Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Monoidal/Closed/Basic.lean

Statistics

MetricCount
Definitionsadj, rightAdj, MonoidalClosed, closed, comp, compTranspose, curry, curry', curryHomEquiv', id, internalHom, internalHomAdjunction₂, ofEquiv, pre, uncurry, uncurry', unitIsoSelf, unitNatIso, ihom, adjunction, coev, ev, «term_⟶[_]_», tensorClosed, unitClosed
25
Theoremsassoc, assoc_assoc, coev_app_comp_pre_app, coev_app_comp_pre_app_assoc, compTranspose_eq, comp_eq, comp_id, comp_id_assoc, curry'_comp, curry'_id, curry'_ihom_map, curry'_injective, curry'_uncurry', curry'_whiskerRight_comp, curry'_whiskerRight_comp_assoc, curryHomEquiv'_apply, curryHomEquiv'_symm_apply, curry_eq, curry_eq_iff, curry_id_eq_coev, curry_injective, curry_natural_left, curry_natural_left_assoc, curry_natural_right, curry_natural_right_assoc, curry_pre_app, curry_pre_app_assoc, curry_uncurry, eq_curry_iff, homEquiv_apply_eq, homEquiv_symm_apply_eq, id_comp, id_comp_assoc, id_eq, id_tensor_pre_app_comp_ev, id_tensor_pre_app_comp_ev_assoc, internalHomAdjunction₂_adj, internalHom_map, internalHom_obj, ofEquiv_curry_def, ofEquiv_uncurry_def, pre_comm_ihom_map, pre_id, pre_map, uncurry'_curry', uncurry'_injective, uncurry_curry, uncurry_eq, uncurry_id_eq_ev, uncurry_ihom_map, uncurry_injective, uncurry_natural_left, uncurry_natural_left_assoc, uncurry_natural_right, uncurry_natural_right_assoc, uncurry_pre, uncurry_pre_app, uncurry_pre_app_assoc, whiskerLeft_curry'_comp, whiskerLeft_curry'_comp_assoc, whiskerLeft_curry'_ihom_ev_app, whiskerLeft_curry'_ihom_ev_app_assoc, whiskerLeft_curry_ihom_ev_app, whiskerLeft_curry_ihom_ev_app_assoc, coev_ev, coev_ev_assoc, coev_naturality, coev_naturality_assoc, ev_coev, ev_coev_assoc, ev_naturality, ev_naturality_assoc, ihom_adjunction_counit, ihom_adjunction_unit, instIsLeftAdjointTensorLeft, instPreservesColimitsTensorLeft
76
Total101

