, MonoidalLeftAction.leftUnitor_actionHom_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.leftMapᵣ_app, CategoryTheory.Functor.FullyFaithful.monObj_mul, CategoryTheory.CartesianMonoidalCategory.whiskerRight_snd_assoc, CategoryTheory.Functor.Monoidal.transport_μ, CategoryTheory.Center.tensorUnit_β, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.ForgetEnrichment.equivInverse_map, CategoryTheory.BraidedCategory.hexagon_reverse_assoc, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ε_unmop_unmop, whiskerLeft_dite, CategoryTheory.HalfBraiding.naturality, CategoryTheory.Monoidal.whiskerRight_fst, CategoryTheory.MonoidalCoherence.assoc'_iso, CategoryTheory.MonObj.lift_comp_one_right, CategoryTheory.Functor.Monoidal.tensorObj_map, MonoidalLeftAction.action_exchange, DayConvolutionInternalHom.unit_app_ev_app_app_assoc, CategoryTheory.Bimon.trivial_comon_counit_hom, CategoryTheory.Functor.Monoidal.map_μ_δ_assoc, curriedAssociatorNatIso_hom_app_app_app, CategoryTheory.Functor.Monoidal.lift_μ_assoc, CategoryTheory.Functor.Monoidal.instIsIsoη, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, MonoidalRightAction.actionHom_associator, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃_tensorHom_assoc, CategoryTheory.monoidalOfHasFiniteProducts.associator_hom, CategoryTheory.BraidedCategory.braiding_inv_naturality_assoc, CategoryTheory.tensorRightHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.toOver_obj_left, CategoryTheory.whiskerRight_coprod_inr_rightDistrib_inv_assoc, CategoryTheory.Functor.Monoidal.tensorObjComp_hom_app, CategoryTheory.Center.whiskerLeft_comm, CategoryTheory.Localization.Monoidal.μ_inv_natural_right, CategoryTheory.unop_tensor_unop, Bimod.actRight_one, CategoryTheory.mop_inv_associator, CategoryTheory.Functor.Monoidal.whiskerRight_η_ε, CategoryTheory.Monoidal.transportStruct_tensorHom, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_inv_assoc, MonoidalRightAction.oppositeRightAction_actionHomRight, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Functor.prod'_δ_snd, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_snd, tensorμ_natural_right_assoc, CategoryTheory.Functor.LaxBraided.braided, CategoryTheory.Functor.LaxMonoidal.left_unitality_assoc, MonoidalRightAction.actionHom_id, MonoidalRightAction.actionHom_leftUnitor, CategoryTheory.Functor.OplaxMonoidal.δ_snd, CategoryTheory.Over.toUnit_left, whiskerRight_tensor, CategoryTheory.BraidedCategory.curriedBraidingNatIso_inv_app_app, Action.whiskerRight_hom, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, CategoryTheory.μ_naturality₂_assoc, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_snd_hom, CategoryTheory.Functor.Monoidal.δ_μ, MonoidalRightAction.actionHomRight_hom_inv, MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHom, externalProductBifunctorCurried_obj_obj_obj_map, MonoidalRightAction.actionHomRight_comp, DayConvolution.whiskerRight_comp_unit_app_assoc, CategoryTheory.CartesianClosed.curry_id_eq_coev, SSet.hasDimensionLT_prod, CategoryTheory.ObjectProperty.tensorHom_def, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.leftMapᵣ_app, id_whiskerLeft, id_tensorHom, CategoryTheory.Over.braiding_inv_left, CategoryTheory.unop_tensorUnit, CategoryTheory.Functor.Monoidal.whiskerLeft_μ_δ, CategoryTheory.leftUnitor_hom_apply, CategoryTheory.leftDistributor_hom, LawfulDayConvolutionMonoidalCategoryStruct.associator_hom_unit_unit, CategoryTheory.Mon.rightUnitor_inv_hom, CategoryTheory.Functor.Monoidal.map_rightUnitor_inv, SSet.RelativeMorphism.Homotopy.h₀_assoc, endofunctorMonoidalCategory.evaluationRightAction_actionUnitIso, CategoryTheory.tensorLeftHomEquiv_naturality, CategoryTheory.whiskerLeft_coprod_inl_leftDistrib_inv, CategoryTheory.Skeleton.toSkeleton_tensorObj, CategoryTheory.MonoidalClosed.uncurry_natural_left_assoc, Bimod.left_assoc_assoc, tensorμ_natural_right, CategoryTheory.whiskerRight_coprod_inl_rightDistrib_inv, Rep.coinvariantsTensorFreeLEquiv_symm_apply, CategoryTheory.Grp.ε_def, CategoryTheory.toOverUnit_map_left, CategoryTheory.MonoidalClosed.uncurry_pre_app_assoc, CategoryTheory.Grp.rightUnitor_hom_hom_hom, CategoryTheory.Monoidal.transportStruct_tensorObj, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv_assoc, CategoryTheory.rightUnitor_inv_braiding, SSet.prodStdSimplex.objEquiv_apply_fst, CategoryTheory.monoidalOpOp_δ, Bimod.right_assoc, CategoryTheory.MonObj.ofRepresentableBy_one, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, whiskerLeft_rightUnitor_inv, MonoidalRightAction.hom_inv_actionHomLeft'_assoc, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.firstMap₃_app_app_app, CategoryTheory.Bimon.toComon_obj_comon_counit, MonoidalLeftAction.actionAssocNatIso_hom_app_app_app, CategoryTheory.GrpObj.lift_inv_comp_right, AddGrpCat.tensorObj_eq, id_tensor_comp_tensor_id, leftUnitor_tensor_inv'_assoc, CategoryTheory.IsSifted.instIsIsoObjFunctorTypeColimTensorObjProdComparison, CategoryTheory.sheafToPresheaf_μ, CategoryTheory.biproduct_ι_comp_rightDistributor_hom, CategoryTheory.Pi.braiding_inv_apply, CategoryTheory.rightDistributor_hom_comp_biproduct_π_assoc, CategoryTheory.symmetricOfHasFiniteProducts_braiding_hom, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Grp.lift_hom, MonoidalRightAction.hom_inv_actionHomLeft_assoc, MonoidalRightAction.actionHom_def'_assoc, CategoryTheory.CartesianMonoidalCategory.tensorμ_fst_assoc, CategoryTheory.MorphismProperty.IsMonoidal.whiskerRight, CategoryTheory.Functor.Monoidal.map_leftUnitor_inv, MonoidalLeftAction.actionHomRight_id_assoc, CategoryTheory.HopfObj.mul_antipode, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_snd_assoc, CategoryTheory.Over.tensorObj_ext_iff, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, MonoidalRightAction.inv_hom_actionHomLeft, CategoryTheory.ε_η_app_assoc, CategoryTheory.Grp.hom_mul, CategoryTheory.MonoidalPreadditive.add_whiskerRight, CategoryTheory.ε_naturality_assoc, rightUnitor_inv_comp_tensorHom_assoc, id_tensor_rightUnitor_inv_assoc, CategoryTheory.coev_expComparison, prodCompExternalProduct_inv_app, CategoryTheory.MonoidalClosed.uncurry_natural_right_assoc, Rep.homEquiv_apply_hom, CategoryTheory.Functor.Monoidal.map_associator, eqToHom_whiskerRight, CategoryTheory.rightDistributor_ext₂_left_iff, whiskerRight_id_symm_assoc, CategoryTheory.types_tensorUnit_def, MonoidalRightAction.isIso_actionHom, CategoryTheory.Bimon.trivial_X_X, CategoryTheory.GradedObject.Monoidal.rightUnitor_inv_apply, tensorμ_comp_μ_tensorHom_μ_comp_μ_assoc, CategoryTheory.Functor.prod'_ε_fst, CategoryTheory.CopyDiscardCategory.copy_unit, CategoryTheory.GradedObject.Monoidal.leftUnitor_inv_apply, CategoryTheory.Monoidal.InducingFunctorData.associator_eq, CategoryTheory.Bimon.ofMonComonObj_comon_comul_hom, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_fst_hom, CategoryTheory.Adjunction.ε_comp_map_ε_assoc, CategoryTheory.tensorRightHomEquiv_whiskerRight_comp_evaluation, CategoryTheory.toOverIsoToOverUnit_inv_app_left, tensor_whiskerLeft_symm_assoc, CategoryTheory.BraidedCategory.Hexagon.functor₂₃₁'_map_app_app, CategoryTheory.Functor.OplaxMonoidal.δ_fst_assoc, CategoryTheory.CopyDiscardCategory.copy_tensor, CategoryTheory.BraidedCategory.braiding_tensor_left_hom, CategoryTheory.obj_zero_map_μ_app_assoc, MonoidalLeftAction.actionHomLeft_action_assoc, CategoryTheory.MonoidalCoherence.left_iso, CategoryTheory.braiding_inv_tensorUnit_right_assoc, SSet.instFiniteTensorUnit, pentagon_hom_inv_inv_inv_inv, CategoryTheory.BraidedCategory.Hexagon.functor₃₁₂_map_app_app, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, CategoryTheory.MonoidalCoherence.tensor_right_iso, CategoryTheory.Functor.obj.ε_def_assoc, CategoryTheory.Functor.Monoidal.ε_η, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, CategoryTheory.ObjectProperty.ι_η, MonoidalLeftAction.actionHomRight_hom_inv, CategoryTheory.CartesianMonoidalCategory.prodComparisonIso_hom, CategoryTheory.MonObj.lift_lift_assoc, CategoryTheory.Functor.Monoidal.map_whiskerRight, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.bottomMapₗ_app, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv, CategoryTheory.Over.rightUnitor_inv_left_fst, tensorIso_def, Bimod.TensorBimod.actRight_one', CategoryTheory.BraidedCategory.Hexagon.functor₁₂₃'_obj_map_app, MonoidalRightAction.actionHom_def, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.MonObj.mul_leftUnitor, MonoidalRightAction.curriedAction_map_app, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.μ_naturalityᵣ_assoc, DayConvolutionInternalHom.unit_app_ev_app_app, CategoryTheory.unmop_hom_associator, CategoryTheory.MonObj.lift_comp_one_right_assoc, pentagon_inv_inv_hom_hom_inv_assoc, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, MonoidalLeftAction.curriedActionMopMonoidal_μ_unmop_app, CategoryTheory.CartesianMonoidalCategory.lift_braiding_hom, CategoryTheory.Bimon.compatibility_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.Functor.Monoidal.whiskerRight_μ_δ_assoc, MonoidalLeftAction.isIso_actionHomLeft, MonoidalLeftAction.actionHomLeft_action, MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionUnitIso_inv, CategoryTheory.ModObj.mul_smul'_assoc, CategoryTheory.IsComonHom.hom_comul, CategoryTheory.ComonObj.comul_counit, CategoryTheory.Pi.associator_hom_apply, prodMonoidal_whiskerRight, CategoryTheory.mop_associator, CategoryTheory.BraidedCategory.Hexagon.functor₁₂₃'_obj_obj_obj, CategoryTheory.FreeMonoidalCategory.normalize_naturality, MonoidalLeftAction.actionHom_def_assoc, CategoryTheory.MonoidalClosed.uncurry_pre_app, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃_associator_inv, CategoryTheory.CartesianMonoidalCategory.braiding_inv_fst_assoc, MonoidalRightAction.actionUnitIso_hom_naturality_assoc, DayConvolution.unit_naturality_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.equivToOverUnit_unitIso, MonoidalRightAction.curriedActionMonoidal_η_app, tensor_inv_hom_id', MonoidalLeftAction.actionUnitIso_hom_naturality_assoc, CategoryTheory.Functor.LeftLinear.μₗ_comp_δₗ_assoc, CategoryTheory.GrpObj.one_inv_assoc, CategoryTheory.Localization.Monoidal.triangle_aux₃, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app', CategoryTheory.ihom.ev_coev_assoc, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_hom_assoc, DayConvolution.whiskerLeft_comp_unit_app, MonoidalLeftAction.actionAssocIso_inv_naturality_assoc, CategoryTheory.BimonObj.mul_counit_assoc, CategoryTheory.Functor.mapGrp_obj_grp_one, triangle_assoc_comp_left_inv_assoc, MonoidalRightAction.actionHomRight_inv_hom, CategoryTheory.op_tensorUnit, rightUnitor_tensor_inv_assoc, unitors_equal, MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionUnitIso_hom, CategoryTheory.Functor.Monoidal.map_ε_η_assoc, SSet.prodStdSimplex.strictMono_orderHomOfSimplex_iff, CategoryTheory.coprod_inl_rightDistrib_hom, id_tensor_comp_assoc, MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHom, MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso_mop_mop, CategoryTheory.monoidalOfHasFiniteCoproducts.tensorObj, SSet.Subcomplex.ofSimplexProd_eq_range, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.Mathlib.Tactic.MonTauto.associator_inv_comp_tensorHom_tensorHom_assoc, SSet.Truncated.Edge.CompStruct.tensor_simplex_snd, CategoryTheory.Discrete.monoidal_leftUnitor, CategoryTheory.obj_μ_app, CategoryTheory.μ_naturalityₗ, LawfulDayConvolutionMonoidalCategoryStruct.convolutionExtensionUnit_comp_ι_map_tensorHom_app, hom_inv_whiskerRight_assoc, CategoryTheory.op_tensorObj, CategoryTheory.Mon.trivial_mon_mul, CategoryTheory.Center.tensor_β, inv_hom_whiskerRight_assoc, Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.MonoidalOpposite.tensorLeftUnmopIso_inv_app, CategoryTheory.Over.preservesTerminalIso_pullback, CategoryTheory.Bimon.trivial_comon_comul_hom, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, CategoryTheory.coprod_inr_rightDistrib_hom, SSet.prodStdSimplex.objEquiv_δ_apply, CategoryTheory.Enriched.FunctorCategory.enrichedId_π_assoc, CategoryTheory.δ_naturalityᵣ_assoc, MonoidalLeftAction.monoidalOppositeLeftAction_actionHomRight, CategoryTheory.whiskerLeft_def, CategoryTheory.Iso.eHomCongr_comp_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv_assoc, CategoryTheory.Functor.CoreMonoidal.left_unitality, CategoryTheory.CartesianMonoidalCategory.comp_lift, CategoryTheory.EnrichedFunctor.forget_map, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_associator_inv_hom, CategoryTheory.Functor.mapGrp_id_one, CategoryTheory.MonoidalClosed.uncurry_eq, CategoryTheory.Functor.OplaxMonoidal.id_δ, MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionAssocIso_inv, CategoryTheory.Grp.associator_inv_hom_hom, CategoryTheory.Functor.Monoidal.μ_comp_assoc, CategoryTheory.GrpObj.η_whiskerRight_commutator_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparison_id, DayConvolutionInternalHom.coev_app_π_assoc, rightUnitor_inv_naturality, CategoryTheory.associator_inv_apply, CategoryTheory.Localization.Monoidal.μ_natural_right, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.bijection_natural, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_one, CategoryTheory.Monoidal.transportStruct_tensorUnit, CategoryTheory.left_unitality_app_assoc, CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_inv_assoc, CategoryTheory.