Documentation Verification Report

Center

📁 Source: Mathlib/CategoryTheory/Monoidal/Center.lean

Statistics

MetricCount
DefinitionsCenter, f, associator, braidedCategoryCenter, braiding, forget, instCategory, instMonoidalCategory, instMonoidalForget, instMonoidalOfBraided, instQuiver, isoMk, leftUnitor, ofBraided, ofBraidedObj, rightUnitor, tensorHom, tensorObj, tensorUnit, whiskerLeft, whiskerRight, HalfBraiding, β
23
Theoremscomm, comm_assoc, ext, ext_iff, associator_hom_f, associator_inv_f, braiding_hom_f, braiding_inv_f, comp_f, ext, ext_iff, forget_map, forget_obj, forget_δ, forget_ε, forget_η, forget_μ, id_f, instReflectsIsomorphismsForget, isIso_of_f_isIso, isoMk_hom, isoMk_inv_f, leftUnitor_hom_f, leftUnitor_inv_f, ofBraidedObj_fst, ofBraidedObj_snd_β, ofBraided_map_f, ofBraided_obj, ofBraided_δ_f, ofBraided_ε_f, ofBraided_η_f, ofBraided_μ_f, rightUnitor_hom_f, rightUnitor_inv_f, tensorHom_f, tensorObj_fst, tensorObj_snd_β, tensorUnit_fst, tensorUnit_snd_β, tensorUnit_β, tensor_f, tensor_fst, tensor_β, whiskerLeft_comm, whiskerLeft_comm_assoc, whiskerLeft_f, whiskerRight_comm, whiskerRight_comm_assoc, whiskerRight_f, monoidal, monoidal_assoc, naturality, naturality_assoc
53
Total76

CategoryTheory

Definitions

NameCategoryTheorems
Center 📖CompOp
34 mathmath: Center.whiskerLeft_f, Center.braiding_inv_f, Center.associator_hom_f, Center.comp_f, Center.forget_η, Center.tensorUnit_β, Center.tensor_β, Center.rightUnitor_inv_f, Center.braiding_hom_f, Center.ofBraided_ε_f, Center.ofBraided_map_f, Center.leftUnitor_hom_f, Center.forget_ε, Center.tensor_fst, Center.ofBraided_δ_f, Center.instReflectsIsomorphismsForget, Center.isoMk_hom, Center.whiskerRight_f, Center.leftUnitor_inv_f, Center.associator_inv_f, Center.id_f, Center.rightUnitor_hom_f, Center.ofBraided_μ_f, Center.forget_obj, Center.isoMk_inv_f, enrichedNatTransYoneda_obj, Center.isIso_of_f_isIso, Center.forget_δ, Center.forget_map, Center.ofBraided_obj, Center.forget_μ, Center.ofBraided_η_f, enrichedNatTransYoneda_map_app, Center.tensor_f
HalfBraiding 📖CompData
38 mathmath: Center.whiskerLeft_f, Center.braiding_inv_f, Center.associator_hom_f, Center.comp_f, Center.tensorUnit_β, Center.whiskerLeft_comm, Center.tensor_β, Center.rightUnitor_inv_f, Center.braiding_hom_f, Center.ofBraided_ε_f, Center.tensorUnit_snd_β, Center.leftUnitor_hom_f, Center.tensorHom_f, Center.tensor_fst, Center.ofBraided_δ_f, Center.Hom.comm, Center.tensorObj_fst, Center.ofBraidedObj_fst, Center.ofBraidedObj_snd_β, Center.Hom.comm_assoc, Center.whiskerRight_comm, Center.tensorUnit_fst, Center.whiskerRight_f, Center.leftUnitor_inv_f, Center.associator_inv_f, Center.id_f, Center.rightUnitor_hom_f, GradedNatTrans.naturality_assoc, Center.ofBraided_μ_f, Center.forget_obj, Center.isoMk_inv_f, Center.tensorObj_snd_β, Center.whiskerRight_comm_assoc, Center.ofBraided_η_f, Center.whiskerLeft_comm_assoc, GradedNatTrans.naturality, enrichedNatTransYoneda_map_app, Center.tensor_f