CategoryTheory

Definitions

NameCategoryTheorems
MonoidalClosed 📖CompData
ihom 📖CompOp
156 mathmath: MonoidalCategory.DayConvolutionInternalHom.hπ_assoc, ihom.coev_naturality, Rep.MonoidalClosed.linearHomEquiv_symm_hom, LightCondensed.ihomPoints_apply, LightCondensed.ihomPoints_symm_comp, MonoidalClosed.ofEquiv_uncurry_def, MonoidalClosed.uncurry_natural_right, ModuleCat.monoidalClosed_uncurry, Functor.closedIhom_obj_map, MonoidalClosed.enrichedOrdinaryCategorySelf_eHomWhiskerRight, MonoidalClosed.coev_app_comp_pre_app, CartesianClosed.curry_id_eq_coev, MonoidalClosed.uncurry_natural_left_assoc, MonoidalClosed.uncurry_pre_app_assoc, coev_expComparison, MonoidalClosed.uncurry_natural_right_assoc, exp.coev_ev, frobeniusMorphism_mate, MonoidalClosedFunctor.comparison_iso, MonoidalClosed.uncurry_pre_app, ihom.ev_coev_assoc, Cat.ihom_obj, Rep.ihom_ev_app_hom, Rep.MonoidalClosed.linearHomEquivComm_hom, MonoidalClosed.uncurry_eq, MonoidalCategory.DayConvolutionInternalHom.coev_app_π_assoc, CartesianClosed.homEquiv_apply_eq, MonoidalClosed.whiskerLeft_curry'_comp, MonoidalClosed.whiskerLeft_curry'_ihom_ev_app_assoc, Rep.homEquiv_def, Pi.closedCounit_app, ModuleCat.monoidalClosed_curry, Pi.closedUnit_app, CartesianClosed.curry_natural_right_assoc, Functor.ihom_ev_app, MonoidalClosed.curry'_ihom_map, MonoidalClosed.assoc, CartesianClosed.curry_natural_left_assoc, coev_app_comp_pre_app, CartesianClosed.curry_natural_right, MonoidalClosed.assoc_assoc, MonoidalClosed.curry_id_eq_coev, expComparison_whiskerLeft, MonoidalClosed.uncurry_pre, Functor.ihom_map, CartesianClosed.curry_eq, MonoidalClosed.pre_comm_ihom_map, MonoidalClosed.id_tensor_pre_app_comp_ev, CartesianClosed.homEquiv_symm_apply_eq, MonoidalClosed.curry_pre_app, MonoidalCategory.DayConvolutionInternalHom.hπ, MonoidalCategory.DayConvolutionInternalHom.map_app_comp_π, MonoidalClosed.curry_eq, MonoidalClosed.curry_natural_left, CartesianClosed.uncurry_natural_right, MonoidalClosed.curry_pre_app_assoc, MonoidalClosed.comp_eq, Over.toOverSectionsAdj_counit_app, CartesianClosed.uncurry_eq, FGModuleCat.ihom_obj, pre_id, MonoidalClosed.curry'_comp, Over.sections_obj, ObjectProperty.ihom_obj, exp.ev_coev, MonoidalCategory.DayConvolutionInternalHom.map_comp_π_assoc, CartesianClosed.uncurry_id_eq_ev, MonoidalClosed.id_tensor_pre_app_comp_ev_assoc, uncurry_pre, ihom.coev_naturality_assoc, exp.ev_coev_assoc, CartesianClosed.uncurry_natural_left_assoc, MonoidalClosed.whiskerLeft_curry'_ihom_ev_app, Functor.closedUnit_app_app, MonoidalCategory.DayConvolutionInternalHom.map_comp_π, uncurry_expComparison, CartesianClosed.uncurry_natural_left, MonoidalClosed.uncurry_ihom_map, MonoidalClosed.uncurry_injective, MonoidalClosed.uncurry_id_eq_ev, ObjectProperty.ihom_map, Cat.ihom_map, Functor.ihom_coev_app, Monoidal.Reflective.instIsIsoAppUnitObjIhom, MonoidalClosed.pre_id, ModuleCat.ihom_map_apply, ModuleCat.ihom_coev_app, MonoidalClosed.curry_natural_left_assoc, CartesianClosed.uncurry_natural_right_assoc, ihom.ihom_adjunction_unit, MonoidalClosed.curry_natural_right_assoc, Functor.closedIhom_obj_obj, MonoidalClosed.comp_id_assoc, expComparison_ev, Functor.closedIhom_map_app, MonoidalClosed.uncurry_natural_left, MonoidalClosed.homEquiv_symm_apply_eq, ObjectProperty.IsMonoidalClosed.prop_ihom, LightCondensed.ihomPoints_symm_apply, exp.coev_ev_assoc, prod_map_pre_app_comp_ev, MonoidalClosed.curry'_whiskerRight_comp_assoc, MonoidalClosed.curry_injective, expComparison_iso_of_frobeniusMorphism_iso, LightCondensed.ihom_map_val_app, InternallyProjective.preserves_epi, MonoidalClosed.internalHom_obj, Rep.MonoidalClosed.linearHomEquiv_hom, MonoidalClosed.whiskerLeft_curry_ihom_ev_app, MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, ihom.ev_naturality, Pi.ihom_map, Over.sections_map, MonoidalClosed.curryHomEquiv'_symm_apply, MonoidalClosed.enrichedCategorySelf_hom, MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_map, CartesianClosed.uncurry_injective, ihom.ev_naturality_assoc, MonoidalClosed.homEquiv_apply_eq, MonoidalClosed.compTranspose_eq, ExponentialIdeal.exp_closed, Rep.ihom_coev_app_hom, MonoidalClosed.whiskerLeft_curry'_comp_assoc, Functor.closedCounit_app_app, pre_map, MonoidalClosed.pre_map, CartesianClosed.curry_natural_left, MonoidalClosed.curryHomEquiv'_apply, Pi.ihom_obj, MonoidalClosed.coev_app_comp_pre_app_assoc, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, CartesianClosed.curry_injective, MonoidalClosed.curry'_whiskerRight_comp, MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, MonoidalClosed.ofEquiv_curry_def, MonoidalClosed.enrichedOrdinaryCategorySelf_eHomWhiskerLeft, ObjectProperty.prop_ihom, MonoidalClosed.curry_natural_right, MonoidalClosed.comp_id, MonoidalClosed.leftDistrib_inv, ModuleCat.monoidalClosed_pre_app, MonoidalCategory.DayConvolutionInternalHom.coev_app_π, Rep.ihom_obj_ρ_def, MonoidalClosed.id_comp, ihom.ihom_adjunction_counit, ObjectProperty.ihom_map_hom, MonoidalCategory.DayConvolutionInternalHom.map_app_comp_π_assoc, MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_obj, toUnit_comp_curryRightUnitorHom, ihom.ev_coev, ModuleCat.ihom_ev_app, MonoidalClosed.whiskerLeft_curry_ihom_ev_app_assoc, ihom.coev_ev_assoc, MonoidalClosed.id_comp_assoc, MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app, ihom.coev_ev
tensorClosed 📖CompOp
unitClosed 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instPreservesColimitsTensorLeft 📖mathematicalLimits.PreservesColimits
MonoidalCategory.tensorLeft
Adjunction.leftAdjoint_preservesColimits