μ_naturality₂, CategoryTheory.Functor.diag_δ, CategoryTheory.Over.rightUnitor_inv_left_snd, MonoidalLeftAction.actionHom_comp_assoc, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.secondMap₂_app_app_app, SSet.Truncated.Edge.id_tensor_id, CategoryTheory.op_whiskerLeft, CategoryTheory.BraidedCategory.Hexagon.functor₁₃₂'_obj_map_app, CategoryTheory.CartesianMonoidalCategory.braiding_hom_fst, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.rightAdjointMate_comp_evaluation_assoc, whisker_assoc_assoc, CategoryTheory.Functor.instIsMonHomμ, Action.FunctorCategoryEquivalence.functor_δ, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.leftUnitor_inv_braiding_assoc, CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_inv, MonObj.unmopMonObj_one, CategoryTheory.EnrichedCategory.comp_id, Mathlib.Tactic.Monoidal.evalHorizontalComp_nil_nil, CategoryTheory.Grp.leftUnitor_hom_hom_hom, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.firstMap₁_app_app_app, pentagon_hom_hom_inv_inv_hom, CategoryTheory.braiding_rightUnitor_aux₁, CategoryTheory.rightDistributor_inv_comp_biproduct_π, CategoryTheory.Functor.CoreMonoidal.μIso_hom_natural_left, CategoryTheory.μ_naturalityᵣ, CategoryTheory.Functor.Monoidal.map_associator'_assoc, associator_inv_naturality_left_assoc, CategoryTheory.MonoidalClosed.whiskerLeft_curry'_comp, CategoryTheory.leftDistributor_hom_comp_biproduct_π, CategoryTheory.HopfObj.one_antipode, SSet.prodStdSimplex.objEquiv_naturality, pentagon_inv_hom_hom_hom_inv_assoc, CategoryTheory.whiskerRight_def, CategoryTheory.BraidedCategory.unop_tensorμ, CategoryTheory.Sheaf.tensorProd_isSheaf, CategoryTheory.Functor.LeftLinear.inv_μₗ, CategoryTheory.Mathlib.Tactic.MonTauto.associator_hom_comp_tensorHom_tensorHom_assoc, CategoryTheory.MonoidalClosed.whiskerLeft_curry'_ihom_ev_app_assoc, CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_η, CategoryTheory.toOverUnit_obj_left, CategoryTheory.Functor.Monoidal.μ_fst_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul_assoc, CategoryTheory.Equivalence.map_η_comp_η, CategoryTheory.CartesianMonoidalCategory.tensorHom_fst, DayConvolution.associator_inv_unit_unit, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural, CategoryTheory.op_tensor_op, MonoidalLeftAction.actionHomRight_inv_hom_assoc, inv_tensor, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_mul, CategoryTheory.Functor.prod_ε_snd, CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π, tensorIso_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.Mon.tensorObj_one, CategoryTheory.Mon.lift_hom, CategoryTheory.Center.rightUnitor_inv_f, CategoryTheory.Mon.whiskerRight_hom, CategoryTheory.IsMod_Hom.smul_hom, CategoryTheory.SemiCartesianMonoidalCategory.comp_toUnit_assoc, MonoidalRightAction.actionHom_comp, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_μIso_hom, CategoryTheory.NatTrans.IsMonoidal.unit, id_tensor_associator_inv_naturality, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, id_tensor_rightUnitor_inv, CategoryTheory.e_comp_id_assoc, CategoryTheory.EnrichedCategory.id_comp, CategoryTheory.monoidalOfHasFiniteProducts.associator_hom_snd_fst, CategoryTheory.rightDistributor_ext_right_iff, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_εIso_hom, MonoidalRightAction.monoidalOppositeRightAction_actionHom, CategoryTheory.Functor.Monoidal.map_δ_μ_assoc, CategoryTheory.coprodComparison_tensorRight_braiding_hom, CategoryTheory.Comon.forget_η, whiskerRight_id_symm, CategoryTheory.Functor.EssImageSubcategory.tensor_obj, CategoryTheory.Functor.prod_η_snd, MonoidalRightAction.actionHom_def', CategoryTheory.CommGrp.trivial_X, CategoryTheory.Functor.OplaxMonoidal.oplax_right_unitality, CategoryTheory.Functor.Monoidal.map_whiskerLeft_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_right_assoc, Bimod.TensorBimod.middle_assoc', CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, CategoryTheory.Discrete.addMonoidal_tensorObj_as, CategoryTheory.Monoidal.tensorUnit_map, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.MonoidalOpposite.tensorIso_hom_app_unmop, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_ε_η_assoc, CategoryTheory.MonObj.instIsMonHomSnd, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_whiskerLeft_assoc, CategoryTheory.BraidedCategory.Hexagon.functor₁₃₂_map_app_app, MonoidalRightAction.actionAssocIso_hom_naturality_assoc, selRightfAction_actionHomRight, CategoryTheory.Functor.OplaxMonoidal.δ_comp_whiskerLeft_δ_assoc, MonoidalRightAction.actionHomLeft_tensor, CategoryTheory.Enriched.FunctorCategory.enriched_id_comp_assoc, CategoryTheory.mop_whiskerLeft, CategoryTheory.CartesianMonoidalCategory.lift_braiding_inv, CategoryTheory.Functor.Monoidal.transport_ε, LightCondensed.internallyProjective_iff_tensor_condition, CategoryTheory.CartesianClosed.curry_natural_right_assoc, selfLeftAction_actionHom, CategoryTheory.CartesianMonoidalCategory.tensorHom_snd_assoc, CategoryTheory.endofunctorMonoidalCategory_associator_inv_app, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_left_assoc, CategoryTheory.CartesianMonoidalCategory.map_toUnit_comp_terminalComparison_assoc, whiskerLeft_id_assoc, CategoryTheory.eComp_eHomWhiskerRight, SSet.instFiniteTensorObj, CategoryTheory.MonObj.mul_def, CategoryTheory.Pi.monoidalCategoryStruct_whiskerLeft, hom_inv_whiskerRight, comp_tensor_id_assoc, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, triangle_assoc, CategoryTheory.Comon.forget_δ, tensor_left_iff, MonoidalRightAction.actionAssocIso_hom_naturality, CategoryTheory.MonObj.one_def, CategoryTheory.MonoidalClosed.curry'_ihom_map, MonoidalRightAction.actionRight_obj, MonoidalRightAction.inv_actionHomLeft, CategoryTheory.CartesianMonoidalCategory.prodComparison_snd_assoc, CategoryTheory.MonObj.mul_mul_mul_comm'_assoc, CategoryTheory.mop_tensorObj, CategoryTheory.op_inv_braiding, CategoryTheory.Functor.Monoidal.whiskerRight_η_ε_assoc, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.MonObj.one_mul_assoc, CategoryTheory.MonoidalCoherence.right'_iso, Rep.coinvariantsTensorFreeLEquiv_apply, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.bottomMapᵣ_app, CategoryTheory.Grp.rightUnitor_inv_hom_hom, CategoryTheory.Monoidal.whiskerRight, CategoryTheory.Bimon.ofMon_Comon_ObjX_one, CategoryTheory.BraidedCategory.braiding_tensor_left_inv_assoc, CategoryTheory.Functor.CoreMonoidal.associativity_assoc, MonoidalLeftAction.id_actionHomLeft, associator_naturality_middle, CategoryTheory.δ_μ_app, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.Adjunction.unit_app_unit_comp_map_η, selRightfAction_actionHom, CategoryTheory.FreeMonoidalCategory.mk_whiskerRight, CategoryTheory.MonoidalClosed.assoc, CategoryTheory.Monoidal.whiskerRight_app, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_assoc, CategoryTheory.e_assoc_assoc, CategoryTheory.MonoidalPreadditive.whiskerLeft_zero, CategoryTheory.Functor.CoreMonoidal.right_unitality_assoc, CategoryTheory.HopfObj.antipode_left, SSet.prodStdSimplex.objEquiv_apply_snd, CategoryTheory.ObjectProperty.ι_ε, MonoidalLeftAction.inv_actionHomLeft, CategoryTheory.MonoidalCoherence.whiskerRight_iso, SSet.hoFunctor.unitHomEquiv_eq, MonoidalLeftAction.whiskerLeft_actionHomLeft_assoc, CategoryTheory.Center.braiding_hom_f, CategoryTheory.BraidedCategory.Hexagon.functor₂₃₁'_obj_obj_obj, CategoryTheory.GrpObj.tensorHom_inv_inv_mul_assoc, CategoryTheory.Functor.obj.Δ_def_assoc, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.topMapₗ_app, CategoryTheory.MonoidalOpposite.mopFunctor_η, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_left, CategoryTheory.CartesianClosed.curry_natural_left_assoc, CategoryTheory.Pi.left_unitor_inv_apply, CategoryTheory.Mon.tensorUnit_X, tensorμ_tensorδ, CategoryTheory.coev_app_comp_pre_app, MonoidalLeftAction.action_exchange_assoc, leftUnitor_inv_whiskerRight_assoc, CategoryTheory.Localization.Monoidal.μ_natural_left_assoc, CategoryTheory.Functor.RightLinear.μᵣ_comp_δᵣ, LawfulDayConvolutionMonoidalCategoryStruct.convolutionExtensionUnit_comp_ι_map_whiskerLeft_app, CategoryTheory.Skeleton.one_eq, CategoryTheory.Monoidal.tensorUnit_obj, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorUnit_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_hom, CategoryTheory.CartesianClosed.curry_natural_right, MonoidalLeftAction.id_actionHom, whiskerRight_comp_tensorHom_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.Mon.limit_mon_mul, tensorμ_comp_μ_tensorHom_μ_comp_μ, prodMonoidal_leftUnitor, CategoryTheory.Functor.Monoidal.transport_δ, associator_monoidal, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_hom, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_hom_assoc, CategoryTheory.unop_whiskerRight, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.leftUnitor_inv_apply, CommAlgCat.lift_unop_hom, CategoryTheory.Functor.CoreMonoidal.toOplaxMonoidal_δ, MonoidalRightAction.actionHom_associator_assoc, CategoryTheory.Functor.CoreMonoidal.μIso_hom_natural_left_assoc, CategoryTheory.GradedObject.Monoidal.ι_tensorObjDesc_assoc, CategoryTheory.Adjunction.IsMonoidal.leftAdjoint_ε, tensoringRight_δ, CategoryTheory.unmop_inv_leftUnitor, CategoryTheory.BraidedCategory.ofBifunctor.Reverse.secondMap₂_app_app_app, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, CategoryTheory.Center.ofBraided_ε_f, CategoryTheory.MonoidalClosed.id_eq, MonoidalLeftAction.tensor_actionHomRight, leftUnitor_tensor_hom, CategoryTheory.MonoidalClosed.assoc_assoc, CategoryTheory.op_leftUnitor, CategoryTheory.CartesianMonoidalCategory.lift_rightUnitor_hom_assoc, CategoryTheory.Over.tensorUnit_hom, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, CategoryTheory.Grp.whiskerRight_hom_hom, whiskerLeft_comp, CommAlgCat.mul_op_of_unop_hom, CategoryTheory.MonoidalClosed.curry_id_eq_coev, CategoryTheory.IsComonHom.hom_comul_assoc, whiskerRight_comp_tensorHom, SSet.instFiniteObjOppositeSimplexCategoryTensorObj, CategoryTheory.Over.leftUnitor_inv_left_fst, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_fst, CategoryTheory.unmop_inv_associator, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃_associator_inv_assoc, CategoryTheory.Monoidal.tensorHom, CategoryTheory.BraidedCategory.Hexagon.functor₃₁₂_obj_obj_map, CategoryTheory.eComp_eHomWhiskerLeft_assoc, CategoryTheory.MonObj.mul_mul_mul_comm, CategoryTheory.IsMonHom.one_hom_assoc, CategoryTheory.unmop_tensorUnit, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, prodMonoidal_tensorUnit, CategoryTheory.Comon.tensorObj_counit, CategoryTheory.Sheaf.cartesianMonoidalCategorySnd_val, id_tensor_associator_naturality, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ, CategoryTheory.Enriched.FunctorCategory.enriched_comp_id_assoc, CategoryTheory.FreeMonoidalCategory.normalizeObj_unitor, associator_inv_naturality, CoalgCat.MonoidalCategoryAux.tensorObj_comul, CategoryTheory.Hom.mul_def, CategoryTheory.MorphismProperty.IsMonoidal.whiskerLeft, CategoryTheory.Functor.Monoidal.transport_μ_assoc, CategoryTheory.endofunctorMonoidalCategory_whiskerRight_app, MonoidalRightAction.hom_inv_actionHomLeft', CategoryTheory.BraidedCategory.ofBifunctor.Forward.secondMap₂_app_app_app, CategoryTheory.BraidedCategory.Hexagon.functor₂₃₁_obj_obj_map, CategoryTheory.associator_hom_apply_1, dite_whiskerRight, rightUnitor_inv_naturality_assoc, CategoryTheory.Functor.LaxMonoidal.left_unitality, MonoidalRightAction.id_actionHomLeft_assoc, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, SSet.leftUnitor_inv_app_apply, Bimod.right_assoc_assoc, SSet.ι₀_fst_assoc, SSet.ι₁_comp, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.tensorLeftHomEquiv_tensor, Action.tensorUnit_ρ, CategoryTheory.ModObj.one_smul'_assoc, CategoryTheory.Functor.OplaxMonoidal.δ_comp_δ_whiskerRight_assoc, CategoryTheory.Functor.LaxMonoidal.μ_natural_right_assoc, CategoryTheory.BraidedCategory.braiding_naturality, CategoryTheory.MonObj.tensorObj.mul_def, CategoryTheory.right_unitality_app_assoc, CategoryTheory.Functor.obj.η_def_assoc, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.secondMap₃_app_app_app, MonoidalLeftAction.rightUnitor_actionHom, CategoryTheory.η_app_obj, endofunctorMonoidalCategory.evaluationRightAction_actionHomRight, CategoryTheory.Center.tensorUnit_snd_β, CategoryTheory.ExactPairing.evaluation_coevaluation', LawfulDayConvolutionMonoidalCategoryStruct.convolutionExtensionUnit_comp_ι_map_whiskerRight_app, CategoryTheory.CartesianMonoidalCategory.tensorμ_snd, CommAlgCat.fst_unop_hom, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.BraidedCategory.Hexagon.functor₁₂₃'_obj_obj_map, MonoidalRightAction.inv_actionHomRight, CategoryTheory.BraidedCategory.hexagon_reverse_inv, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_μ, CategoryTheory.MonoidalClosed.uncurry_pre, CategoryTheory.Mon.fst_hom, CategoryTheory.Functor.mapAction_η_hom, CategoryTheory.Over.tensorHom_left_snd_assoc, MonoidalRightAction.actionHomRight_whiskerRight_assoc, CategoryTheory.MonObj.lift_comp_one_left, CategoryTheory.BraidedCategory.curriedBraidingNatIso_hom_app_app, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.secondMap_app_app_app, CategoryTheory.MonObj.instIsMonHomHomLeftUnitor, CategoryTheory.Grp.μ_def, MonoidalRightAction.rightActionOfOppositeRightAction_actionHom, CategoryTheory.Functor.Monoidal.map_rightUnitor_assoc, CategoryTheory.Grp.snd_hom, CategoryTheory.Functor.OplaxMonoidal.lift_δ, CategoryTheory.Center.leftUnitor_hom_f, CategoryTheory.Grp.tensorUnit_mul, whiskerRight_iff, CategoryTheory.HopfObj.antipode_comul, MonoidalRightAction.monoidalOppositeRightAction_actionHomRight_mop, CategoryTheory.Center.forget_ε, CategoryTheory.Center.tensorHom_f, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.endofunctorMonoidalCategory_tensorMap_app, CategoryTheory.Functor.obj.η_def, MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_inv, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_snd, tensor_right_iff, SSet.whiskerRight_app_apply, CategoryTheory.