CategoryTheory.Center

Definitions

NameCategoryTheorems
associator 📖CompOp
braidedCategoryCenter 📖CompOp
braiding 📖CompOp
2 mathmath: braiding_inv_f, braiding_hom_f
forget 📖CompOp
7 mathmath: forget_η, forget_ε, instReflectsIsomorphismsForget, forget_obj, forget_δ, forget_map, forget_μ
instCategory 📖CompOp
34 mathmath: whiskerLeft_f, braiding_inv_f, associator_hom_f, comp_f, forget_η, tensorUnit_β, tensor_β, rightUnitor_inv_f, braiding_hom_f, ofBraided_ε_f, ofBraided_map_f, leftUnitor_hom_f, forget_ε, tensor_fst, ofBraided_δ_f, instReflectsIsomorphismsForget, isoMk_hom, whiskerRight_f, leftUnitor_inv_f, associator_inv_f, id_f, rightUnitor_hom_f, ofBraided_μ_f, forget_obj, isoMk_inv_f, CategoryTheory.enrichedNatTransYoneda_obj, isIso_of_f_isIso, forget_δ, forget_map, ofBraided_obj, forget_μ, ofBraided_η_f, CategoryTheory.enrichedNatTransYoneda_map_app, tensor_f
instMonoidalCategory 📖CompOp
22 mathmath: whiskerLeft_f, braiding_inv_f, associator_hom_f, forget_η, tensorUnit_β, tensor_β, rightUnitor_inv_f, braiding_hom_f, ofBraided_ε_f, leftUnitor_hom_f, forget_ε, tensor_fst, ofBraided_δ_f, whiskerRight_f, leftUnitor_inv_f, associator_inv_f, rightUnitor_hom_f, ofBraided_μ_f, forget_δ, forget_μ, ofBraided_η_f, tensor_f
instMonoidalForget 📖CompOp
4 mathmath: forget_η, forget_ε, forget_δ, forget_μ
instMonoidalOfBraided 📖CompOp
4 mathmath: ofBraided_ε_f, ofBraided_δ_f, ofBraided_μ_f, ofBraided_η_f
instQuiver 📖CompOp
isoMk 📖CompOp
2 mathmath: isoMk_hom, isoMk_inv_f
leftUnitor 📖CompOp
ofBraided 📖CompOp
8 mathmath: ofBraided_ε_f, ofBraided_map_f, ofBraided_δ_f, ofBraided_μ_f, CategoryTheory.enrichedNatTransYoneda_obj, ofBraided_obj, ofBraided_η_f, CategoryTheory.enrichedNatTransYoneda_map_app
ofBraidedObj 📖CompOp
4 mathmath: ofBraided_map_f, ofBraidedObj_fst, ofBraidedObj_snd_β, ofBraided_obj
rightUnitor 📖CompOp
tensorHom 📖CompOp
1 mathmath: tensorHom_f
tensorObj 📖CompOp
7 mathmath: whiskerLeft_comm, tensorHom_f, tensorObj_fst, whiskerRight_comm, tensorObj_snd_β, whiskerRight_comm_assoc, whiskerLeft_comm_assoc
tensorUnit 📖CompOp
2 mathmath: tensorUnit_snd_β, tensorUnit_fst
whiskerLeft 📖CompOp
whiskerRight 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.HalfBraiding
associator_inv_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.HalfBraiding
CategoryTheory.Iso.inv_ext'
associator_hom_f
comp_f
CategoryTheory.Iso.hom_inv_id
braiding_hom_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Iso.hom
braiding
CategoryTheory.HalfBraiding
CategoryTheory.HalfBraiding.β
braiding_inv_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Iso.inv
braiding
CategoryTheory.HalfBraiding
CategoryTheory.HalfBraiding.β
CategoryTheory.IsIso.Iso.inv_hom
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Center
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.HalfBraiding
ext 📖Hom.f
ext_iff 📖mathematicalHom.fext
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Center
instCategory
forget
Hom.f
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Center
instCategory
forget
CategoryTheory.HalfBraiding
forget_δ 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Center
instCategory
instMonoidalCategory
forget
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
forget_ε 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Center
instCategory
instMonoidalCategory
forget
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
forget_η 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Center
instCategory
instMonoidalCategory
forget
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
forget_μ 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Center
instCategory
instMonoidalCategory
forget
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.Center
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.HalfBraiding
instReflectsIsomorphismsForget 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Center
instCategory
forget
CategoryTheory.Iso.isIso_hom
isIso_of_f_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Center
instCategory
CategoryTheory.Iso.isIso_hom
isoMk_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Center
instCategory
isoMk
isoMk_inv_f 📖mathematicalHom.f
CategoryTheory.Iso.inv
CategoryTheory.Center
instCategory
isoMk
CategoryTheory.inv
CategoryTheory.HalfBraiding
leftUnitor_hom_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.HalfBraiding
leftUnitor_inv_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.HalfBraiding
CategoryTheory.Iso.inv_ext'
leftUnitor_hom_f
comp_f
CategoryTheory.Iso.hom_inv_id