CategoryTheory.Closed

Definitions

NameCategoryTheorems
adj 📖CompOp
3 mathmath: CategoryTheory.Pi.monoidalClosed_closed_adj_counit, CategoryTheory.Pi.monoidalClosed_closed_adj_unit, CategoryTheory.Functor.monoidalClosed_closed_adj
rightAdj 📖CompOp
1 mathmath: CategoryTheory.Pi.monoidalClosed_closed_rightAdj

CategoryTheory.MonoidalClosed

Definitions

NameCategoryTheorems
closed 📖CompOp
75 mathmath: CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.hπ_assoc, Rep.MonoidalClosed.linearHomEquiv_symm_hom, LightCondensed.ihomPoints_apply, internalHomAdjunction₂_adj, enrichedOrdinaryCategorySelf_homEquiv_symm, LightCondensed.ihomPoints_symm_comp, ofEquiv_uncurry_def, ModuleCat.monoidalClosed_uncurry, CategoryTheory.Functor.closedIhom_obj_map, enrichedOrdinaryCategorySelf_eHomWhiskerRight, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.unit_app_ev_app_app_assoc, CategoryTheory.coev_expComparison, CategoryTheory.frobeniusMorphism_mate, CategoryTheory.MonoidalClosedFunctor.comparison_iso, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.unit_app_ev_app_app, Rep.ihom_ev_app_hom, Rep.MonoidalClosed.linearHomEquivComm_hom, enrichedCategorySelf_comp, CategoryTheory.Pi.monoidalClosed_closed_adj_counit, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_app_π_assoc, enrichedCategorySelf_id, Rep.homEquiv_def, CategoryTheory.Pi.closedCounit_app, ModuleCat.monoidalClosed_curry, CategoryTheory.Pi.closedUnit_app, CategoryTheory.expComparison_whiskerLeft, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.hπ, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_app_comp_π, CategoryTheory.Pi.monoidalClosed_closed_rightAdj, FGModuleCat.ihom_obj, enrichedOrdinaryCategorySelf_homEquiv, CategoryTheory.ObjectProperty.ihom_obj, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_comp_π_assoc, CategoryTheory.Functor.closedUnit_app_app, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_comp_π, CategoryTheory.uncurry_expComparison, CategoryTheory.ObjectProperty.ihom_map, CategoryTheory.Monoidal.Reflective.instIsIsoAppUnitObjIhom, ModuleCat.ihom_map_apply, ModuleCat.ihom_coev_app, CategoryTheory.Functor.closedIhom_obj_obj, CategoryTheory.expComparison_ev, CategoryTheory.Functor.closedIhom_map_app, CategoryTheory.ObjectProperty.IsMonoidalClosed.prop_ihom, LightCondensed.ihomPoints_symm_apply, CategoryTheory.Pi.monoidalClosed_closed_adj_unit, CategoryTheory.expComparison_iso_of_frobeniusMorphism_iso, LightCondensed.ihom_map_val_app, CategoryTheory.InternallyProjective.preserves_epi, internalHom_map, internalHom_obj, Rep.MonoidalClosed.linearHomEquiv_hom, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, CategoryTheory.Pi.ihom_map, enrichedCategorySelf_hom, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_map, CategoryTheory.ExponentialIdeal.exp_closed, Rep.ihom_coev_app_hom, CategoryTheory.Functor.closedCounit_app_app, CategoryTheory.Pi.ihom_obj, CategoryTheory.Functor.monoidalClosed_closed_adj, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, ofEquiv_curry_def, enrichedOrdinaryCategorySelf_eHomWhiskerLeft, CategoryTheory.ObjectProperty.prop_ihom, leftDistrib_inv, ModuleCat.monoidalClosed_pre_app, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_app_π, Rep.ihom_obj_ρ_def, CategoryTheory.ObjectProperty.ihom_map_hom, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_app_comp_π_assoc, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_obj, ModuleCat.ihom_ev_app, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app
comp 📖CompOp
13 mathmath: enrichedCategorySelf_comp, whiskerLeft_curry'_comp, assoc, assoc_assoc, comp_eq, curry'_comp, comp_id_assoc, curry'_whiskerRight_comp_assoc, whiskerLeft_curry'_comp_assoc, curry'_whiskerRight_comp, comp_id, id_comp, id_comp_assoc
compTranspose 📖CompOp
2 mathmath: comp_eq, compTranspose_eq
curry 📖CompOp
37 mathmath: CategoryTheory.CartesianClosed.curry_id_eq_coev, CategoryTheory.CartesianClosed.eq_curry_iff, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_app_π_assoc, CategoryTheory.CartesianClosed.homEquiv_apply_eq, ModuleCat.monoidalClosed_curry, CategoryTheory.CartesianClosed.curry_natural_right_assoc, CategoryTheory.CartesianClosed.curry_natural_left_assoc, CategoryTheory.CartesianClosed.curry_natural_right, id_eq, curry_id_eq_coev, CategoryTheory.CartesianClosed.curry_eq_iff, CategoryTheory.CartesianClosed.curry_eq, curry_pre_app, uncurry_curry, curry_eq, curry_natural_left, curry_pre_app_assoc, comp_eq, curry_eq_iff, eq_curry_iff, CategoryTheory.CartesianClosed.uncurry_curry, CategoryTheory.CartesianClosed.curry_uncurry, curry_natural_left_assoc, curry_natural_right_assoc, LightCondensed.ihomPoints_symm_apply, curry_injective, whiskerLeft_curry_ihom_ev_app, homEquiv_apply_eq, CategoryTheory.CartesianClosed.curry_natural_left, CategoryTheory.CartesianClosed.curry_injective, ofEquiv_curry_def, curry_natural_right, curry_uncurry, leftDistrib_inv, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_app_π, CategoryTheory.toUnit_comp_curryRightUnitorHom, whiskerLeft_curry_ihom_ev_app_assoc
curry' 📖CompOp
13 mathmath: curry'_uncurry', whiskerLeft_curry'_comp, whiskerLeft_curry'_ihom_ev_app_assoc, curry'_ihom_map, curry'_comp, enrichedOrdinaryCategorySelf_homEquiv, whiskerLeft_curry'_ihom_ev_app, curry'_whiskerRight_comp_assoc, whiskerLeft_curry'_comp_assoc, curryHomEquiv'_apply, curry'_id, curry'_whiskerRight_comp, uncurry'_curry'