δ_app, CategoryTheory.BraidedCategory.Hexagon.functor₁₂₃_map_app_app, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionObj, CategoryTheory.unop_inv_leftUnitor, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_ε, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_inv, CategoryTheory.Functor.Monoidal.whiskeringLeft_ε_app, Bimod.Hom.left_act_hom, CategoryTheory.Functor.Monoidal.map_leftUnitor_inv_assoc, CategoryTheory.braiding_hom_apply, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_snd_assoc, CategoryTheory.CommGrp.trivial_grp_one, SSet.rightUnitor_inv_app_apply, CategoryTheory.NatTrans.IsMonoidal.tensor, CategoryTheory.Functor.OplaxMonoidal.oplax_associativity, rightUnitor_tensor_hom_assoc, CategoryTheory.Functor.Monoidal.whiskerRight_ε_η_assoc, CategoryTheory.Over.leftUnitor_inv_left_snd, CategoryTheory.e_assoc', SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, CategoryTheory.Monoidal.tensorObj_obj, CategoryTheory.μ_naturality, CategoryTheory.CartesianMonoidalCategory.associator_inv_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.MonObj.instIsMonHomLift, GrpCat.tensorObj_eq, CategoryTheory.Bimon.ofMon_Comon_ObjX_mul, CategoryTheory.Monoidal.rightUnitor_hom, CategoryTheory.Monoidal.ComonFunctorCategoryEquivalence.inverseObj_comon_counit_app, CategoryTheory.Monoidal.FunctorCategory.tensorObj_map, whiskerRightIso_refl, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom_unop, CategoryTheory.BraidedCategory.Hexagon.functor₂₁₃'_obj_map_app, CategoryTheory.obj_zero_map_μ_app, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', triangle_assoc_comp_right_inv, MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft_mop, CategoryTheory.Functor.Monoidal.whiskeringLeft_μ_app, CategoryTheory.MonoidalClosed.id_tensor_pre_app_comp_ev, CategoryTheory.Bimon.Bimon_ClassAux_counit, CategoryTheory.Bimon.one_comul, tensor_associativity_assoc, CategoryTheory.BraidedCategory.ofBifunctor.Forward.secondMap₁_app_app_app, CategoryTheory.MonoidalClosed.curry_pre_app, CategoryTheory.bijection_symm_apply_id, CategoryTheory.Monoidal.FunctorCategory.tensorHom_app, CoalgCat.MonoidalCategory.inducingFunctorData_μIso, CategoryTheory.Enriched.Functor.associator_hom_apply, CategoryTheory.MonoidalPreadditive.add_tensor, comp_whiskerRight, MonoidalRightAction.inv_actionHom, CoalgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Over.μ_pullback_left_fst_snd', SSet.ι₀_snd, CategoryTheory.NatTrans.whiskerLeft_app_tensor_app_assoc, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_fst, CategoryTheory.Center.tensor_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_left, CategoryTheory.sheafToPresheaf_δ, CategoryTheory.Limits.lim_ε_π_assoc, CategoryTheory.monoidalUnopUnop_ε, CategoryTheory.MonoidalOpposite.mop_inv_braiding, SSet.Truncated.Edge.CompStruct.tensor_simplex_fst, MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionObj, CategoryTheory.Functor.Monoidal.map_associator_inv, CategoryTheory.Grp.tensorUnit_X, CategoryTheory.rightDistributor_inv, MonoidalRightAction.actionHomRight_hom_inv'_assoc, DayConvolutionInternalHom.hπ, CategoryTheory.Enriched.FunctorCategory.homEquiv_comp, tensorIso_inv, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, CategoryTheory.BraidedCategory.yang_baxter, CategoryTheory.BraidedCategory.braiding_naturality_left, DayConvolutionInternalHom.map_app_comp_π, CategoryTheory.Grp.whiskerLeft_hom, MonoidalRightAction.rightActionOfOppositeRightAction_actionObj, CategoryTheory.associator_inv, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', SSet.Truncated.HomotopyCategory.BinaryProduct.inverseCompFunctorIso_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.Functor.chosenProd_obj, CategoryTheory.FreeMonoidalCategory.mk_l_inv, tensorHom_comp_tensorHom, MonoidalLeftAction.monoidalOppositeLeftAction_actionUnitIso, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity, CategoryTheory.Functor.LeftLinear.δₗ_comp_μₗ, CategoryTheory.unmop_leftUnitor, whiskerLeftIso_hom, associator_inv_naturality_middle_assoc, CategoryTheory.ComonObj.counit_comul_assoc, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_snd_assoc, CategoryTheory.ComonObj.counit_comul_hom, CategoryTheory.Localization.Monoidal.μ_natural_left, leftUnitor_tensor_hom'_assoc, CategoryTheory.Mon_Class.mul_eq_mul, CategoryTheory.Functor.RightLinear.δᵣ_comp_μᵣ, leftUnitor_monoidal, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_inv, SSet.Truncated.Edge.map_associator_hom, CategoryTheory.BraidedCategory.hexagon_forward_iso, CategoryTheory.Enriched.FunctorCategory.homEquiv_id, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse_assoc, MonoidalRightAction.curriedAction_obj_map, inv_hom_id_tensor, CategoryTheory.Functor.LaxMonoidal.id_ε, CategoryTheory.Functor.Monoidal.μ_of_cartesianMonoidalCategory, MonoidalRightAction.action_exchange_assoc, CategoryTheory.BraidedCategory.yang_baxter_iso, MonoidalRightAction.rightActionOfOppositeRightAction_actionUnitIso, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.FreeMonoidalCategory.tensorFunc_map_app, CategoryTheory.EnrichedOrdinaryCategory.homEquiv_id, CategoryTheory.Pi.η_def, CategoryTheory.rightUnitor_def, CategoryTheory.Monoidal.rightUnitor_inv_app, CategoryTheory.BraidedCategory.hexagon_forward_inv_assoc, CategoryTheory.Functor.Monoidal.map_associator_inv', tensorHom_def, CategoryTheory.Functor.Monoidal.inv_η, whiskerLeftIso_refl, SemimoduleCat.MonoidalCategory.tensorμ_apply, MonoidalLeftAction.hom_inv_actionHomLeft'_assoc, CategoryTheory.Grp.leftUnitor_inv_hom_hom, Mathlib.Tactic.Monoidal.naturality_associator, CategoryTheory.GrpObj.one_inv, CategoryTheory.MonoidalClosed.curry_natural_left, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, CategoryTheory.Functor.LaxMonoidal.right_unitality_inv, CategoryTheory.EnrichedFunctor.map_id, tensorHom_comp_tensorHom_assoc, Action.forget_δ, CategoryTheory.Monoidal.ComonFunctorCategoryEquivalence.functorObjObj_comon_counit, MonoidalLeftAction.monoidalOppositeLeftAction_actionHom_mop_mop, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.BraidedCategory.hexagon_reverse, MonoidalRightAction.actionHom_rightUnitor, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor, associator_naturality_left, CategoryTheory.Mon.associator_hom_hom, CategoryTheory.Center.ofBraided_δ_f, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_snd_assoc, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_fst_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparison_comp, CategoryTheory.HopfObj.antipode_comul₂, CategoryTheory.monoidalUnopUnop_δ, SSet.ι₁_snd_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_assoc, CategoryTheory.Functor.OplaxMonoidal.instIsIsoη, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, CategoryTheory.monoidalOfHasFiniteCoproducts.rightUnitor_inv, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.Functor.OplaxMonoidal.whiskeringRight_δ_app, CategoryTheory.tensorHom_def, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionAssocIso, CategoryTheory.GrpObj.tensorObj.inv_def, CategoryTheory.monoidalOfHasFiniteProducts.associator_inv_snd, CategoryTheory.IsMonHom.mul_hom, CategoryTheory.MonObj.instIsMonHomFst, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.BraidedCategory.braiding_tensor_left_hom_assoc, prodMonoidal_rightUnitor, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul_assoc, CategoryTheory.Bimon.BimonObjAux_counit, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_μIso_inv, CategoryTheory.Functor.diag_μ, Rep.finsuppTensorRight_hom_hom, CategoryTheory.BimonObj.mul_comul_assoc, CategoryTheory.monoidalOfHasFiniteProducts.associator_hom_snd_snd, MonoidalRightAction.actionHom_def_assoc, CategoryTheory.Functor.comp_mapCommMon_mul, CategoryTheory.ObjectProperty.tensorObj_obj, ModuleCat.free_ε_one, Bimod.middle_assoc_assoc, CategoryTheory.whiskerLeft_coprod_inl_leftDistrib_inv_assoc, CategoryTheory.Comon.MonOpOpToComonObj_comon_comul, CategoryTheory.Functor.mapAction_ε_hom, CategoryTheory.BraidedCategory.Hexagon.functor₃₁₂'_map_app_app, CategoryTheory.monoidalOfHasFiniteProducts.tensorUnit, CategoryTheory.BraidedCategory.braiding_inv_naturality_right_assoc, CategoryTheory.MonObj.tensorObj.one_def, CategoryTheory.Functor.OplaxMonoidal.δ_natural_left, CategoryTheory.CartesianClosed.uncurry_natural_right, CategoryTheory.ForgetEnrichment.homOf_comp, CategoryTheory.Grp.rightUnitor_inv_hom, CategoryTheory.MonoidalClosed.curry_pre_app_assoc, CategoryTheory.Monoidal.FunctorCategory.whiskerRight_app, CategoryTheory.Functor.Monoidal.instIsIsoμ, MonoidalLeftAction.actionAssocNatIso_inv_app_app_app, CategoryTheory.Functor.Monoidal.toUnit_ε, CategoryTheory.Functor.Monoidal.whiskerRight_app_fst, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_snd_assoc, CategoryTheory.Functor.mapComon_obj_comon_comul, CategoryTheory.MonoidalClosed.comp_eq, whiskerLeft_comp_tensorHom, Rep.tensor_ρ, CategoryTheory.HopfObj.antipode_left_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.associator_hom_comp_tensorHom_tensorHom, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε, SSet.instHasDimensionLETensorObjHAddNat, CategoryTheory.CartesianMonoidalCategory.map_toUnit_comp_terminalComparison, SSet.ι₁_app_fst, CategoryTheory.ExactPairing.evaluation_coevaluation'', CategoryTheory.IsMod_Hom.smul_hom_assoc, externalProductCompDiagIso_inv_app_app, triangle_assoc_comp_right, MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso_unop, CategoryTheory.endofunctorMonoidalCategory_tensorObj_map, SSet.ι₁_snd, MonoidalLeftAction.actionHomRight_id, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, MonoidalLeftAction.id_actionHomLeft_assoc, CategoryTheory.Functor.mapMon_obj_mon_one, CategoryTheory.Enriched.FunctorCategory.enrichedComp_π_assoc, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, triangle_assoc_comp_right_inv_assoc, CategoryTheory.SymmetricCategory.braiding_swap_eq_inv_braiding, CategoryTheory.Center.Hom.comm, MonoidalLeftAction.actionAssocIso_hom_naturality, CategoryTheory.CartesianClosed.uncurry_eq, Bimod.one_actLeft_assoc, CategoryTheory.MonObj.mul_one, CategoryTheory.IsComonHom.hom_counit, CategoryTheory.Functor.OplaxMonoidal.right_unitality_hom, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Monoidal.associator_hom, CategoryTheory.Functor.Monoidal.map_associator_inv'_assoc, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, Rep.linearization_η_hom_apply, CategoryTheory.Mathlib.Tactic.MonTauto.associator_inv_comp_tensorHom_tensorHom_comp, CategoryTheory.op_braiding, CategoryTheory.endofunctorMonoidalCategory_rightUnitor_inv_app, CategoryTheory.Center.tensorObj_fst, CategoryTheory.Functor.Braided.braided, CategoryTheory.associator_inv_apply_1_2, CategoryTheory.BraidedCategory.Hexagon.functor₂₁₃_map_app_app, CategoryTheory.BraidedCategory.ofBifunctor.Forward.firstMap₂_app_app_app, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_hom_toFunctor, MonoidalLeftAction.oppositeLeftAction_actionHomLeft_op, CategoryTheory.monoidalOpOp_μ, CategoryTheory.BraidedCategory.yang_baxter_assoc, leftUnitor_naturality_assoc, CategoryTheory.mop_rightUnitor, associator_monoidal_assoc, CategoryTheory.BraidedCategory.ofBifunctor.Reverse.firstMap₂_app_app_app, CategoryTheory.ObjectProperty.ι_δ, CategoryTheory.eHom_whisker_cancel_assoc, id_whiskerLeft_assoc, CategoryTheory.Mon.tensorObj_mul, MonoidalLeftAction.unit_actionHomRight_assoc, CategoryTheory.NatTrans.whiskerRight_app_tensor_app, CategoryTheory.η_naturality, CategoryTheory.MonoidalClosed.curry'_comp, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_whiskerRight, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_hom, CategoryTheory.Functor.prod'_δ_fst, CategoryTheory.Grp.δ_def, SSet.whiskerLeft_app_apply, CategoryTheory.Functor.prod'_μ_snd, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_counit, CategoryTheory.Center.Hom.comm_assoc, CategoryTheory.Mon.whiskerLeft_hom, CategoryTheory.GrpObj.whiskerLeft_η_commutator, CategoryTheory.Grp.associator_hom_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, whisker_exchange_assoc, tensorHom_comp_whiskerLeft_assoc, MonoidalLeftAction.curriedAction_map_app, id_whiskerLeft_symm_assoc, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv, tensorHom_def', CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalLeftAction.leftUnitor_actionHom, ModuleCat.FreeMonoidal.εIso_inv_freeMk, CategoryTheory.Functor.RightLinear.inv_μᵣ, CategoryTheory.Pi.left_unitor_hom_apply, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv, associator_conjugation_assoc, MonoidalLeftAction.actionHomRight_inv_hom'_assoc, MonoidalRightAction.rightActionOfOppositeRightAction_actionObj_unop, CategoryTheory.associator_def, pentagon_hom_inv, CategoryTheory.CommComon.instCommComonObjUnit, CategoryTheory.Grp.braiding_inv_hom, CategoryTheory.tensorRightHomEquiv_naturality, whiskerLeft_rightUnitor, DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, CategoryTheory.Monoidal.whiskerLeft_snd, CategoryTheory.Over.sections_obj, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionUnitIso, CategoryTheory.rightDistributor_ext_left_iff, CategoryTheory.HalfBraiding.monoidal_assoc, CategoryTheory.GrpObj.lift_inv_left_eq, CategoryTheory.Functor.comp_mapCommGrp_mul, CategoryTheory.Center.whiskerRight_comm, SSet.Subcomplex.prod_obj, CategoryTheory.e_id_comp_assoc, CategoryTheory.MonoidalOpposite.tensorRightUnmopIso_inv_app, MonoidalRightAction.actionHomRight_id_assoc, whiskerLeft_inv_hom', CommAlgCat.snd_unop_hom, CategoryTheory.monoidalOpOp_η, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.op_inv_leftUnitor, CategoryTheory.Functor.Monoidal.tensorObjComp_inv_app, CategoryTheory.CartesianMonoidalCategory.tensorδ_fst_assoc, CategoryTheory.tensorRightHomEquiv_tensor, CategoryTheory.biproduct_ι_comp_leftDistributor_hom, CategoryTheory.BimonObj.one_counit_assoc, SSet.Truncated.Edge.map_whiskerLeft, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.topMapᵣ_app, MonoidalRightAction.action_actionHomRight_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, MonoidalRightAction.actionAssocNatIso_inv_app_app_app, selRightfAction_actionUnitIso, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃'_tensorHom_assoc, Action.leftRegularTensorIso_hom_hom, pentagon_inv_hom, tensor_hom_inv_id_assoc, CategoryTheory.Center.tensorUnit_fst, CategoryTheory.braiding_rightUnitor_assoc, CategoryTheory.Center.whiskerRight_f, MonoidalRightAction.oppositeRightAction_actionAssocIso_op, CategoryTheory.equivToOverUnit_counitIso, CategoryTheory.Functor.LaxMonoidal.tensorHom_ε_comp_μ_assoc, CategoryTheory.ForgetEnrichment.homTo_comp, SSet.Truncated.HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, MonoidalLeftAction.actionHomRight_inv_hom', ModuleCat.free_η_freeMk, CategoryTheory.Over.tensorHom_left, CategoryTheory.monoidalOfHasFiniteCoproducts.associator_hom, SSet.Truncated.Edge.map_snd, LawfulDayConvolutionMonoidalCategoryStruct.leftUnitor_hom_unit_app, CommAlgCat.tensorHom_hom, MonoidalLeftAction.associator_actionHom_assoc, CommAlgCat.coe_tensorObj, id_whiskerRight, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Grp.fst_hom, CategoryTheory.Monoidal.transportStruct_whiskerRight, SemimoduleCat.MonoidalCategory.braiding_hom_apply, CategoryTheory.FreeMonoidalCategory.mk_l_hom, CategoryTheory.BraidedCategory.braiding_naturality_assoc, CategoryTheory.op_rightUnitor, CategoryTheory.