ofBraidedObj_fst 📖mathematicalCategoryTheory.HalfBraiding
ofBraidedObj
ofBraidedObj_snd_β 📖mathematicalCategoryTheory.HalfBraiding.β
CategoryTheory.HalfBraiding
ofBraidedObj
CategoryTheory.BraidedCategory.braiding
ofBraided_map_f 📖mathematicalHom.f
ofBraidedObj
CategoryTheory.Functor.map
CategoryTheory.Center
instCategory
ofBraided
ofBraided_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Center
instCategory
ofBraided
ofBraidedObj
ofBraided_δ_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Center
instCategory
ofBraided
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalOfBraided
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HalfBraiding
ofBraided_ε_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Functor.obj
ofBraided
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalOfBraided
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HalfBraiding
ofBraided_η_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Center
instCategory
ofBraided
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalOfBraided
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HalfBraiding
ofBraided_μ_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Functor.obj
ofBraided
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalOfBraided
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HalfBraiding
rightUnitor_hom_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.HalfBraiding
rightUnitor_inv_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.HalfBraiding
CategoryTheory.Iso.inv_ext'
rightUnitor_hom_f
comp_f
CategoryTheory.Iso.hom_inv_id
tensorHom_f 📖mathematicalHom.f
tensorObj
tensorHom
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
tensorObj_fst 📖mathematicalCategoryTheory.HalfBraiding
tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorObj_snd_β 📖mathematicalCategoryTheory.HalfBraiding.β
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
tensorObj
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.whiskerLeftIso
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategory.whiskerRightIso
tensorUnit_fst 📖mathematicalCategoryTheory.HalfBraiding
tensorUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorUnit_snd_β 📖mathematicalCategoryTheory.HalfBraiding.β
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
tensorUnit
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategoryStruct.rightUnitor
tensorUnit_β 📖mathematicalCategoryTheory.HalfBraiding.β
CategoryTheory.HalfBraiding
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategoryStruct.rightUnitor
tensor_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.HalfBraiding
tensor_fst 📖mathematicalCategoryTheory.HalfBraiding
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
tensor_β 📖mathematicalCategoryTheory.HalfBraiding.β
CategoryTheory.HalfBraiding
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.Iso.trans
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.whiskerLeftIso
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategory.whiskerRightIso
whiskerLeft_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
tensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
Hom.f
CategoryTheory.Iso.hom
CategoryTheory.HalfBraiding.β
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_whisker
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_inv
Hom.comm
Mathlib.Tactic.Monoidal.evalWhiskerLeft_comp
CategoryTheory.MonoidalCategory.whisker_exchange
whiskerLeft_comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
Hom.f
tensorObj
CategoryTheory.Iso.hom
CategoryTheory.HalfBraiding.β
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_comm
whiskerLeft_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.HalfBraiding
whiskerRight_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
tensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
Hom.f
CategoryTheory.Iso.hom
CategoryTheory.HalfBraiding.β
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerRight_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
CategoryTheory.MonoidalCategory.whisker_exchange
Hom.comm
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_whisker
whiskerRight_comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
CategoryTheory.MonoidalCategoryStruct.whiskerRight
Hom.f
tensorObj
CategoryTheory.Iso.hom
CategoryTheory.HalfBraiding.β
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_comm
whiskerRight_f 📖mathematicalHom.f
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Center
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.HalfBraiding

