Documentation Verification Report

Enrichment

📁 Source: Mathlib/CategoryTheory/Monoidal/Closed/Enrichment.lean

Statistics

MetricCount
DefinitionsenrichedCategorySelf, enrichedOrdinaryCategorySelf
2
TheoremsenrichedCategorySelf_comp, enrichedCategorySelf_hom, enrichedCategorySelf_id, enrichedOrdinaryCategorySelf_eHomWhiskerLeft, enrichedOrdinaryCategorySelf_eHomWhiskerRight, enrichedOrdinaryCategorySelf_homEquiv, enrichedOrdinaryCategorySelf_homEquiv_symm
7
Total9

CategoryTheory.MonoidalClosed

Definitions

NameCategoryTheorems
enrichedCategorySelf 📖CompOp
3 mathmath: enrichedCategorySelf_comp, enrichedCategorySelf_id, enrichedCategorySelf_hom
enrichedOrdinaryCategorySelf 📖CompOp
4 mathmath: enrichedOrdinaryCategorySelf_homEquiv_symm, enrichedOrdinaryCategorySelf_eHomWhiskerRight, enrichedOrdinaryCategorySelf_homEquiv, enrichedOrdinaryCategorySelf_eHomWhiskerLeft

Theorems

NameKindAssumesProvesValidatesDepends On
enrichedCategorySelf_comp 📖mathematicalCategoryTheory.eComp
enrichedCategorySelf
comp
closed
enrichedCategorySelf_hom 📖mathematicalCategoryTheory.EnrichedCategory.Hom
enrichedCategorySelf
CategoryTheory.Functor.obj
CategoryTheory.ihom
closed
enrichedCategorySelf_id 📖mathematicalCategoryTheory.eId
enrichedCategorySelf
id
closed
enrichedOrdinaryCategorySelf_eHomWhiskerLeft 📖mathematicalCategoryTheory.eHomWhiskerLeft
enrichedOrdinaryCategorySelf
CategoryTheory.Functor.map
CategoryTheory.ihom
closed
whiskerLeft_curry'_comp
CategoryTheory.Iso.inv_hom_id_assoc
enrichedOrdinaryCategorySelf_eHomWhiskerRight 📖mathematicalCategoryTheory.eHomWhiskerRight
enrichedOrdinaryCategorySelf
CategoryTheory.NatTrans.app
CategoryTheory.ihom
closed
pre
curry'_whiskerRight_comp
CategoryTheory.Iso.inv_hom_id_assoc
enrichedOrdinaryCategorySelf_homEquiv 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
enrichedOrdinaryCategorySelf
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.eHomEquiv
curry'
closed
enrichedOrdinaryCategorySelf_homEquiv_symm 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
enrichedOrdinaryCategorySelf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.eHomEquiv
uncurry'
closed

---

← Back to Index