ε_naturality, MonoidalRightAction.actionHom_rightUnitor_assoc, CategoryTheory.ComonObj.comul_assoc_flip, CategoryTheory.CartesianMonoidalCategory.associator_hom_fst, inv_hom_id_tensor', CategoryTheory.Localization.Monoidal.μ_inv_natural_left_assoc, DayConvolution.unit_app_braiding_inv_app, tensor_inv_hom_id'_assoc, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_comul, CategoryTheory.Functor.Monoidal.μIso_hom, SemimoduleCat.MonoidalCategory.braiding_inv_apply, CategoryTheory.Functor.mapAction_μ_hom, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft_unop, CategoryTheory.Monoidal.InducingFunctorData.tensorHom_eq, CategoryTheory.eComp_op_eq_assoc, CategoryTheory.MonObj.Mon_tensor_mul_one, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_comp_inverse, CategoryTheory.Functor.LaxMonoidal.ε_tensorHom_comp_μ_assoc, MonoidalLeftAction.oppositeLeftAction_actionObj, CategoryTheory.Functor.chosenProd_map, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.braiding_leftUnitor_aux₂, CategoryTheory.Functor.obj.ε_def, selRightfAction_actionHomLeft, CategoryTheory.braiding_tensorUnit_left, CategoryTheory.BimonObj.mul_counit, CategoryTheory.BimonObj.one_comul_assoc, whiskerLeft_hom_inv', MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionUnitIso, tensorHom_def'_assoc, CategoryTheory.CartesianMonoidalCategory.lift_whiskerLeft, LightCondensed.free_internallyProjective_iff_tensor_condition', CategoryTheory.coprod_inl_leftDistrib_hom_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, CategoryTheory.exp.ev_coev, AddCommGrpCat.tensorObj_eq, CategoryTheory.FreeMonoidalCategory.mk_α_hom, CategoryTheory.MonObj.Mon_tensor_one_mul, MonoidalLeftAction.actionRight_obj, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_snd_assoc, CategoryTheory.CartesianMonoidalCategory.lift_fst_snd, CategoryTheory.Adjunction.ε_comp_map_ε, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_right, CategoryTheory.IsMonHom.one_hom, DayConvolutionInternalHom.map_comp_π_assoc, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse, CategoryTheory.rightUnitor_inv_braiding_assoc, CategoryTheory.Conv.one_eq, MonoidalRightAction.action_exchange, CategoryTheory.Limits.lim_ε_π, CategoryTheory.BraidedCategory.hexagon_forward, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_whiskerRight_assoc, CategoryTheory.Functor.CoreMonoidal.associativity, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, SSet.instHasDimensionLTTensorObjHAddNat, CategoryTheory.CopyDiscardCategory.discard_unit, curriedTensor_obj_map, CategoryTheory.BraidedCategory.hexagon_reverse_iso, CategoryTheory.Functor.LaxMonoidal.associativity_inv, CategoryTheory.Functor.RightLinear.instIsIsoμᵣ, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.Grp.tensorUnit_one, CategoryTheory.Comon.trivial_X, CategoryTheory.Pi.isoApp_left_unitor, CategoryTheory.MonoidalClosed.id_tensor_pre_app_comp_ev_assoc, CategoryTheory.Monoidal.leftUnitor_inv_app, CategoryTheory.braiding_tensorUnit_right_assoc, MonoidalRightAction.curriedActionMonoidal_ε_app, CategoryTheory.Functor.mapCommMon_id_mul, CategoryTheory.tensor_sum, CategoryTheory.Functor.FullyFaithful.monObj_one, CategoryTheory.BraidedCategory.Hexagon.functor₁₃₂'_map_app_app, CategoryTheory.monoidalOfHasFiniteCoproducts.whiskerRight, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.topMapᵣ_app, whiskerRight_tensor_symm_assoc, whiskerLeft_iff, CategoryTheory.Mathlib.Tactic.MonTauto.eq_mul_one, MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso, CategoryTheory.ComonObj.instTensorUnit_counit, CategoryTheory.leftAdjointMate_comp_evaluation, CategoryTheory.uncurry_pre, CategoryTheory.MonoidalPreadditive.tensor_zero, CategoryTheory.Functor.LaxMonoidal.tensorUnit_whiskerLeft_comp_leftUnitor_hom, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd_assoc, CategoryTheory.Center.leftUnitor_inv_f, CategoryTheory.CartesianMonoidalCategory.braiding_inv_snd, pentagon_hom_hom_inv_hom_hom, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_hom, CategoryTheory.ihom.coev_naturality_assoc, CategoryTheory.coprod_inr_leftDistrib_hom, CategoryTheory.Mon.associator_inv_hom, CategoryTheory.CartesianMonoidalCategory.terminalComparison_isIso_of_preservesLimits, CategoryTheory.endofunctorMonoidalCategory_whiskerLeft_app, MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomLeft, CategoryTheory.Functor.Monoidal.whiskeringLeft_η_app, CategoryTheory.SymmetricCategory.symmetry_assoc, CategoryTheory.Functor.RightLinear.instIsIsoδᵣ, CategoryTheory.exp.ev_coev_assoc, CategoryTheory.Localization.Monoidal.μ_inv_natural_right_assoc, CategoryTheory.Functor.prod_ε_fst, CategoryTheory.CartesianMonoidalCategory.tensorHom_snd, CategoryTheory.Functor.LaxMonoidal.id_μ, leftUnitor_whiskerRight_assoc, CategoryTheory.Over.μ_pullback_left_fst_fst', SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_comp_functor, CategoryTheory.Functor.LaxMonoidal.μ_natural_left_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.firstMap₁_app_app_app, CategoryTheory.CartesianClosed.uncurry_natural_left_assoc, HomologicalComplex.leftUnitor'_inv, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, CategoryTheory.monoidalOfHasFiniteCoproducts.leftUnitor_inv, CategoryTheory.Over.monObjMkPullbackSnd_one, CategoryTheory.unitOfTensorIsoUnit_inv_app, CategoryTheory.Functor.LaxMonoidal.associativity_inv_assoc, CategoryTheory.biproduct_ι_comp_rightDistributor_hom_assoc, CategoryTheory.op_hom_braiding, CategoryTheory.Monoidal.transportStruct_leftUnitor, MonoidalRightAction.inv_hom_actionHomLeft_assoc, externalProductBifunctorCurried_map_app_app_app, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity_assoc, CommAlgCat.coe_tensorUnit, CategoryTheory.Functor.Monoidal.map_associator', CategoryTheory.obj_η_app_assoc, CategoryTheory.BraidedCategory.Hexagon.functor₁₂₃'_map_app_app, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Functor.map_braiding_assoc, CategoryTheory.coevaluation_comp_rightAdjointMate, whiskerLeft_inv_hom_assoc, CategoryTheory.MonoidalClosed.whiskerLeft_curry'_ihom_ev_app, CategoryTheory.Conv.mul_eq, MonoidalLeftAction.hom_inv_actionHomLeft_assoc, CategoryTheory.Functor.OplaxMonoidal.δ_comp_whiskerLeft_δ, CategoryTheory.MorphismProperty.tensorHom_mem, CategoryTheory.GrpObj.whiskerLeft_η_commutator_assoc, ModuleCat.free_μ_freeMk_tmul_freeMk, CategoryTheory.MonoidalCoherence.whiskerLeft_iso, CategoryTheory.MonObj.instIsMonHomHomRightUnitor, CategoryTheory.tensorObj_def, MonoidalRightAction.actionAssocIso_inv_naturality_assoc, DayConvolutionInternalHom.map_comp_π, CategoryTheory.GrpObj.isPullback, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, CategoryTheory.ModObj.one_smul', CategoryTheory.uncurry_expComparison, hom_inv_whiskerRight'_assoc, MonoidalLeftAction.actionHom_id, CategoryTheory.CartesianClosed.uncurry_natural_left, whiskerLeft_hom_inv, CategoryTheory.Functor.prod_μ_fst, CommAlgCat.whiskerLeft_hom, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_whiskerLeft, CategoryTheory.Center.associator_inv_f, MonoidalRightAction.oppositeRightAction_actionRight_op, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε_assoc, CategoryTheory.Functor.Monoidal.transport_η_assoc, CategoryTheory.Functor.OplaxMonoidal.comp_η, CategoryTheory.unop_leftUnitor, CategoryTheory.Functor.LaxMonoidal.whiskeringRight_μ_app, DayConvolution.unit_app_braiding_hom_app, MonoidalRightAction.actionUnitIso_inv_naturality_assoc, CategoryTheory.unop_braiding, selRightfAction_actionAssocIso_hom, whiskerRight_isIso, MonoidalRightAction.id_actionHomLeft, CategoryTheory.Discrete.addMonoidal_rightUnitor, CategoryTheory.MonoidalClosed.uncurry_injective, CategoryTheory.Functor.OplaxMonoidal.δ_comp_η_tensorHom, MonoidalRightAction.rightActionOfOppositeRightAction_actionHom_unop, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_toUnit_comp_rightUnitor_hom_assoc, CategoryTheory.rightDistributor_assoc, CategoryTheory.Functor.obj.μ_def, CategoryTheory.MonObj.one_leftUnitor, CategoryTheory.toOverIsoToOverUnit_hom_app_left, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃'_associator_hom, CategoryTheory.MarkovCategory.discard_natural, MonoidalLeftAction.actionHomRight_inv_hom, Mathlib.Tactic.Monoidal.naturality_rightUnitor, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_snd, CategoryTheory.BraidedCategory.Hexagon.functor₂₃₁_obj_map_app, CommGrpCat.tensorObj_eq, CategoryTheory.BraidedCategory.tensorLeftIsoTensorRight_hom_app, whiskerLeft_rightUnitor_assoc, CategoryTheory.FreeMonoidalCategory.normalizeIsoApp_unitor, ModuleCat.FreeMonoidal.μIso_hom_freeMk_tmul_freeMk, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, SSet.prodStdSimplex.objEquiv_map_apply, CategoryTheory.MonoidalOpposite.tensorLeftUnmopIso_hom_app, DayConvolution.braidingInvCorepresenting_app, MonoidalRightAction.actionUnitIso_inv_naturality, CategoryTheory.CartesianMonoidalCategory.associator_inv_fst_fst_assoc, MonoidalLeftAction.tensor_actionHomRight_assoc, CategoryTheory.NatTrans.whiskerLeft_app_tensor_app, CategoryTheory.types_tensorObj_def, CategoryTheory.MonObj.one_braiding, CategoryTheory.CartesianMonoidalCategory.whiskerRight_toUnit_comp_leftUnitor_hom, CategoryTheory.NatTrans.tensor_naturality_assoc, CategoryTheory.Functor.mapCommGrp_id_one, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, externalProductFlip_hom_app_app_app_app, pentagon_inv_assoc, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, CategoryTheory.CartesianMonoidalCategory.lift_braiding_hom_assoc, CoalgCat.MonoidalCategoryAux.counit_tensorObj, externalProductBifunctorCurried_obj_obj_map_app, CategoryTheory.IsComonHom.hom_counit_assoc, MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionObj, CategoryTheory.MonObj.Mon_tensor_mul_assoc, CategoryTheory.op_hom_associator, CategoryTheory.Functor.OplaxMonoidal.left_unitality_hom, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity, CategoryTheory.TransportEnrichment.eComp_eq, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.leftMapₗ_app, CategoryTheory.Functor.Monoidal.inv_ε, CategoryTheory.Functor.Monoidal.tensorHom_app_fst, CommAlgCat.whiskerRight_hom, MonoidalLeftAction.actionHomRight_comp_assoc, Mathlib.Tactic.Monoidal.structuralIsoOfExpr_whiskerLeft, CategoryTheory.eComp_eHomWhiskerRight_assoc, MonoidalLeftAction.rightUnitor_actionHom_assoc, SSet.Truncated.Edge.map_tensorHom, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_counit, CategoryTheory.EnrichedFunctor.map_comp_assoc, CategoryTheory.BraidedCategory.Hexagon.functor₂₁₃'_obj_obj_obj, CategoryTheory.Adjunction.map_η_comp_η_assoc, prodMonoidal_whiskerLeft, MonoidalLeftAction.actionHomRight_hom_inv'_assoc, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.secondMap₂_app_app_app, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_hom, CategoryTheory.op_hom_rightUnitor, CategoryTheory.FreeMonoidalCategory.mk_ρ_inv, CategoryTheory.CartesianMonoidalCategory.lift_snd, CategoryTheory.associator_hom_apply, CategoryTheory.Over.associator_inv_left_fst_fst, comp_whiskerRight_assoc, CategoryTheory.Functor.prod'_η_snd, CategoryTheory.tensorHom_eComp_op_eq_assoc, CategoryTheory.SimplicialThickening.SimplicialCategory.assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd, MonoidalRightAction.actionHom_leftUnitor_assoc, CategoryTheory.IsCommMonObj.mul_comm'_assoc, MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionUnitIso, CategoryTheory.SemilatticeInf.tensorUnit, CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso_hom, CategoryTheory.Center.rightUnitor_hom_f, CategoryTheory.Functor.Monoidal.μ_comp, CategoryTheory.BraidedCategory.Hexagon.functor₂₃₁'_obj_map_app, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_left_assoc, CategoryTheory.Over.snd_left, ModuleCat.MonModuleEquivalenceAlgebra.algebraMap, CategoryTheory.Functor.Monoidal.whiskerRight_μ_δ, CategoryTheory.Monoidal.tensorUnit, ModuleCat.MonoidalCategory.tensorμ_apply, CategoryTheory.GradedObject.Monoidal.ι_tensorObjDesc, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Discrete.addMonoidal_leftUnitor, CategoryTheory.Functor.LaxMonoidal.tensorUnit_whiskerLeft_comp_leftUnitor_hom_assoc, whiskerLeftIso_trans, CategoryTheory.MonObj.mul_mul_mul_comm', CategoryTheory.ObjectProperty.whiskerLeft_def, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso_unop, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoδ, CategoryTheory.CartesianMonoidalCategory.lift_snd_assoc, Bimod.one_actLeft, CategoryTheory.Monoidal.FunctorCategory.tensorObj_obj, CategoryTheory.HopfObj.mul_antipode₁, associator_naturality, MonoidalRightAction.actionHomRight_inv_hom', curriedTensor_obj_obj, CategoryTheory.