curryHomEquiv' 📖CompOp
2 mathmath: curryHomEquiv'_symm_apply, curryHomEquiv'_apply
id 📖CompOp
7 mathmath: enrichedCategorySelf_id, id_eq, comp_id_assoc, curry'_id, comp_id, id_comp, id_comp_assoc
internalHom 📖CompOp
7 mathmath: internalHomAdjunction₂_adj, CategoryTheory.Functor.closedIhom_map_app, internalHom_map, internalHom_obj, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app
internalHomAdjunction₂ 📖CompOp
1 mathmath: internalHomAdjunction₂_adj
ofEquiv 📖CompOp
2 mathmath: ofEquiv_uncurry_def, ofEquiv_curry_def
pre 📖CompOp
27 mathmath: CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.hπ_assoc, CategoryTheory.Functor.closedIhom_obj_map, enrichedOrdinaryCategorySelf_eHomWhiskerRight, coev_app_comp_pre_app, uncurry_pre_app_assoc, uncurry_pre_app, CategoryTheory.coev_app_comp_pre_app, CategoryTheory.expComparison_whiskerLeft, uncurry_pre, pre_comm_ihom_map, id_tensor_pre_app_comp_ev, curry_pre_app, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.hπ, curry_pre_app_assoc, CategoryTheory.pre_id, id_tensor_pre_app_comp_ev_assoc, CategoryTheory.uncurry_pre, pre_id, CategoryTheory.prod_map_pre_app_comp_ev, curry'_whiskerRight_comp_assoc, internalHom_map, CategoryTheory.pre_map, pre_map, coev_app_comp_pre_app_assoc, curry'_whiskerRight_comp, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, ModuleCat.monoidalClosed_pre_app
uncurry 📖CompOp
36 mathmath: LightCondensed.ihomPoints_apply, ofEquiv_uncurry_def, uncurry_natural_right, ModuleCat.monoidalClosed_uncurry, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.unit_app_ev_app_app_assoc, uncurry_natural_left_assoc, uncurry_pre_app_assoc, uncurry_natural_right_assoc, CategoryTheory.CartesianClosed.eq_curry_iff, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.unit_app_ev_app_app, uncurry_pre_app, uncurry_eq, CategoryTheory.CartesianClosed.curry_eq_iff, uncurry_pre, CategoryTheory.CartesianClosed.homEquiv_symm_apply_eq, uncurry_curry, CategoryTheory.CartesianClosed.uncurry_natural_right, CategoryTheory.CartesianClosed.uncurry_eq, curry_eq_iff, eq_curry_iff, CategoryTheory.CartesianClosed.uncurry_curry, CategoryTheory.CartesianClosed.uncurry_id_eq_ev, CategoryTheory.uncurry_pre, CategoryTheory.CartesianClosed.uncurry_natural_left_assoc, CategoryTheory.uncurry_expComparison, CategoryTheory.CartesianClosed.uncurry_natural_left, uncurry_ihom_map, uncurry_injective, uncurry_id_eq_ev, CategoryTheory.CartesianClosed.curry_uncurry, CategoryTheory.CartesianClosed.uncurry_natural_right_assoc, uncurry_natural_left, homEquiv_symm_apply_eq, CategoryTheory.CartesianClosed.uncurry_injective, curry_uncurry, leftDistrib_inv
uncurry' 📖CompOp
4 mathmath: enrichedOrdinaryCategorySelf_homEquiv_symm, curry'_uncurry', curryHomEquiv'_symm_apply, uncurry'_curry'
unitIsoSelf 📖CompOp
unitNatIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
comp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
uncurry_injective
uncurry_natural_left
uncurry_curry
CategoryTheory.MonoidalCategory.associator_inv_naturality_middle_assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
uncurry_eq
CategoryTheory.MonoidalCategory.associator_inv_naturality_right_assoc
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.pentagon_inv_assoc
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.Iso.hom_inv_id_assoc
assoc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
comp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
assoc
coev_app_comp_pre_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.ihom.coev
pre
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.unit_conjugateEquiv
coev_app_comp_pre_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.ihom.coev
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
pre
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coev_app_comp_pre_app
compTranspose_eq 📖mathematicalcompTranspose
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
CategoryTheory.ihom.ev
comp_eq 📖mathematicalcomp
curry
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
compTranspose
comp_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
id
comp
CategoryTheory.CategoryStruct.id
uncurry_injective
uncurry_natural_left
comp_eq
uncurry_curry
compTranspose_eq
CategoryTheory.MonoidalCategory.associator_inv_naturality_right_assoc
CategoryTheory.MonoidalCategory.rightUnitor_tensor_inv_assoc
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
CategoryTheory.MonoidalCategory.rightUnitor_inv_naturality_assoc
uncurry_id_eq_ev
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id
comp_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
id
comp
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
comp_id
curry'_comp 📖mathematicalcurry'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
comp
CategoryTheory.MonoidalCategory.tensorHom_def_assoc
whiskerLeft_curry'_comp
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.unitors_equal
curry'_ihom_map
curry'_id 📖mathematicalcurry'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
id
CategoryTheory.Category.comp_id
curry'_ihom_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
curry'
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
