Documentation Verification Report

Cartesian

πŸ“ Source: Mathlib/CategoryTheory/Monoidal/Closed/Cartesian.lean

Statistics

MetricCount
Definitionscurry, delabFunctorObjExp, mk, uncurry, «term_^^_», «term_⟹_», Exponentiable, mk, binaryProductExponentiable, cartesianClosedOfEquiv, exp, adjunction, coev, ev, expUnitIsoSelf, expUnitNatIso, internalHom, internalizeHom, mulZero, powZero, pre, prodCoprodDistrib, terminalExponentiable, zeroMul
24
Theoremscurry_eq, curry_eq_iff, curry_id_eq_coev, curry_injective, curry_natural_left, curry_natural_left_assoc, curry_natural_right, curry_natural_right_assoc, curry_uncurry, eq_curry_iff, homEquiv_apply_eq, homEquiv_symm_apply_eq, uncurry_curry, uncurry_eq, uncurry_id_eq_ev, uncurry_injective, uncurry_natural_left, uncurry_natural_left_assoc, uncurry_natural_right, uncurry_natural_right_assoc, isLeftAdjoint_prod_functor, mono_to, coev_app_comp_pre_app, coev_ev, coev_ev_assoc, ev_coev, ev_coev_assoc, initial_mono, pre_id, pre_map, prod_map_pre_app_comp_ev, strict_initial, to_initial_isIso, uncurry_pre, zeroMul_hom, zeroMul_inv
36
Total60

CategoryTheory

Definitions

NameCategoryTheorems
Exponentiable πŸ“–CompOpβ€”
binaryProductExponentiable πŸ“–CompOpβ€”
cartesianClosedOfEquiv πŸ“–CompOpβ€”
exp πŸ“–CompOpβ€”
expUnitIsoSelf πŸ“–CompOpβ€”
expUnitNatIso πŸ“–CompOpβ€”
internalHom πŸ“–CompOpβ€”
internalizeHom πŸ“–CompOpβ€”
mulZero πŸ“–CompOpβ€”
powZero πŸ“–CompOpβ€”
pre πŸ“–CompOpβ€”
prodCoprodDistrib πŸ“–CompOpβ€”
terminalExponentiable πŸ“–CompOpβ€”
zeroMul πŸ“–CompOp
2 mathmath: zeroMul_hom, zeroMul_inv

Theorems

NameKindAssumesProvesValidatesDepends On
coev_app_comp_pre_app πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.id
Functor.comp
MonoidalCategory.tensorLeft
ihom
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
NatTrans.app
ihom.coev
MonoidalClosed.pre
Functor.map
MonoidalCategoryStruct.whiskerRight
β€”MonoidalClosed.coev_app_comp_pre_app
initial_mono πŸ“–mathematicalβ€”Mono
Limits.IsInitial.to
β€”eq_of_inv_eq_inv
strict_initial
Limits.IsInitial.hom_ext
pre_id πŸ“–mathematicalβ€”MonoidalClosed.pre
CategoryStruct.id
Category.toCategoryStruct
Functor
Functor.category
ihom
β€”MonoidalClosed.pre_id
pre_map πŸ“–mathematicalβ€”MonoidalClosed.pre
CategoryStruct.comp
Category.toCategoryStruct
Functor
Functor.category
ihom
β€”MonoidalClosed.pre_map
prod_map_pre_app_comp_ev πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Functor.obj
ihom
Functor.id
MonoidalCategoryStruct.whiskerLeft
NatTrans.app
MonoidalClosed.pre
Functor.comp
MonoidalCategory.tensorLeft
ihom.ev
MonoidalCategoryStruct.whiskerRight
β€”MonoidalClosed.id_tensor_pre_app_comp_ev
strict_initial πŸ“–mathematicalβ€”IsIsoβ€”isIso_of_mono_of_isSplitEpi
CartesianMonoidalCategory.lift_snd
zeroMul_hom
mono_comp
CartesianMonoidalCategory.mono_lift_of_mono_left
instMonoId
mono_of_strongMono
strongMono_of_isIso
Iso.isIso_hom
IsSplitEpi.mk'
Limits.IsInitial.hom_ext
to_initial_isIso πŸ“–mathematicalβ€”IsIso
Limits.initial
β€”strict_initial
uncurry_pre πŸ“–mathematicalβ€”MonoidalClosed.uncurry
Functor.obj
ihom
NatTrans.app
MonoidalClosed.pre
CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Functor.id
MonoidalCategoryStruct.whiskerRight
Functor.comp
MonoidalCategory.tensorLeft
ihom.ev
β€”MonoidalClosed.uncurry_pre
zeroMul_hom πŸ“–mathematicalβ€”Iso.hom
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
zeroMul
SemiCartesianMonoidalCategory.snd
β€”β€”
zeroMul_inv πŸ“–mathematicalβ€”Iso.inv
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
zeroMul
Limits.IsInitial.to
β€”β€”