ε_app_obj, CategoryTheory.Over.tensorHom_left_fst, CommAlgCat.braiding_inv_hom, whisker_assoc_symm_assoc, CategoryTheory.Bimon.ofMonComonObj_comon_counit_hom, CategoryTheory.MonoidalOpposite.tensorRightIso_hom_app_unmop, CategoryTheory.CartesianMonoidalCategory.associator_hom_snd_snd, Bimod.TensorBimod.left_assoc', MonoidalLeftAction.whiskerLeft_actionHomLeft, CategoryTheory.Grp.braiding_inv_hom_hom, CategoryTheory.Over.whiskerRight_left_snd, CategoryTheory.CartesianMonoidalCategory.braiding_hom_fst_assoc, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃_eq, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.GrpObj.eq_lift_inv_right, CategoryTheory.Mon.trivial_mon_one, SSet.prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_left, CategoryTheory.leftDistributor_rightDistributor_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.MonObj.mul_mul_mul_comm_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, pentagon_inv_hom_hom_hom_inv, MonoidalLeftAction.actionAssocIso_hom_naturality_assoc, CategoryTheory.obj_μ_inv_app, CommAlgCat.associator_inv_hom, MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomLeft, CategoryTheory.Functor.OplaxMonoidal.associativity_inv, CategoryTheory.monoidalOfHasFiniteCoproducts.rightUnitor_hom, CategoryTheory.Functor.mapCommMon_obj_mon_one, CategoryTheory.Functor.Monoidal.μ_fst, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, CategoryTheory.NatTrans.tensor_naturality, CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso_comp, CategoryTheory.MonObj.ofRepresentableBy_mul, CategoryTheory.CommComon.trivial_comon_counit, MonoidalLeftAction.curriedActionMop_map_unmop_app, CategoryTheory.monoidalOpOp_ε, CategoryTheory.CartesianMonoidalCategory.braiding_inv_fst, CategoryTheory.Functor.LaxMonoidal.whiskeringRight_ε_app, CategoryTheory.MarkovCategory.discard_natural_assoc, tensor_η, CommAlgCat.toUnit_unop_hom, SSet.Subcomplex.prod_monotone, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, SSet.ι₀_comp_assoc, MonoidalLeftAction.actionHomRight_comp, selRightfAction_actionAssocIso_inv, CategoryTheory.MonoidalOpposite.tensorRightIso_inv_app_unmop, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality, CategoryTheory.Functor.LaxMonoidal.μ_whiskerRight_comp_μ_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.associator_inv_comp_tensorHom_tensorHom_comp_assoc, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_snd, CategoryTheory.Functor.prod_δ_snd, pentagon_hom_inv_inv_inv_hom_assoc, MonoidalRightAction.inv_hom_actionHomLeft'_assoc, CategoryTheory.MonoidalClosed.curry_natural_left_assoc, CategoryTheory.ObjectProperty.ι_μ, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.bottomMapᵣ_app, CategoryTheory.associativity_app_assoc, CategoryTheory.endofunctorMonoidalCategory_leftUnitor_hom_app, CategoryTheory.CatEnriched.comp_eq, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerRight_val, CategoryTheory.CartesianClosed.uncurry_natural_right_assoc, pentagon_inv_inv_hom_assoc, CategoryTheory.GrpObj.left_inv, CategoryTheory.Equivalence.map_η_comp_η_assoc, CategoryTheory.Functor.OplaxMonoidal.δ_fst, CategoryTheory.eComp_eHomWhiskerLeft, CategoryTheory.braiding_rightUnitor_aux₂, CategoryTheory.SymmetricCategory.symmetry, CategoryTheory.Monoidal.InducingFunctorData.whiskerRight_eq, tensor_map, CategoryTheory.Functor.instIsMonHomε, CategoryTheory.Bimon.mul_counit, tensor_whiskerLeft_assoc, rightUnitor_naturality_assoc, CategoryTheory.Grp.tensorObj_X, SSet.ι₀_comp, CategoryTheory.ModObj.assoc_flip, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.Mon.tensorUnit_one, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_snd, CategoryTheory.tensorHom_eComp_op_eq, Rep.finsuppTensorRight_inv_hom, CategoryTheory.ObjectProperty.whiskerRight_def, CategoryTheory.Functor.Monoidal.ε_of_cartesianMonoidalCategory, tensorIso_def', CategoryTheory.HopfObj.antipode_right_assoc, MonoidalLeftAction.actionHomRight_hom_inv', CategoryTheory.Limits.lim_μ_π_assoc, MonoidalRightAction.curriedActionMonoidal_μ_app, leftAssocTensor_map, CategoryTheory.MonoidalClosed.curry_natural_right_assoc, inv_hom_whiskerRight, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.CommMon.trivial_mon_one, CategoryTheory.GrpObj.mul_inv_rev_assoc, MonoidalLeftAction.curriedActionMopMonoidal_δ_unmop_app, CategoryTheory.Functor.Monoidal.map_μ_δ, whiskerLeft_id, CategoryTheory.BraidedCategory.Hexagon.functor₁₂₃_obj_obj_map, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse_assoc, whiskerLeftIso_inv, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_whiskerRight_assoc, curriedAssociatorNatIso_inv_app_app_app, triangle, CategoryTheory.CartesianMonoidalCategory.comp_lift_assoc, CommAlgCat.one_op_of_unop_hom, CategoryTheory.unmop_rightUnitor, CategoryTheory.η_app, CategoryTheory.braiding_rightUnitor, CategoryTheory.BraidedCategory.Hexagon.functor₂₁₃_obj_map_app, CategoryTheory.Over.η_pullback_left, CategoryTheory.ObjectProperty.leftUnitor_def, CategoryTheory.MonoidalClosed.comp_id_assoc, unitors_inv_equal, CategoryTheory.SymmetricCategory.rightDistrib_of_leftDistrib, CategoryTheory.Grp.tensorObj_mul, CategoryTheory.Grp.rightUnitor_hom_hom, tensorδ_tensorμ, CategoryTheory.IsCommComonObj.comul_comm_assoc, MonoidalRightAction.actionRight_map, CategoryTheory.BimonObj.one_counit, CategoryTheory.Functor.Monoidal.μIso_inv, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_inv_assoc, CategoryTheory.ComonObj.comul_counit_hom_assoc, Bimod.left_assoc, CategoryTheory.Enriched.FunctorCategory.enriched_assoc_assoc, Action.forget_ε, MonoidalRightAction.isIso_actionHomLeft, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.endofunctorMonoidalCategory_associator_hom_app, selfLeftAction_actionObj, CategoryTheory.Pi.monoidalCategoryStruct_tensorUnit, SSet.RelativeMorphism.Homotopy.h₁_assoc, triangle_assoc_comp_right_assoc, tensor_id_comp_id_tensor_assoc, CategoryTheory.Functor.Monoidal.map_tensor_assoc, CategoryTheory.MonoidalOpposite.mopFunctor_μ, leftUnitor_tensor_hom'', CategoryTheory.Functor.Monoidal.whiskerLeft_app_fst, CategoryTheory.Functor.OplaxMonoidal.oplax_left_unitality, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.Functor.mapComon_obj_comon_counit, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.μ_δ_app, CategoryTheory.unop_rightUnitor, CategoryTheory.expComparison_ev, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul, Bimod.Hom.left_act_hom_assoc, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_aux_one, CategoryTheory.Functor.prod_η_fst, CategoryTheory.Functor.Monoidal.inv_δ, pentagon_inv_inv_hom_inv_inv, MonoidalRightAction.actionUnitIso_hom_naturality, CategoryTheory.leftDistributor_ext₂_left_iff, id_tensorHom_id, CategoryTheory.Mathlib.Tactic.MonTauto.associator_inv_comp_tensorHom_tensorHom, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, tensorμ_natural, whiskerRightIso_hom, whiskerLeft_comp_assoc, CategoryTheory.left_unitality_app, CategoryTheory.braiding_inv_tensorUnit_left_assoc, CategoryTheory.BraidedCategory.braiding_inv_naturality_left_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_δ_μ, CategoryTheory.ExactPairing.evaluation_coevaluation_assoc, CategoryTheory.FreeMonoidalCategory.mk_whiskerLeft, MonoidalRightAction.unit_actionHomRight, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_right, externalProductBifunctorCurried_obj_obj_obj_obj, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_snd, CategoryTheory.Functor.Monoidal.whiskerLeft_ε_η, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_assoc, Mathlib.Tactic.Monoidal.naturality_id, CategoryTheory.Functor.Monoidal.snd_app, CategoryTheory.EnrichedFunctor.map_comp, CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.GradedNatTrans.naturality_assoc, CategoryTheory.Functor.Monoidal.fst_app, SSet.RelativeMorphism.Homotopy.ofEq_h, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app, DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural, CategoryTheory.Functor.Monoidal.transport_η, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_leftUnitor_hom_hom, associatorNatIso_inv_app, CategoryTheory.Equivalence.ε_comp_map_ε, endofunctorMonoidalCategory.evaluationRightAction_actionObj, MonoidalRightAction.actionHom_comp_assoc, CategoryTheory.biproduct_ι_comp_rightDistributor_inv_assoc, CategoryTheory.MonoidalClosed.uncurry_natural_left, CategoryTheory.GrpObj.tensorHom_inv_inv_mul, BialgCat.MonoidalCategory.inducingFunctorData_μIso, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst_assoc, MonoidalLeftAction.oppositeLeftAction_actionRight_op, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, SSet.rightUnitor_hom_app_apply, MonoidalLeftAction.inv_actionHomRight, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv_assoc, tensorHom_comp_whiskerLeft, inv_whiskerLeft, CategoryTheory.Iso.eHomCongr_comp, CategoryTheory.Center.ofBraided_μ_f, CategoryTheory.CartesianMonoidalCategory.lift_whiskerRight_assoc, MonoidalRightAction.monoidalOppositeRightAction_actionObj_mop, CategoryTheory.braiding_leftUnitor_assoc, CategoryTheory.Monoidal.rightUnitor_hom_app, CategoryTheory.Pi.monoidalCategoryStruct_tensorObj, tensorHom_comp_whiskerRight, MonoidalRightAction.actionHomLeft_tensor_assoc, CategoryTheory.Bimon.ofMonComonObjX_one, CategoryTheory.tensorUnit_def, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_left_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_inv, CategoryTheory.ε_η_app, whiskerRight_id, CategoryTheory.associator_hom_apply_2_2, LightCondensed.ihomPoints_symm_apply, MonoidalLeftAction.unit_actionHomRight, MonoidalRightAction.comp_actionHomLeft_assoc, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_inv, CategoryTheory.CartesianMonoidalCategory.hom_ext_iff, MonoidalLeftAction.oppositeLeftAction_actionHom_op, SSet.Truncated.tensor_map_apply_fst, CategoryTheory.BraidedCategory.Hexagon.functor₂₁₃_obj_obj_obj, DayConvolution.corepresentableBy_homEquiv_apply_app, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_obj, CategoryTheory.Functor.Monoidal.whiskerRight_δ_μ, MonoidalRightAction.actionHomRight_hom_inv_assoc, CategoryTheory.MonObj.mul_associator, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.prod_map_pre_app_comp_ev, MonoidalLeftAction.curriedActionMop_obj_unmop_obj, CategoryTheory.op_inv_rightUnitor, CategoryTheory.GrpObj.mul_inv, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor_assoc, Action.tensorHom_hom, CategoryTheory.IsCommMonObj.mul_comm, CategoryTheory.MonoidalPreadditive.zero_tensor, Rep.finsuppTensorLeft_inv_hom, Action.associator_hom_hom, CategoryTheory.unmop_tensorHom, CategoryTheory.Mon.leftUnitor_hom_hom, CategoryTheory.CartesianMonoidalCategory.inv_prodComparison_map_fst, ModuleCat.free_δ_freeMk, CategoryTheory.Functor.obj.μ_def_assoc, SSet.ι₁_fst, CategoryTheory.zeroMul_inv, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, CategoryTheory.Functor.prod'_ε_snd, CategoryTheory.Grp.tensorObj_one, CategoryTheory.Functor.LaxMonoidal.right_unitality_assoc, CategoryTheory.ComonObj.counit_comul_hom_assoc, CategoryTheory.MonObj.one_associator, CategoryTheory.eHom_whisker_cancel_inv_assoc, CategoryTheory.MonoidalClosed.curry'_whiskerRight_comp_assoc, CategoryTheory.Functor.Monoidal.map_whiskerRight_assoc, CategoryTheory.Functor.Monoidal.tensorObj_obj, SSet.Truncated.Edge.tensor_edge, CategoryTheory.Functor.LaxRightLinear.μᵣ_associativity, CategoryTheory.Functor.Monoidal.map_leftUnitor, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.CommComon.trivial_X, MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso, CategoryTheory.unop_inv_braiding, CategoryTheory.MonoidalClosed.curry_injective, CategoryTheory.Mon.mul_def, CategoryTheory.Functor.Monoidal.map_ε_η, CategoryTheory.Pi.isoApp_associator, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.FreeMonoidalCategory.normalizeIsoAux_hom_app, CategoryTheory.ComonObj.comul_counit_assoc, CategoryTheory.ModObj.one_smul, Rep.leftRegularTensorTrivialIsoFree_inv_hom, leftUnitor_inv_naturality, CategoryTheory.Center.tensorObj_snd_β, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.Functor.Monoidal.tensorHom_app_snd_assoc, pentagon_hom_hom_inv_inv_hom_assoc, CategoryTheory.CartesianMonoidalCategory.prodComparisonIso_comp, CategoryTheory.Functor.Monoidal.associator_inv_app, CategoryTheory.GrpObj.inv_def, CategoryTheory.braiding_inv_tensorUnit_right, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_δ_unmop_unmop, CategoryTheory.mop_inv_leftUnitor, DayConvolution.associatorCorepresentingIso_inv_app_app, CategoryTheory.CartesianMonoidalCategory.lift_comp_fst_snd, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionRight_unop, MonoidalRightAction.rightActionOfOppositeRightAction_actionHomRight, CategoryTheory.CartesianMonoidalCategory.lift_whiskerRight, CategoryTheory.MonoidalOpposite.unmopFunctor_μ, CategoryTheory.MonoidalOpposite.tensorRightMopIso_inv_app_unmop, dite_tensor, tensor_inv_hom_id, CategoryTheory.Functor.LaxMonoidal.comp_ε, MonObj.unmopMonObj_mul, tensor_associativity, CategoryTheory.Grp.leftUnitor_inv_hom, CategoryTheory.CartesianMonoidalCategory.mono_lift_of_mono_right, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_δ, CategoryTheory.Functor.id_mapMon_mul, MonoidalRightAction.actionHomRight_inv_hom'_assoc, CategoryTheory.MonObj.mul_braiding, CategoryTheory.Functor.CoreMonoidal.