curry'_injective 📖curry'Equiv.injective
curry'_uncurry' 📖mathematicalcurry'
uncurry'
CategoryTheory.Iso.hom_inv_id_assoc
curry_uncurry
curry'_whiskerRight_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerRight
curry'
comp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.NatTrans.app
pre
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
uncurry_injective
uncurry_pre
comp_eq
curry_natural_left
uncurry_curry
compTranspose_eq
CategoryTheory.MonoidalCategory.associator_inv_naturality_middle_assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
whiskerLeft_curry'_ihom_ev_app
CategoryTheory.MonoidalCategory.triangle_assoc_comp_right_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_inv_hom_assoc
curry'_whiskerRight_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerRight
curry'
comp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.NatTrans.app
pre
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
curry'_whiskerRight_comp
curryHomEquiv'_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
EquivLike.toFunLike
Equiv.instEquivLike
curryHomEquiv'
curry'
curryHomEquiv'_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
curryHomEquiv'
uncurry'
curry_eq 📖mathematicalcurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
CategoryTheory.NatTrans.app
CategoryTheory.ihom.coev
CategoryTheory.Functor.map
curry_eq_iff 📖mathematicalcurry
uncurry
CategoryTheory.Adjunction.homEquiv_apply_eq
curry_id_eq_coev 📖mathematicalcurry
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
CategoryTheory.ihom.coev
curry_eq
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
curry_injective 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
curry
Equiv.injective
curry_natural_left 📖mathematicalcurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Adjunction.homEquiv_naturality_left
curry_natural_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
curry
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
curry_natural_left
curry_natural_right 📖mathematicalcurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.map
CategoryTheory.Adjunction.homEquiv_naturality_right
curry_natural_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
curry
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
curry_natural_right
curry_pre_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
curry
CategoryTheory.NatTrans.app
pre
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
uncurry_injective
uncurry_curry
uncurry_eq
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Category.assoc
id_tensor_pre_app_comp_ev
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
whiskerLeft_curry_ihom_ev_app
curry_pre_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
curry
CategoryTheory.NatTrans.app
pre
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
curry_pre_app
curry_uncurry 📖mathematicalcurry
uncurry
Equiv.right_inv
eq_curry_iff 📖mathematicalcurry
uncurry
CategoryTheory.Adjunction.eq_homEquiv_apply
homEquiv_apply_eq 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
CategoryTheory.ihom.adjunction
curry
homEquiv_symm_apply_eq 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategory.tensorLeft
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.ihom.adjunction
uncurry
id_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
id
comp
CategoryTheory.CategoryStruct.id
uncurry_injective
uncurry_natural_left
comp_eq
uncurry_curry
id_eq
compTranspose_eq
CategoryTheory.MonoidalCategory.associator_inv_naturality_middle_assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
uncurry_eq
CategoryTheory.MonoidalCategory.triangle_assoc_comp_right_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_inv_hom_assoc
uncurry_id_eq_ev
id_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
id
comp
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
id_comp
id_eq 📖mathematicalid
curry
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.rightUnitor
id_tensor_pre_app_comp_ev 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
pre
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom.ev
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.conjugateEquiv_counit
id_tensor_pre_app_comp_ev_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
pre
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.id
CategoryTheory.ihom.ev
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
id_tensor_pre_app_comp_ev
internalHomAdjunction₂_adj 📖mathematicalCategoryTheory.ParametrizedAdjunction.adj
CategoryTheory.MonoidalCategory.curriedTensor
internalHom
internalHomAdjunction₂
CategoryTheory.ihom.adjunction
closed
internalHom_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
internalHom
pre
Opposite.unop
closed
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
internalHom_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
internalHom
CategoryTheory.ihom
Opposite.unop
closed
ofEquiv_curry_def 📖mathematicalcurry
closed
ofEquiv
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
CategoryTheory.Adjunction.toEquivalence
CategoryTheory.Adjunction.instIsIsoAppUnitOfFullOfFaithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
CategoryTheory.Adjunction.instIsIsoFunctorCounitOfIsEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.toAdjunction