CategoryTheory.CartesianClosed

Definitions

NameCategoryTheorems
curry πŸ“–CompOpβ€”
delabFunctorObjExp πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
uncurry πŸ“–CompOpβ€”
Β«term_^^_Β» πŸ“–CompOpβ€”
Β«term_⟹_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
curry_eq πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.curry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
CategoryTheory.NatTrans.app
CategoryTheory.ihom.coev
CategoryTheory.Functor.map
β€”CategoryTheory.MonoidalClosed.curry_eq
curry_eq_iff πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.curry
CategoryTheory.MonoidalClosed.uncurry
β€”CategoryTheory.MonoidalClosed.curry_eq_iff
curry_id_eq_coev πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.curry
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
CategoryTheory.ihom.coev
β€”CategoryTheory.MonoidalClosed.curry_id_eq_coev
curry_injective πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.curry
β€”CategoryTheory.MonoidalClosed.curry_injective
curry_natural_left πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.curry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.obj
CategoryTheory.ihom
β€”CategoryTheory.MonoidalClosed.curry_natural_left
curry_natural_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.curry
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.MonoidalClosed.curry_natural_left_assoc
curry_natural_right πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.curry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.map
β€”CategoryTheory.MonoidalClosed.curry_natural_right
curry_natural_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.curry
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
β€”CategoryTheory.MonoidalClosed.curry_natural_right_assoc
curry_uncurry πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.curry
CategoryTheory.MonoidalClosed.uncurry
β€”CategoryTheory.MonoidalClosed.curry_uncurry
eq_curry_iff πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.curry
CategoryTheory.MonoidalClosed.uncurry
β€”CategoryTheory.MonoidalClosed.eq_curry_iff
homEquiv_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
CategoryTheory.ihom.adjunction
CategoryTheory.MonoidalClosed.curry
β€”CategoryTheory.MonoidalClosed.homEquiv_apply_eq
homEquiv_symm_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategory.tensorLeft
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.ihom.adjunction
CategoryTheory.MonoidalClosed.uncurry
β€”CategoryTheory.MonoidalClosed.homEquiv_symm_apply_eq
uncurry_curry πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.MonoidalClosed.curry
β€”CategoryTheory.MonoidalClosed.uncurry_curry
uncurry_eq πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom.ev
β€”CategoryTheory.MonoidalClosed.uncurry_eq
uncurry_id_eq_ev πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.id
CategoryTheory.ihom.ev
β€”CategoryTheory.MonoidalClosed.uncurry_id_eq_ev
uncurry_injective πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalClosed.uncurry
β€”CategoryTheory.MonoidalClosed.uncurry_injective
uncurry_natural_left πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.MonoidalClosed.uncurry_natural_left
uncurry_natural_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.MonoidalClosed.uncurry_natural_left_assoc
uncurry_natural_right πŸ“–mathematicalβ€”CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”CategoryTheory.MonoidalClosed.uncurry_natural_right
uncurry_natural_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.Functor.map
β€”CategoryTheory.MonoidalClosed.uncurry_natural_right_assoc

CategoryTheory.CartesianMonoidalCategory

Theorems

NameKindAssumesProvesValidatesDepends On
isLeftAdjoint_prod_functor πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.prod.functor
CategoryTheory.Limits.hasLimitsOfShape_discrete
instHasFiniteProducts
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
β€”CategoryTheory.Functor.isLeftAdjoint_of_iso
CategoryTheory.Limits.hasLimitsOfShape_discrete
instHasFiniteProducts
Finite.of_fintype
CategoryTheory.ihom.instIsLeftAdjointTensorLeft

CategoryTheory.Exponentiable

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

CategoryTheory.Initial

Theorems

NameKindAssumesProvesValidatesDepends On
mono_to πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Limits.initial
CategoryTheory.Limits.initial.to
β€”CategoryTheory.initial_mono

CategoryTheory.exp

Definitions

NameCategoryTheorems
adjunction πŸ“–CompOpβ€”
coev πŸ“–CompOpβ€”
ev πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coev_ev πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.ihom
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
CategoryTheory.ihom.coev
CategoryTheory.Functor.map
CategoryTheory.ihom.ev
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.ihom.coev_ev
coev_ev_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.ihom.coev
CategoryTheory.Functor.map
CategoryTheory.ihom.ev
β€”CategoryTheory.ihom.coev_ev_assoc
ev_coev πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.ihom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
CategoryTheory.ihom.coev
CategoryTheory.ihom.ev
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.ihom.ev_coev
ev_coev_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.ihom.coev
CategoryTheory.ihom.ev
β€”CategoryTheory.ihom.ev_coev_assoc

---

← Back to Index