μIso_hom_natural_right, pentagon_inv_inv_hom_inv_inv_assoc, DayConvolution.associator_hom_unit_unit_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.square, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.whiskerRight_coprod_inl_rightDistrib_inv_assoc, CategoryTheory.mop_inv_rightUnitor, CategoryTheory.Functor.Monoidal.instIsIsoε, MonoidalLeftAction.actionUnitIso_inv_naturality_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft, CategoryTheory.ExactPairing.coevaluation_evaluation, CategoryTheory.mop_leftUnitor, CategoryTheory.unmop_inv_rightUnitor, CategoryTheory.BraidedCategory.ofBifunctor.Reverse.secondMap₃_app_app_app, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor, pentagon_inv_hom_hom_hom_hom_assoc, LightCondensed.ihom_map_val_app, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality, CategoryTheory.Functor.mapCommpGrp_id_mul, CategoryTheory.rightDistributor_inv_comp_biproduct_π_assoc, CategoryTheory.sheafToPresheaf_η, CategoryTheory.Enriched.FunctorCategory.enriched_assoc, CategoryTheory.rightDistributor_hom_comp_biproduct_π, Bimod.RightUnitorBimod.hom_left_act_hom', MonObj.mopEquiv_functor_obj_mon_mul_unmop, MonoidalLeftAction.whiskerRight_actionHomLeft, CategoryTheory.instIsCommMonObjTensorObj, ModuleCat.FreeMonoidal.μIso_inv_freeMk, CategoryTheory.Functor.CoreMonoidal.right_unitality, Rep.linearization_δ_hom, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_left_assoc, CategoryTheory.equivToOverUnit_inverse, pentagon_inv_inv_hom, tensor_right_unitality, CategoryTheory.CartesianMonoidalCategory.prodComparison_fst_assoc, CategoryTheory.Bimon.BimonObjAux_comul, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor_assoc, CategoryTheory.SemiCartesianMonoidalCategory.default_eq_toUnit, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionObj_unop, MonoidalRightAction.inv_hom_actionHomLeft', CategoryTheory.Functor.Monoidal.map_whiskerLeft, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_inv_assoc, CategoryTheory.leftDistributor_ext_right_iff, CategoryTheory.δ_naturality_assoc, Action.whiskerLeft_hom, SSet.Truncated.HomotopyCategory.BinaryProduct.inverseCompFunctorIso_hom_app, CategoryTheory.eHom_whisker_cancel_inv, CategoryTheory.GrpObj.mul_inv_rev, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_inv, CategoryTheory.ObjectProperty.associator_def, CategoryTheory.NatTrans.IsMonoidal.unit_assoc, CategoryTheory.coprod_inr_leftDistrib_hom_assoc, MonoidalLeftAction.oppositeLeftAction_actionHom, CategoryTheory.GrpObj.mulRight_hom, CategoryTheory.Functor.LaxMonoidal.μ_natural_left, SSet.prodStdSimplex.nonDegenerate_iff_injective_objEquiv, CategoryTheory.Discrete.monoidal_rightUnitor, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, MonoidalLeftAction.monoidalOppositeLeftAction_actionObj, CategoryTheory.Functor.LaxLeftLinear.μₗ_unitality_inv_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_unitality_inv_assoc, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.secondMap₁_app_app_app, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_associator_hom_hom, leftUnitor_inv_comp_tensorHom, CategoryTheory.CommMon.trivial_mon_mul, CategoryTheory.Monoidal.ComonFunctorCategoryEquivalence.inverseObj_comon_comul_app, MonoidalRightAction.actionUnitNatIso_hom_app, CategoryTheory.Functor.Monoidal.map_δ_μ, CategoryTheory.Preadditive.mul_def, Rep.MonoidalClosed.linearHomEquiv_hom, MonoidalRightAction.actionHomRight_id, CategoryTheory.MonoidalClosed.whiskerLeft_curry_ihom_ev_app, CategoryTheory.Monoidal.ComonFunctorCategoryEquivalence.functorObjObj_comon_comul, CategoryTheory.BraidedCategory.Hexagon.functor₃₁₂'_obj_obj_obj, CategoryTheory.ComonObj.comul_assoc, CategoryTheory.MonoidalLinear.smul_whiskerRight, CategoryTheory.Grp.trivial_grp_one, CategoryTheory.MonoidalCoherence.left'_iso, CategoryTheory.MonoidalLinear.whiskerLeft_smul, dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, CategoryTheory.braiding_leftUnitor, CategoryTheory.Grp.snd_hom_hom, comp_tensor_id, CategoryTheory.Bimon.one_comul_assoc, CategoryTheory.MonObj.instIsMonHomWhiskerLeft, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_η, CategoryTheory.δ_naturality, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_comul, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Functor.comp_mapCommGrp_one, MonoidalLeftAction.monoidalOppositeLeftAction_actionObj_mop, MonoidalRightAction.monoidalOppositeRightAction_actionHom_mop_mop, CategoryTheory.BraidedCategory.braiding_naturality_left_assoc, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, SSet.RelativeMorphism.Homotopy.h₀, CategoryTheory.Monoidal.InducingFunctorData.whiskerLeft_eq, CategoryTheory.Grp.hom_one, MonoidalRightAction.oppositeRightAction_actionHomLeft, CategoryTheory.Over.rightUnitor_hom_left, Bimod.actRight_one_assoc, CategoryTheory.monoidalUnopUnop_μ, CategoryTheory.Functor.Monoidal.whiskerRight_ε_η, MonoidalLeftAction.comp_actionHomLeft, CategoryTheory.Functor.diag_η, CategoryTheory.whiskerRight_coprod_inr_rightDistrib_inv, CoalgCat.MonoidalCategoryAux.comul_tensorObj, tensorμ_natural_left, Rep.finsuppTensorLeft_hom_hom, CategoryTheory.leftAdjointMate_comp_evaluation_assoc, CategoryTheory.Pi.δ_def, CategoryTheory.ihom.ev_naturality, Bimod.middle_assoc, CategoryTheory.CatEnriched.id_eq, CategoryTheory.Functor.LaxMonoidal.associativity, tensor_left_unitality_assoc, whisker_assoc_symm, CategoryTheory.monoidalOfHasFiniteCoproducts.leftUnitor_hom, CategoryTheory.Monoidal.associator_inv_app, CategoryTheory.Sheaf.cartesianMonoidalCategoryFst_val, CategoryTheory.toOver_map_left, CategoryTheory.Over.sections_map, rightAssocTensor_map, CategoryTheory.Monoidal.InducingFunctorData.leftUnitor_eq, CategoryTheory.CartesianMonoidalCategory.lift_fst, MonoidalRightAction.hom_inv_actionHomLeft, SSet.RelativeMorphism.Homotopy.precomp_h, CategoryTheory.CartesianMonoidalCategory.prodComparisonIso_id, CategoryTheory.MonoidalOpposite.mop_hom_braiding, hom_inv_id_tensor', externalProductSwap_inv_app_app, CategoryTheory.MonoidalClosed.curryHomEquiv'_symm_apply, DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.BraidedCategory.Hexagon.functor₂₃₁_obj_obj_obj, CategoryTheory.eHomEquiv_comp, CategoryTheory.BraidedCategory.hexagon_reverse_inv_assoc, DayConvolution.unit_app_braiding_hom_app_assoc, pentagon_inv, CategoryTheory.Hom.one_def, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Grp.associator_inv_hom, MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomRight, SSet.ι₀_fst, CategoryTheory.CartesianMonoidalCategory.leftUnitor_inv_fst, CategoryTheory.unmop_tensorObj, MonoidalLeftAction.comp_actionHomLeft_assoc, DayConvolution.associatorCorepresentingIso_hom_app_app, CategoryTheory.Mon.braiding_inv_hom, MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, CategoryTheory.HopfObj.antipode_comul₁, prodMonoidal_tensorObj, DayConvolution.whiskerLeft_comp_unit_app_assoc, CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃_eq_assoc, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_map, MonoidalRightAction.actionLeft_obj, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_left, CategoryTheory.Comon.monoidal_tensorObj_X, CategoryTheory.coevaluation_comp_leftAdjointMate, CategoryTheory.Functor.Monoidal.μ_snd, CategoryTheory.Monoidal.whiskerRight_snd, CategoryTheory.Functor.OplaxMonoidal.δ_comp_tensorHom_η_assoc, Action.tensorUnit_V, CategoryTheory.Functor.FullyFaithful.grpObj_mul, MonoidalRightAction.curriedActionMonoidal_δ_app, endofunctorMonoidalCategory.evaluationRightAction_actionAssocIso, DayConvolution.associator_inv_unit_unit_assoc, CategoryTheory.Localization.Monoidal.triangle_aux₂, Rep.homEquiv_symm_apply_hom, CategoryTheory.Mon.forget_η, CategoryTheory.Functor.OplaxMonoidal.id_η, SSet.associator_hom_app_apply, whiskerLeft_comp_tensorHom_assoc, CategoryTheory.CartesianMonoidalCategory.lift_leftUnitor_hom, CategoryTheory.Pi.monoidalCategoryStruct_whiskerRight, CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unit, CategoryTheory.CartesianClosed.uncurry_injective, CategoryTheory.GrpObj.mulRight_inv, CategoryTheory.symmetricOfHasFiniteProducts_braiding_inv, CategoryTheory.Functor.Monoidal.map_η_ε_assoc, CategoryTheory.Functor.LaxMonoidal.whiskerRight_tensorUnit_comp_rightUnitor_hom, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity, CategoryTheory.Mod_.scalarRestriction_smul, CategoryTheory.sheafToPresheaf_ε, curriedTensor_map_app, MonoidalLeftAction.actionAssocIso_inv_naturality, CategoryTheory.MonoidalOpposite.unmop_inv_braiding, CategoryTheory.Comon.ComonToMonOpOpObj_mon_mul, CategoryTheory.Localization.Monoidal.β_hom_app, CategoryTheory.GrpObj.mul_inv_assoc, CategoryTheory.ihom.ev_naturality_assoc, Action.FunctorCategoryEquivalence.functor_μ, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.IsCommMonObj.mul_comm_assoc, CategoryTheory.Functor.prod'_η_fst, Action.tensor_ρ, MonoidalRightAction.actionLeft_map, CategoryTheory.Functor.Monoidal.μ_snd_assoc, CategoryTheory.Mon.hom_mul, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.unitIso_inv_app_hom_hom_app, CategoryTheory.monoidalOfHasFiniteCoproducts.tensorHom, CategoryTheory.Functor.Monoidal.map_η_ε, CategoryTheory.Functor.Monoidal.map_tensor, CategoryTheory.Over.braiding_hom_left, CategoryTheory.BraidedCategory.op_tensorμ, CategoryTheory.ObjectProperty.ContainsUnit.prop_unit, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.obj_μ_app_assoc, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_left, SSet.RelativeMorphism.Homotopy.h₁, CategoryTheory.Functor.CoreMonoidal.toLaxMonoidal_ε, CategoryTheory.Functor.Monoidal.whiskerRight_app_snd, CategoryTheory.GrpObj.η_whiskerRight_commutator, CategoryTheory.ComonObj.comul_assoc_assoc, tensor_hom_inv_id'_assoc, MonoidalLeftAction.inv_hom_actionHomLeft'_assoc, MonObj.mopMonObj_one_unmop, CategoryTheory.Functor.OplaxMonoidal.δ_natural, CategoryTheory.Functor.LaxLeftLinear.μₗ_naturality_left_assoc, SSet.Subcomplex.range_tensorHom, CategoryTheory.MonoidalPreadditive.zero_whiskerRight, CategoryTheory.CartesianMonoidalCategory.lift_fst_assoc, MonoidalLeftAction.actionUnitIso_hom_naturality, CategoryTheory.Functor.OplaxMonoidal.δ_natural_right, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.endofunctorMonoidalCategory_rightUnitor_hom_app, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.whiskerLeft_apply, rightUnitor_inv_comp_tensorHom, Mathlib.Tactic.Monoidal.naturality_leftUnitor, CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π_assoc, Bimod.TensorBimod.one_act_left', tensorRightTensor_inv_app, CategoryTheory.CartesianMonoidalCategory.lift_lift_associator_hom_assoc, CategoryTheory.braiding_tensorUnit_right, CategoryTheory.ModObj.smul_def, CategoryTheory.Functor.OplaxRightLinear.δᵣ_associativity_assoc, CategoryTheory.BraidedCategory.braiding_inv_naturality_left, CategoryTheory.ObjectProperty.ιOfLE_ε, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.MonoidalClosed.compTranspose_eq, CategoryTheory.endofunctorMonoidalCategory_tensorUnit_map, CategoryTheory.IsCommComonObj.comul_comm, SSet.RelativeMorphism.Homotopy.postcomp_h, CategoryTheory.Center.whiskerRight_comm_assoc, CategoryTheory.ComonObj.comul_counit_hom, CategoryTheory.CartesianMonoidalCategory.mono_lift_of_mono_left, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_whiskerRight_hom, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_ε, MonoidalLeftAction.oppositeLeftAction_actionAssocIso_op, CategoryTheory.leftDistributor_inv, CategoryTheory.Localization.Monoidal.μ_natural_right_assoc, MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, CategoryTheory.GrpObj.right_inv, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_assoc, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor_assoc, CategoryTheory.Functor.LaxMonoidal.ε_tensorHom_comp_μ, rightUnitor_tensor_inv, CategoryTheory.Mon.trivial_X, CategoryTheory.Functor.LaxMonoidal.whiskerLeft_μ_comp_μ, Action.β_inv_hom, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.braiding_leftUnitor_aux₁, CategoryTheory.Over.tensorUnit_left, CategoryTheory.GrpObj.eq_lift_inv_left, CategoryTheory.MonoidalClosed.whiskerLeft_curry'_comp_assoc, CategoryTheory.unop_hom_rightUnitor, leftUnitorNatIso_inv_app, CategoryTheory.HalfBraiding.monoidal, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.tensorLeftHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.BraidedCategory.Hexagon.functor₃₁₂'_obj_obj_map, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor, CategoryTheory.Mon.limit_mon_one, Action.diagonalSuccIsoTensorDiagonal_hom_hom, MonoidalLeftAction.monoidalOppositeLeftAction_actionRight_mop, CategoryTheory.CartesianMonoidalCategory.lift_snd_comp_fst_comp_assoc, MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomRight, CategoryTheory.unmop_whiskerRight, CategoryTheory.CartesianMonoidalCategory.lift_map, CategoryTheory.Functor.OplaxMonoidal.δ_natural_assoc, leftUnitor_tensor_hom', CategoryTheory.Functor.LaxMonoidal.right_unitality_inv_assoc, CategoryTheory.MonObj.lift_comp_one_left_assoc, CategoryTheory.Functor.OplaxMonoidal.whiskeringRight_η_app, CategoryTheory.HopfObj.mul_antipode₂, Action.rightUnitor_hom_hom, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃'_tensorHom, MonObj.mopEquiv_inverse_obj_mon_one, MonoidalLeftAction.actionHom_def, Action.forget_μ, SSet.prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, rightUnitor_monoidal, CategoryTheory.MonoidalOpposite.tensorLeftIso_hom_app_unmop, Action.diagonalSuccIsoTensorTrivial_hom_hom_apply, CategoryTheory.leftDistrib_hom, CategoryTheory.MonoidalOpposite.mop_braiding, CategoryTheory.Comon.trivial_comon_counit, CategoryTheory.MonObj.mul_assoc_assoc, CategoryTheory.leftUnitor_inv_braiding, CategoryTheory.Functor.OplaxMonoidal.left_unitality_assoc, tensor_whiskerLeft, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_hom_assoc, MonoidalLeftAction.actionHom_def', CategoryTheory.leftDistributor_inv_comp_biproduct_π_assoc, CategoryTheory.EnrichedCat.whiskerRight_out_app, Bimod.whiskerRight_hom, leftUnitor_monoidal_assoc, CategoryTheory.unop_hom_braiding, CategoryTheory.Functor.prod_μ_snd, CategoryTheory.MarkovCategory.instSubsingletonHomTensorUnit, MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, CategoryTheory.obj_μ_zero_app, CategoryTheory.IsCommMonObj.mul_comm', CategoryTheory.Mon.forget_δ, MonoidalRightAction.whiskerRight_actionHomLeft, CategoryTheory.Monoidal.associator_inv, CategoryTheory.Monoidal.rightUnitor_inv, CommAlgCat.associator_hom_hom, CategoryTheory.Functor.OplaxRightLinear.