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.compInverseIso
CategoryTheory.Functor.Monoidal.commTensorLeft
CategoryTheory.Adjunction.instIsIsoAppUnitOfFullOfFaithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.Adjunction.instIsIsoFunctorCounitOfIsEquivalence
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
CategoryTheory.Adjunction.comp_homEquiv
ofEquiv_uncurry_def 📖mathematicaluncurry
closed
ofEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Adjunction.toEquivalence
CategoryTheory.Adjunction.instIsIsoAppUnitOfFullOfFaithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
CategoryTheory.Adjunction.instIsIsoFunctorCounitOfIsEquivalence
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.compInverseIso
CategoryTheory.Functor.Monoidal.commTensorLeft
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.functor
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Equivalence.toAdjunction
CategoryTheory.ihom
CategoryTheory.Adjunction.instIsIsoAppUnitOfFullOfFaithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.Adjunction.instIsIsoFunctorCounitOfIsEquivalence
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
CategoryTheory.Adjunction.comp_homEquiv
pre_comm_ihom_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.NatTrans.app
pre
CategoryTheory.Functor.map
CategoryTheory.NatTrans.naturality
pre_id 📖mathematicalpre
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.ihom
pre.eq_1
CategoryTheory.Functor.map_id
CategoryTheory.conjugateEquiv_id
pre_map 📖mathematicalpre
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.ihom
pre.eq_1
CategoryTheory.conjugateEquiv_comp
CategoryTheory.Functor.map_comp
uncurry'_curry' 📖mathematicaluncurry'
curry'
uncurry_curry
CategoryTheory.Iso.inv_hom_id_assoc
uncurry'_injective 📖uncurry'Equiv.injective
uncurry_curry 📖mathematicaluncurry
curry
Equiv.left_inv
uncurry_eq 📖mathematicaluncurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom.ev
uncurry_id_eq_ev 📖mathematicaluncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.id
CategoryTheory.ihom.ev
uncurry_eq
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.id_comp
uncurry_ihom_map 📖mathematicaluncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.ihom.ev
curry_injective
curry_uncurry
curry_natural_right
uncurry_id_eq_ev
CategoryTheory.Category.id_comp
uncurry_injective 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
uncurry
Equiv.injective
uncurry_natural_left 📖mathematicaluncurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Adjunction.homEquiv_naturality_left_symm
uncurry_natural_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
uncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
uncurry_natural_left
uncurry_natural_right 📖mathematicaluncurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Adjunction.homEquiv_naturality_right_symm
uncurry_natural_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
uncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
uncurry_natural_right
uncurry_pre 📖mathematicaluncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.NatTrans.app
pre
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom.ev
uncurry_eq
id_tensor_pre_app_comp_ev
uncurry_pre_app 📖mathematicaluncurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.NatTrans.app
pre
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
curry_injective
curry_uncurry
curry_pre_app
uncurry_pre_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
uncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.NatTrans.app
pre
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
uncurry_pre_app
whiskerLeft_curry'_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
curry'
comp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
uncurry_injective
uncurry_ihom_map
comp_eq
curry_natural_left
uncurry_curry
compTranspose_eq
CategoryTheory.MonoidalCategory.associator_inv_naturality_right_assoc
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
whiskerLeft_curry'_ihom_ev_app
CategoryTheory.MonoidalCategory.whiskerLeft_rightUnitor_inv
CategoryTheory.MonoidalCategory.whiskerRight_id_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
whiskerLeft_curry'_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
curry'
comp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_curry'_comp
whiskerLeft_curry'_ihom_ev_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
curry'
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom.ev
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
whiskerLeft_curry_ihom_ev_app
whiskerLeft_curry'_ihom_ev_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
curry'
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.id
CategoryTheory.ihom.ev
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_curry'_ihom_ev_app
whiskerLeft_curry_ihom_ev_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
curry
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom.ev
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Category.assoc
CategoryTheory.ihom.ev_naturality
CategoryTheory.ihom.ev_coev_assoc
whiskerLeft_curry_ihom_ev_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
curry
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.id
CategoryTheory.ihom.ev
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_curry_ihom_ev_app