CategoryTheory.Center.Hom

Definitions

NameCategoryTheorems
f 📖CompOp
29 mathmath: CategoryTheory.Center.whiskerLeft_f, CategoryTheory.Center.braiding_inv_f, CategoryTheory.Center.associator_hom_f, ext_iff, CategoryTheory.Center.comp_f, CategoryTheory.Center.whiskerLeft_comm, CategoryTheory.Center.rightUnitor_inv_f, CategoryTheory.Center.braiding_hom_f, CategoryTheory.Center.ofBraided_ε_f, CategoryTheory.Center.ofBraided_map_f, CategoryTheory.Center.leftUnitor_hom_f, CategoryTheory.Center.tensorHom_f, CategoryTheory.Center.ofBraided_δ_f, comm, comm_assoc, CategoryTheory.Center.whiskerRight_comm, CategoryTheory.Center.whiskerRight_f, CategoryTheory.Center.leftUnitor_inv_f, CategoryTheory.Center.associator_inv_f, CategoryTheory.Center.id_f, CategoryTheory.Center.rightUnitor_hom_f, CategoryTheory.Center.ext_iff, CategoryTheory.Center.ofBraided_μ_f, CategoryTheory.Center.isoMk_inv_f, CategoryTheory.Center.whiskerRight_comm_assoc, CategoryTheory.Center.forget_map, CategoryTheory.Center.ofBraided_η_f, CategoryTheory.Center.whiskerLeft_comm_assoc, CategoryTheory.Center.tensor_f

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
CategoryTheory.MonoidalCategoryStruct.whiskerRight
f
CategoryTheory.Iso.hom
CategoryTheory.HalfBraiding.β
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
CategoryTheory.MonoidalCategoryStruct.whiskerRight
f
CategoryTheory.Iso.hom
CategoryTheory.HalfBraiding.β
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
ext 📖f
ext_iff 📖mathematicalfext

CategoryTheory.HalfBraiding

Definitions

NameCategoryTheorems
β 📖CompOp
19 mathmath: CategoryTheory.Center.braiding_inv_f, naturality_assoc, CategoryTheory.Center.tensorUnit_β, naturality, CategoryTheory.Center.whiskerLeft_comm, CategoryTheory.Center.tensor_β, CategoryTheory.Center.braiding_hom_f, CategoryTheory.Center.tensorUnit_snd_β, CategoryTheory.Center.Hom.comm, CategoryTheory.Center.ofBraidedObj_snd_β, CategoryTheory.Center.Hom.comm_assoc, monoidal_assoc, CategoryTheory.Center.whiskerRight_comm, CategoryTheory.GradedNatTrans.naturality_assoc, CategoryTheory.Center.tensorObj_snd_β, CategoryTheory.Center.whiskerRight_comm_assoc, monoidal, CategoryTheory.Center.whiskerLeft_comm_assoc, CategoryTheory.GradedNatTrans.naturality

Theorems

NameKindAssumesProvesValidatesDepends On
monoidal 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
monoidal_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
β
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
monoidal
naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
β
CategoryTheory.MonoidalCategoryStruct.whiskerRight
naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
β
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
naturality

---

← Back to Index