δᵣ_unitality_inv_assoc, CategoryTheory.Functor.OplaxLeftLinear.δₗ_naturality_right_assoc, CategoryTheory.Monoidal.whiskerLeft, DayConvolution.unit_app_map_app_assoc, CategoryTheory.BraidedCategory.hexagon_forward_inv, CategoryTheory.Discrete.addMonoidal_associator, rightUnitor_naturality, tensorHom_def_assoc, CategoryTheory.Functor.Monoidal.associator_hom_app, selRightfAction_actionObj, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.firstMap_app_app_app, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_whiskerRight, CategoryTheory.Mon.rightUnitor_hom_hom, tensorμ_natural_left_assoc, CategoryTheory.Grp.braiding_hom_hom, CategoryTheory.Over.whiskerRight_left_fst_assoc, CategoryTheory.CartesianClosed.curry_natural_left, CategoryTheory.Functor.LaxMonoidal.tensorHom_ε_comp_μ, whiskerLeft_hom_inv_assoc, CategoryTheory.Functor.LaxMonoidal.comp_μ, CategoryTheory.ComonObj.counit_comul, SSet.RelativeMorphism.Homotopy.rel, CategoryTheory.MonoidalClosed.curryHomEquiv'_apply, CategoryTheory.CartesianMonoidalCategory.lift_map_assoc, CategoryTheory.unmop_associator, CategoryTheory.Functor.LeftLinear.inv_δₗ, CategoryTheory.whiskerLeft_sum, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.eHomEquiv_comp_assoc, CategoryTheory.MonoidalOpposite.tensorRightMopIso_hom_app_unmop, leftUnitor_tensor_inv', CategoryTheory.HopfObj.antipode_counit, CategoryTheory.Functor.LaxMonoidal.whiskerRight_tensorUnit_comp_rightUnitor_hom_assoc, CategoryTheory.Grp.η_def, inv_whiskerRight, SSet.Truncated.HomotopyCategory.BinaryProduct.associativityIso_hom_app, DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, CategoryTheory.MonObj.mul_one_assoc, CategoryTheory.equivToOverUnit_functor, MonoidalRightAction.comp_actionHomLeft, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition'_assoc, CoalgCat.ofComonObjCoalgebraStruct_counit, MonoidalRightAction.oppositeRightAction_actionHom_op, CategoryTheory.MonObj.mul_assoc_flip_assoc, CategoryTheory.Comon.monoidal_associator_inv_hom, Action.associator_inv_hom, CategoryTheory.GradedObject.Monoidal.ιTensorObj₄_eq, CategoryTheory.ObjectProperty.prop_unit, CategoryTheory.rightDistributor_hom, CategoryTheory.Functor.Monoidal.map_leftUnitor_assoc, CategoryTheory.leftAdjointMate_comp, CategoryTheory.Functor.OplaxMonoidal.right_unitality_assoc, CategoryTheory.Functor.FullyFaithful.grpObj_one, CategoryTheory.BraidedCategory.Hexagon.functor₂₁₃'_obj_obj_map, CategoryTheory.MonoidalPreadditive.tensor_add, CategoryTheory.endofunctorMonoidalCategory_leftUnitor_inv_app, MonoidalLeftAction.curriedActionMop_obj_unmop_map, Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, CategoryTheory.MonObj.instIsMonHomWhiskerRight, MonoidalRightAction.monoidalOppositeRightAction_actionObj, MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionAssocIso, associator_inv_naturality_assoc, CategoryTheory.GradedObject.Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit_1, CategoryTheory.mop_hom_associator, CategoryTheory.BraidedCategory.ofBifunctor.Reverse.firstMap₃_app_app_app, CategoryTheory.CartesianMonoidalCategory.lift_fst_comp_snd_comp, CategoryTheory.MonoidalClosed.coev_app_comp_pre_app_assoc, SSet.Truncated.Edge.map_whiskerRight, ModuleCat.FreeMonoidal.εIso_hom_one, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃'_eq, leftUnitor_inv_naturality_assoc, CategoryTheory.associativity_app, CategoryTheory.Enriched.FunctorCategory.homEquiv_comp_assoc, MonoidalLeftAction.inv_actionHom, CategoryTheory.Mathlib.Tactic.MonTauto.associator_hom_comp_tensorHom_tensorHom_comp_assoc, MonoidalRightAction.oppositeRightAction_actionHom, CategoryTheory.Discrete.addMonoidal_tensorUnit_as, CategoryTheory.rightDistrib_hom, CategoryTheory.CommGrp.trivial_grp_mul, CategoryTheory.Functor.LaxMonoidal.μ_whiskerRight_comp_μ, CategoryTheory.NatTrans.IsMonoidal.tensor_assoc, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, CategoryTheory.monoidalOfHasFiniteProducts.rightUnitor_hom, CategoryTheory.Functor.OplaxMonoidal.δ_comp_δ_whiskerRight, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_apply_app, CategoryTheory.Grp.associator_hom_hom, CategoryTheory.Functor.LeftLinear.μₗ_comp_δₗ, externalProductBifunctorCurried_obj_map_app_app, CategoryTheory.MonoidalCoherence.assoc_iso, CategoryTheory.obj_μ_inv_app_assoc, CategoryTheory.MonObj.one_rightUnitor, CategoryTheory.e_assoc'_assoc, CategoryTheory.δ_naturalityₗ, CategoryTheory.Mod_.assoc_flip, CategoryTheory.MonoidalCoherence.right_iso, MonoidalLeftAction.oppositeLeftAction_actionHomLeft, MonoidalRightAction.actionUnitNatIso_inv_app, CategoryTheory.GradedObject.Monoidal.ι_tensorHom_assoc, CategoryTheory.Pi.right_unitor_inv_apply, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app_assoc, id_tensor_associator_inv_naturality_assoc, CategoryTheory.Enriched.FunctorCategory.enrichedComp_π, CategoryTheory.coprod_inl_rightDistrib_hom_assoc, SSet.RelativeMorphism.Homotopy.refl_h, Bimod.Hom.right_act_hom, CategoryTheory.CartesianMonoidalCategory.braiding_inv_snd_assoc, CategoryTheory.Skeleton.mul_eq, CategoryTheory.Mon.one_def, curriedTensorPreFunctor_map_app_app, CategoryTheory.FreeMonoidalCategory.mk_α_inv, CategoryTheory.coprodComparison_tensorLeft_braiding_hom, CategoryTheory.Pi.isoApp_braiding, CategoryTheory.associator_hom_apply_2_1, whiskerRightIso_symm, MonoidalRightAction.actionHomRight_inv_hom_assoc, CategoryTheory.biproduct_ι_comp_leftDistributor_inv, MonoidalRightAction.oppositeRightAction_actionHomLeft_op, CategoryTheory.Adjunction.unit_app_unit_comp_map_η_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.Monoidal.tensorObj, groupHomology.inhomogeneousChains.d_eq, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Preadditive.one_def, CategoryTheory.Over.lift_left, CategoryTheory.Functor.Monoidal.whiskeringLeft_δ_app, MonoidalLeftAction.associator_actionHom, CategoryTheory.MonoidalOpposite.unmopFunctor_η, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, id_tensor_comp_tensor_id_assoc, CategoryTheory.monoidalOfHasFiniteCoproducts.associator_inv, id_whiskerRight_assoc, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, id_tensor_associator_naturality_assoc, CategoryTheory.μ_naturality_assoc, CategoryTheory.CopyDiscardCategory.discard_tensor, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.Functor.LaxRightLinear.μᵣ_naturality_left, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.firstMap₂_app_app_app, CategoryTheory.leftDistributor_hom_comp_biproduct_π_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerRight_fst, CategoryTheory.BimonObj.mul_comul, whiskerRight_id_assoc, CategoryTheory.IsMonHom.mul_hom_assoc, CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso_id, CategoryTheory.Functor.LeftLinear.instIsIsoμₗ, selfLeftAction_actionAssocIso, CategoryTheory.δ_naturalityᵣ, CategoryTheory.Functor.CoreMonoidal.μIso_hom_natural_right_assoc, CategoryTheory.whiskerRight_apply, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, CategoryTheory.CartesianMonoidalCategory.lift_snd_comp_fst_comp, CategoryTheory.CartesianClosed.curry_injective, CategoryTheory.CommGrp.trivial_grp_inv, CategoryTheory.Comon.forget_μ, LawfulDayConvolutionMonoidalCategoryStruct.rightUnitor_hom_unit_app, DayConvolution.unit_app_braiding_inv_app_assoc, CategoryTheory.MonoidalClosed.curry'_whiskerRight_comp, dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, MonoidalRightAction.oppositeRightAction_actionAssocIso, CategoryTheory.MonoidalOpposite.unmopFunctor_ε, LightCondensed.internallyProjective_iff_tensor_condition', CategoryTheory.Functor.LaxLeftLinear.μₗ_associativity_assoc, MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, rightUnitorNatIso_inv_app, Bimod.Hom.right_act_hom_assoc, CategoryTheory.unmop_whiskerLeft, associator_inv_naturality_left, CategoryTheory.GrpObj.ofIso_mul, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, tensor_isIso, CategoryTheory.Functor.Monoidal.leftUnitor_hom_app, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.BraidedCategory.Hexagon.functor₃₁₂_obj_map_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.FreeMonoidalCategory.normalizeIsoApp_tensor, leftUnitor_tensor_inv, CategoryTheory.Functor.CoreMonoidal.toLaxMonoidal_μ, Action.rightUnitor_inv_hom, CategoryTheory.Pi.associator_inv_apply, CategoryTheory.unitOfTensorIsoUnit_hom_app, CategoryTheory.GrpObj.lift_comp_inv_right, CategoryTheory.Functor.LaxMonoidal.μ_natural_assoc, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, CategoryTheory.Bimon.mul_counit_assoc, MonoidalLeftAction.actionRight_map, leftUnitor_tensor_hom_assoc, CategoryTheory.Functor.Monoidal.lift_μ, MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionObj, externalProductSwap_hom_app_app, MonoidalRightAction.actionAssocNatIso_hom_app_app_app, MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionHomRight, CategoryTheory.Monoidal.tensorObj_map, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_whiskerLeft_assoc, CategoryTheory.SemiCartesianMonoidalCategory.fst_def, CategoryTheory.BraidedCategory.Hexagon.functor₁₃₂'_obj_obj_map, CategoryTheory.Functor.Monoidal.leftUnitor_inv_app, SSet.hasDimensionLE_prod, SSet.ι₁_fst_assoc, CategoryTheory.Functor.Monoidal.εIso_inv, CategoryTheory.monoidalOfHasFiniteProducts.leftUnitor_hom, CategoryTheory.Monoidal.whiskerLeft_fst, CategoryTheory.Monoidal.transportStruct_whiskerLeft, CategoryTheory.leftUnitor_def, CategoryTheory.Iso.eHomCongr_inv_comp, CategoryTheory.MonObj.one_eq_one, inv_hom_whiskerRight'_assoc, CategoryTheory.MonoidalClosed.curry_natural_right, CategoryTheory.ObjectProperty.TensorLE.prop_tensor, CategoryTheory.Equivalence.ε_comp_map_ε_assoc, MonoidalLeftAction.curriedActionMopMonoidal_η_unmop_app, CategoryTheory.unop_hom_associator, CategoryTheory.Localization.Monoidal.μ_inv_natural_left, CategoryTheory.ModObj.mul_smul, CategoryTheory.MonoidalOpposite.tensorRightUnmopIso_hom_app, leftUnitor_whiskerRight, MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomRight, whiskerLeftIso_symm, leftUnitor_inv_tensor_id_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse, CategoryTheory.BraidedCategory.braiding_inv_naturality_right, CategoryTheory.BraidedCategory.Hexagon.functor₁₂₃_obj_map_app, CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_fst_assoc, CategoryTheory.Functor.mapCommMon_id_one, leftUnitor_tensor_hom''_assoc, MonoidalLeftAction.curriedActionMopMonoidal_ε_unmop_app, CategoryTheory.MonoidalOpposite.tensorLeftMopIso_inv_app_unmop, MonoidalRightAction.action_actionHomRight, CategoryTheory.Mon.monMonoidalStruct_tensorHom_hom, CategoryTheory.leftDistributor_ext₂_right_iff, CategoryTheory.tensorLeftHomEquiv_whiskerRight_comp_evaluation, rightAssocTensor_obj, CategoryTheory.NatTrans.whiskerRight_app_tensor_app_assoc, CategoryTheory.obj_ε_app, CategoryTheory.braiding_inv_apply, CategoryTheory.EnrichedCategory.assoc, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_apply, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.firstMap₃_app_app_app, CategoryTheory.Center.forget_δ, CategoryTheory.Functor.LaxBraided.braided_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.associator_hom_comp_tensorHom_tensorHom_comp, CategoryTheory.Functor.Monoidal.rightUnitor_hom_app, MonoidalRightAction.monoidalOppositeRightAction_actionRight_mop, CategoryTheory.Grp.whiskerRight_hom, CategoryTheory.MonoidalClosed.comp_id, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Mon.braiding_hom_hom, CategoryTheory.ExactPairing.coevaluation_evaluation_assoc, ModuleCat.MonoidalCategory.braiding_inv_apply, CategoryTheory.Over.fst_left, CategoryTheory.Functor.OplaxMonoidal.comp_δ, CategoryTheory.unmop_hom_leftUnitor, CategoryTheory.Over.associator_hom_left_fst_assoc, MonObj.mopMonObj_mul_unmop, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_whiskerLeft_hom, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, whisker_assoc, CategoryTheory.Functor.Monoidal.map_rightUnitor, CategoryTheory.op_associator, associator_naturality_left_assoc, MonoidalLeftAction.inv_hom_actionHomLeft_assoc, CategoryTheory.ModObj.mul_smul', CategoryTheory.Functor.RightLinear.δᵣ_comp_μᵣ_assoc, SSet.leftUnitor_hom_app_apply, CategoryTheory.rightUnitor_inv_apply, MonoidalLeftAction.actionLeft_obj, CategoryTheory.Functor.Monoidal.whiskerRight_δ_μ_assoc, MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionAssocIso_hom, CategoryTheory.Functor.OplaxMonoidal.lift_δ_assoc, CategoryTheory.Grp.tensorHom_hom, CategoryTheory.EnrichedFunctor.map_id_assoc, CategoryTheory.δ_μ_app_assoc, CategoryTheory.Functor.CoreMonoidal.left_unitality_assoc, CategoryTheory.FreeMonoidalCategory.unit_eq_unit, CategoryTheory.rightAdjointMate_comp, inv_hom_whiskerRight', CategoryTheory.CartesianMonoidalCategory.tensorμ_fst, tensor_id_comp_id_tensor, CategoryTheory.unop_tensorObj, prodMonoidal_tensorHom, CategoryTheory.MonoidalOpposite.mopFunctor_δ, CategoryTheory.Functor.Monoidal.δ_μ_assoc, CategoryTheory.GrpObj.ofIso_one, CategoryTheory.Enriched.FunctorCategory.enrichedId_π, CategoryTheory.Adjunction.map_η_comp_η, MonoidalRightAction.oppositeRightAction_actionObj_op, CategoryTheory.Functor.OplaxMonoidal.right_unitality, Mathlib.Tactic.Monoidal.evalWhiskerRight_nil, CategoryTheory.Over.tensorObj_left, CategoryTheory.Functor.OplaxRightLinear.