CategoryTheory.ihom

Definitions

NameCategoryTheorems
adjunction 📖CompOp
9 mathmath: CategoryTheory.MonoidalClosed.internalHomAdjunction₂_adj, CategoryTheory.frobeniusMorphism_mate, CategoryTheory.CartesianClosed.homEquiv_apply_eq, Rep.homEquiv_def, CategoryTheory.CartesianClosed.homEquiv_symm_apply_eq, ihom_adjunction_unit, CategoryTheory.MonoidalClosed.homEquiv_symm_apply_eq, CategoryTheory.MonoidalClosed.homEquiv_apply_eq, ihom_adjunction_counit
coev 📖CompOp
24 mathmath: coev_naturality, CategoryTheory.MonoidalClosed.coev_app_comp_pre_app, CategoryTheory.CartesianClosed.curry_id_eq_coev, CategoryTheory.coev_expComparison, CategoryTheory.exp.coev_ev, ev_coev_assoc, CategoryTheory.Pi.closedUnit_app, CategoryTheory.coev_app_comp_pre_app, CategoryTheory.MonoidalClosed.curry_id_eq_coev, CategoryTheory.CartesianClosed.curry_eq, CategoryTheory.MonoidalClosed.curry_eq, CategoryTheory.exp.ev_coev, coev_naturality_assoc, CategoryTheory.exp.ev_coev_assoc, CategoryTheory.Functor.closedUnit_app_app, CategoryTheory.Functor.ihom_coev_app, ModuleCat.ihom_coev_app, ihom_adjunction_unit, CategoryTheory.exp.coev_ev_assoc, Rep.ihom_coev_app_hom, CategoryTheory.MonoidalClosed.coev_app_comp_pre_app_assoc, ev_coev, coev_ev_assoc, coev_ev
ev 📖CompOp
33 mathmath: CategoryTheory.exp.coev_ev, ev_coev_assoc, Rep.ihom_ev_app_hom, CategoryTheory.MonoidalClosed.uncurry_eq, CategoryTheory.MonoidalClosed.whiskerLeft_curry'_ihom_ev_app_assoc, CategoryTheory.Pi.closedCounit_app, CategoryTheory.Functor.ihom_ev_app, CategoryTheory.MonoidalClosed.uncurry_pre, CategoryTheory.MonoidalClosed.id_tensor_pre_app_comp_ev, CategoryTheory.CartesianClosed.uncurry_eq, CategoryTheory.exp.ev_coev, CategoryTheory.CartesianClosed.uncurry_id_eq_ev, CategoryTheory.MonoidalClosed.id_tensor_pre_app_comp_ev_assoc, CategoryTheory.uncurry_pre, CategoryTheory.exp.ev_coev_assoc, CategoryTheory.MonoidalClosed.whiskerLeft_curry'_ihom_ev_app, CategoryTheory.uncurry_expComparison, CategoryTheory.MonoidalClosed.uncurry_ihom_map, CategoryTheory.MonoidalClosed.uncurry_id_eq_ev, CategoryTheory.expComparison_ev, CategoryTheory.exp.coev_ev_assoc, CategoryTheory.prod_map_pre_app_comp_ev, CategoryTheory.MonoidalClosed.whiskerLeft_curry_ihom_ev_app, ev_naturality, ev_naturality_assoc, CategoryTheory.MonoidalClosed.compTranspose_eq, CategoryTheory.Functor.closedCounit_app_app, ihom_adjunction_counit, ev_coev, ModuleCat.ihom_ev_app, CategoryTheory.MonoidalClosed.whiskerLeft_curry_ihom_ev_app_assoc, coev_ev_assoc, coev_ev
«term_⟶[_]_» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coev_ev 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.ihom
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
coev
CategoryTheory.Functor.map
ev
CategoryTheory.CategoryStruct.id
CategoryTheory.Adjunction.right_triangle_components
coev_ev_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
coev
CategoryTheory.Functor.map
ev
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
coev_ev
coev_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
coev
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.naturality
coev_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
coev
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coev_naturality
ev_coev 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
coev
ev
CategoryTheory.CategoryStruct.id
CategoryTheory.Adjunction.left_triangle_components
ev_coev_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
coev
ev
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ev_coev
ev_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
ev
CategoryTheory.NatTrans.naturality
ev_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.id
ev
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ev_naturality
ihom_adjunction_counit 📖mathematicalCategoryTheory.Adjunction.counit
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
adjunction
ev
ihom_adjunction_unit 📖mathematicalCategoryTheory.Adjunction.unit
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
adjunction
coev
instIsLeftAdjointTensorLeft 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Adjunction.isLeftAdjoint

---

← Back to Index