δᵣ_naturality_right, MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionHomLeft, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_aux_mul, CategoryTheory.MonObj.one_mul, CategoryTheory.rightAdjointMate_comp_evaluation, CategoryTheory.coevaluation_comp_rightAdjointMate_assoc, CategoryTheory.MonoidalClosed.leftDistrib_inv, CategoryTheory.Pi.isoApp_right_unitor, CategoryTheory.Functor.Monoidal.transport_ε_assoc, CategoryTheory.Functor.Monoidal.transport_δ_assoc, CategoryTheory.Grp.fst_hom_hom, CategoryTheory.BraidedCategory.braiding_inv_naturality, CategoryTheory.unop_inv_rightUnitor, CategoryTheory.CartesianMonoidalCategory.lift_snd_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.Functor.LaxMonoidal.μ_natural, CategoryTheory.toOverUnitPullback_hom_app_left, Bimod.AssociatorBimod.hom_right_act_hom', CategoryTheory.MonObj.mul_rightUnitor, tensor_hom_inv_id', tensorδ_tensorμ_assoc, CategoryTheory.Adjunction.map_ε_comp_counit_app_unit, MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso_mop_mop, Mathlib.Tactic.Monoidal.evalHorizontalCompAux_of, CategoryTheory.Functor.EssImageSubcategory.lift_def, CategoryTheory.ObjectProperty.ιOfLE_η, CategoryTheory.ComonObj.comul_assoc_flip_assoc, CategoryTheory.MonoidalOpposite.tensorLeftIso_inv_app_unmop, CategoryTheory.Comon.monoidal_tensorHom_hom, MonoidalLeftAction.hom_inv_actionHomLeft, CategoryTheory.obj_η_app, MonoidalLeftAction.hom_inv_actionHomLeft', CategoryTheory.Over.ε_pullback_left, CategoryTheory.Comon.forget_ε, CategoryTheory.unop_hom_leftUnitor, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.CartesianMonoidalCategory.lift_rightUnitor_hom, CategoryTheory.Functor.RightLinear.inv_δᵣ, MonoidalRightAction.isIso_actionHomRight, CategoryTheory.HopfObj.antipode_right, CategoryTheory.Functor.LaxRightLinear.μᵣ_unitality_inv, pentagon_inv_hom_assoc, SSet.associator_inv_app_apply, CategoryTheory.MonObj.mul_one_hom, CategoryTheory.leftDistributor_assoc, CategoryTheory.Grp.trivial_grp_mul, DayConvolutionInternalHom.coev_app_π, CategoryTheory.BraidedCategory.Hexagon.functor₁₃₂_obj_obj_obj, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerLeft_val, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃'_eq_assoc, CategoryTheory.Pi.braiding_hom_apply, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Bimon.compatibility, selfLeftAction_actionHomRight, CategoryTheory.Monoidal.leftUnitor_inv, CategoryTheory.Functor.Monoidal.ε_η_assoc, CategoryTheory.MonoidalOpposite.tensorIso_inv_app_unmop, CategoryTheory.ObjectProperty.ιOfLE_μ, CategoryTheory.unop_associator, CategoryTheory.CartesianMonoidalCategory.whiskerRight_fst_assoc, CategoryTheory.Pi.μ_def, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.eComp_op_eq, rightUnitorNatIso_hom_app, CategoryTheory.Functor.Monoidal.map_rightUnitor_inv_assoc, CategoryTheory.braiding_inv_tensorUnit_left, CategoryTheory.tensor_apply, CategoryTheory.BraidedCategory.Hexagon.functor₁₃₂_obj_map_app, CategoryTheory.BraidedCategory.braiding_tensor_right_inv_assoc, CategoryTheory.Functor.OplaxMonoidal.δ_natural_right_assoc, pentagon_assoc, CategoryTheory.Grp.trivial_X, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.secondMap₃_app_app_app, CategoryTheory.Comon.MonOpOpToComonObj_comon_counit, CategoryTheory.monoidalUnopUnop_η, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Functor.LaxMonoidal.left_unitality_inv, MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHom, BialgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.monoidalOfHasFiniteProducts.associator_hom_fst, CategoryTheory.Center.forget_μ, CategoryTheory.MonoidalOpposite.unmop_braiding, CategoryTheory.mop_whiskerRight, CategoryTheory.Localization.Monoidal.rightUnitor_hom_app, CategoryTheory.CartesianMonoidalCategory.braiding_hom_snd, Rep.leftRegularTensorTrivialIsoFree_hom_hom, CategoryTheory.mop_tensorUnit, associator_conjugation, associator_inv_conjugation_assoc, DayConvolution.whiskerRight_comp_unit_app, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_obj, CategoryTheory.ObjectProperty.prop_tensor, Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of, CategoryTheory.Limits.lim_μ_π, InducedLawfulDayConvolutionMonoidalCategoryStructCore.convolutionUnitApp_eq, whiskerRight_tensor_assoc, CategoryTheory.Center.ofBraided_η_f, CategoryTheory.BraidedCategory.Hexagon.functor₃₁₂'_obj_map_app, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Grp.braiding_hom_hom_hom, CategoryTheory.Comon.tensorObj_X, hom_inv_id_tensor_assoc, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, CategoryTheory.Functor.map_braiding, CategoryTheory.Mon.tensorUnit_mul, FDRep.dualTensorIsoLinHom_hom_hom, prodCompExternalProduct_hom_app, CategoryTheory.toOverUnitPullback_inv_app_left, MonoidalLeftAction.oppositeLeftAction_actionObj_op, CategoryTheory.Functor.RightLinear.μᵣ_comp_δᵣ_assoc, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.firstMap_app_app_app, CategoryTheory.Functor.diag_ε, CategoryTheory.FreeMonoidalCategory.mk_tensor, CategoryTheory.MonoidalClosed.id_comp, CategoryTheory.Functor.LaxMonoidal.left_unitality_inv_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.unop_whiskerLeft, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_μ_unmop_unmop, MonoidalLeftAction.actionUnitIso_inv_naturality, Rep.linearization_ε_hom, CategoryTheory.SimplicialThickening.SimplicialCategory.id_comp, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_η_unmop_unmop, CategoryTheory.Bimon.Mon_Class.tensorObj.mul_def, MonoidalLeftAction.oppositeLeftAction_actionUnitIso, CategoryTheory.GradedObject.Monoidal.ιTensorObj₃'_associator_hom_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_η_ε_assoc, tensor_dite, CategoryTheory.Pi.ε_def, tensor_ε, DayConvolution.associator_hom_unit_unit, CategoryTheory.HopfObj.antipode_counit_assoc, CategoryTheory.BraidedCategory.braiding_naturality_right_assoc, CategoryTheory.MonObj.instIsMonHomMulOfIsCommMonObj, CategoryTheory.ε_app, id_whiskerLeft_symm, CategoryTheory.Functor.LeftLinear.δₗ_comp_μₗ_assoc, CategoryTheory.right_unitality_app, DayConvolution.unit_app_map_app, externalProductFlip_inv_app_app_app_app, tensor_right_unitality_assoc, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, pentagon, CategoryTheory.Functor.OplaxMonoidal.left_unitality_hom_assoc, CategoryTheory.Sheaf.tensorUnit_isSheaf, CategoryTheory.Functor.Monoidal.whiskerLeft_app_snd_assoc, CategoryTheory.GradedObject.Monoidal.ι_tensorHom, MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft, CategoryTheory.associator_inv_apply_2, CategoryTheory.η_ε_app, CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst_assoc, CategoryTheory.biproduct_ι_comp_leftDistributor_inv_assoc, CategoryTheory.Monoidal.leftUnitor_hom, CategoryTheory.CartesianMonoidalCategory.rightUnitor_hom, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorHom_hom, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoη, MonoidalLeftAction.actionHom_comp, CategoryTheory.Mon.tensor_one, tensor_whiskerLeft_symm, CategoryTheory.ObjectProperty.ιOfLE_δ, MonoidalLeftAction.inv_hom_actionHomLeft, CategoryTheory.Mon.hom_one, CategoryTheory.Functor.Monoidal.μ_δ, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ_assoc, CategoryTheory.Functor.obj.Δ_def, tensorHom_id, CategoryTheory.Functor.prod_δ_fst, MonoidalLeftAction.curriedAction_obj_obj, CategoryTheory.Over.whiskerLeft_left_snd, tensor_hom_inv_id, CategoryTheory.Functor.OplaxMonoidal.right_unitality_hom_assoc, CategoryTheory.μ_naturalityₗ_assoc, MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft_unop, whiskerRightIso_trans, CategoryTheory.e_assoc, CategoryTheory.Mon.monMonoidalStruct_tensorObj_X, associator_inv_naturality_middle, CategoryTheory.leftDistributor_inv_comp_biproduct_π, CategoryTheory.CommMon.trivial_X, CategoryTheory.toOver_map, prodMonoidal_associator, CategoryTheory.Deterministic.copy_natural, CategoryTheory.Functor.OplaxLeftLinear.δₗ_associativity_inv_assoc, CategoryTheory.rightUnitor_hom_apply, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_symm_apply, CategoryTheory.CartesianMonoidalCategory.lift_whiskerLeft_assoc, pentagon_inv_hom_hom_hom_hom, SSet.ι₀_app_fst, CategoryTheory.Functor.OplaxMonoidal.ofBifunctor.topMapₗ_app, Action.β_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.HopfObj.one_antipode_assoc, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app, leftUnitorNatIso_hom_app, externalProductBifunctor_obj_map, whiskerLeft_isIso, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.SemiCartesianMonoidalCategory.snd_def, CategoryTheory.MonObj.one_mul_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CategoryTheory.mop_tensorHom, DayConvolutionInternalHom.map_app_comp_π_assoc, CategoryTheory.Functor.OplaxMonoidal.associativity_inv_assoc, associator_inv_conjugation, CategoryTheory.Center.whiskerLeft_comm_assoc, CategoryTheory.BraidedCategory.hexagon_forward_assoc, id_tensor_comp, CategoryTheory.BraidedCategory.Hexagon.functor₂₁₃_obj_obj_map, CategoryTheory.monoidalOfHasFiniteProducts.tensorObj, dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, CategoryTheory.CartesianMonoidalCategory.prodComparison_inv_natural_assoc, CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor_assoc, CategoryTheory.CartesianMonoidalCategory.tensorδ_fst, Mathlib.Tactic.Monoidal.structuralIsoOfExpr_whiskerRight, hom_inv_id_tensor, CategoryTheory.toUnit_comp_curryRightUnitorHom, Action.leftUnitor_hom_hom, CategoryTheory.MonObj.mul_eq_mul, CategoryTheory.Pi.right_unitor_hom_apply, CategoryTheory.ihom.ev_coev, Action.FunctorCategoryEquivalence.functor_η, CategoryTheory.MonoidalClosed.whiskerLeft_curry_ihom_ev_app_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.eq_one_mul, associator_naturality_right_assoc, CategoryTheory.Monoidal.whiskerLeft_app, MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionHom, CategoryTheory.monoidalOfHasFiniteProducts.associator_inv, CategoryTheory.CartesianMonoidalCategory.tensorHom_fst_assoc, CategoryTheory.associator_inv_apply_1_1, CategoryTheory.Functor.LaxMonoidal.ofBifunctor.secondMap_app_app_app, whiskerLeft_rightUnitor_inv_assoc, MonoidalRightAction.oppositeRightAction_actionUnitIso, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.Functor.CoreMonoidal.toOplaxMonoidal_η, CategoryTheory.Functor.comp_mapCommMon_one, CategoryTheory.Comon.trivial_comon_comul, CategoryTheory.Over.tensorObj_hom, CategoryTheory.CartesianMonoidalCategory.tensorμ_snd_assoc, CategoryTheory.MorphismProperty.whiskerLeft_mem, SSet.ι₁_comp_assoc, CategoryTheory.Mon_Class.mul_mul_mul_comm', CategoryTheory.CartesianMonoidalCategory.isIso_prodComparison_of_preservesLimit_pair, CategoryTheory.μ_app, MonoidalLeftAction.curriedAction_obj_map, CategoryTheory.toOverUnit_obj_hom, CategoryTheory.GradedNatTrans.naturality, leftUnitor_inv_tensor_id, CategoryTheory.BraidedCategory.braiding_tensor_right_inv, CategoryTheory.MonoidalCoherence.tensor_right'_iso, CategoryTheory.GradedObject.Monoidal.tensorObj_ext_iff, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_right, CategoryTheory.Monoidal.Reflective.instIsIsoMapTensorHomAppUnit, CategoryTheory.CartesianMonoidalCategory.prodComparison_natural_whiskerLeft, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, CategoryTheory.Bimon.toComon_obj_comon_comul, CategoryTheory.BraidedCategory.Hexagon.functor₁₃₂'_obj_obj_obj, CategoryTheory.BraidedCategory.Hexagon.functor₁₃₂_obj_obj_map, CategoryTheory.Mon_Class.mul_mul_mul_comm, MonoidalRightAction.monoidalOppositeRightAction_actionUnitIso, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.SemilatticeInf.tensorObj, CategoryTheory.leftDistributor_ext_left_iff, CategoryTheory.Mon.snd_hom, CategoryTheory.SemiCartesianMonoidalCategory.comp_toUnit, CategoryTheory.ComonObj.instTensorUnit_comul, Bimod.LeftUnitorBimod.hom_left_act_hom', CategoryTheory.Functor.OplaxMonoidal.instIsIsoδ, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Functor.Monoidal.μ_δ_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, associator_naturality_right, Action.FunctorCategoryEquivalence.functor_ε, CategoryTheory.BraidedCategory.Hexagon.functor₃₁₂_obj_obj_obj, MonoidalLeftAction.inv_hom_actionHomLeft', CategoryTheory.FreeMonoidalCategory.tensorFunc_obj_map, Rep.linearization_μ_hom, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Bimon.trivial_X_mon_one, CategoryTheory.BraidedCategory.ofBifunctor.Forward.firstMap₃_app_app_app, CategoryTheory.BraidedCategory.tensorLeftIsoTensorRight_inv_app, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_rightUnitor_inv_hom, CategoryTheory.monoidalOfHasFiniteProducts.associator_inv_fst_fst, CategoryTheory.Mon.tensor_mul, pentagon_hom_hom_inv_hom_hom_assoc, CategoryTheory.MonObj.mul_assoc_flip, CategoryTheory.associator_hom, CategoryTheory.Enriched.FunctorCategory.enriched_comp_id, CategoryTheory.MorphismProperty.whiskerRight_mem, CategoryTheory.tensorLeftHomEquiv_symm_naturality, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_right_assoc, SSet.RelativeMorphism.Homotopy.rel_assoc, MonObj.mopEquiv_inverse_obj_mon_mul, CategoryTheory.Functor.Monoidal.η_ε, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.BraidedCategory.Hexagon.functor₂₃₁'_obj_obj_map, tensoringRight_μ, CategoryTheory.MonoidalClosed.id_comp_assoc, CategoryTheory.CartesianMonoidalCategory.leftUnitor_hom, CategoryTheory.CartesianMonoidalCategory.lift_braiding_inv_assoc, CategoryTheory.CartesianMonoidalCategory.whiskerRight_snd, dayConvolutionInternalHomDiagramFunctor_map_app_app_app, CategoryTheory.CartesianMonoidalCategory.whiskerRight_toUnit_comp_leftUnitor_hom_assoc, MonoidalLeftAction.isIso_actionHomRight, CategoryTheory.Functor.Monoidal.whiskerLeft_δ_μ_assoc, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_hom, CategoryTheory.Comon.ComonToMonOpOpObj_mon_one, CategoryTheory.whiskerLeft_coprod_inr_leftDistrib_inv_assoc, MonoidalLeftAction.actionHom_def'_assoc, CategoryTheory.Center.tensor_f
|