Documentation Verification Report

Ideal

📁 Source: Mathlib/CategoryTheory/Monoidal/Closed/Ideal.lean

Statistics

MetricCount
DefinitionsofReflective, ExponentialIdeal, bijection, cartesianClosedOfReflective, cartesianClosedOfReflective', exponentialIdealReflective
6
Theoremsexp_closed, mk', mk_of_iso, of_exponentialIdeal, bijection_natural, bijection_symm_apply_id, exponentialIdeal_of_preservesBinaryProducts, instExponentialIdealId, instExponentialIdealSubterminalsSubterminalInclusion, preservesBinaryProducts_of_exponentialIdeal, prodComparison_iso, reflective_products
12
Total18

CategoryTheory

Definitions

NameCategoryTheorems
ExponentialIdeal 📖CompData
5 mathmath: ExponentialIdeal.mk', instExponentialIdealSubterminalsSubterminalInclusion, instExponentialIdealId, exponentialIdeal_of_preservesBinaryProducts, ExponentialIdeal.mk_of_iso
bijection 📖CompOp
2 mathmath: bijection_natural, bijection_symm_apply_id
cartesianClosedOfReflective 📖CompOp
cartesianClosedOfReflective' 📖CompOp
exponentialIdealReflective 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
bijection_natural 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
reflector
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
EquivLike.toFunLike
Equiv.instEquivLike
bijection
CategoryStruct.comp
MonoidalClosed.homEquiv_symm_apply_eq
MonoidalClosed.homEquiv_apply_eq
Functor.map_injective
Reflective.toFaithful
Functor.FullyFaithful.map_preimage
Functor.map_comp
Adjunction.homEquiv_unit
Category.comp_id
Category.assoc
MonoidalClosed.curry_natural_right
unitCompPartialBijective_natural
MonoidalClosed.uncurry_natural_right
bijection_symm_apply_id 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Functor.obj
reflector
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
bijection
CategoryStruct.id
CartesianMonoidalCategory.prodComparison
Functor.map_id
Category.comp_id
unitCompPartialBijective_symm_apply
MonoidalClosed.homEquiv_symm_apply_eq
MonoidalClosed.homEquiv_apply_eq
MonoidalClosed.uncurry_natural_left
MonoidalClosed.uncurry_curry
BraidedCategory.braiding_naturality_left_assoc
SymmetricCategory.symmetry_assoc
MonoidalCategory.whisker_exchange_assoc
MonoidalCategory.tensorHom_def'_assoc
Adjunction.homEquiv_symm_apply
Adjunction.eq_unit_comp_map_iff
Iso.comp_inv_eq
Category.assoc
Limits.PreservesLimitsOfShape.preservesLimit
Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
instIsRightAdjointOfMonadicRightAdjoint
CartesianMonoidalCategory.prodComparisonIso_hom
CartesianMonoidalCategory.hom_ext
CartesianMonoidalCategory.tensorHom_fst
CartesianMonoidalCategory.prodComparison_fst
Functor.map_comp
NatTrans.naturality
CartesianMonoidalCategory.tensorHom_snd
CartesianMonoidalCategory.prodComparison_snd
exponentialIdeal_of_preservesBinaryProducts 📖mathematicalExponentialIdealExponentialIdeal.mk'
CartesianMonoidalCategory.isIso_prodComparison_of_preservesLimit_pair
Limits.PreservesLimitsOfShape.preservesLimit
MonoidalClosed.curry_natural_left
MonoidalClosed.curry_eq_iff
MonoidalClosed.uncurry_id_eq_ev
Adjunction.homEquiv_naturality_left
Adjunction.homEquiv_apply_eq
Category.assoc
CartesianMonoidalCategory.prodComparison_natural_whiskerLeft_assoc
MonoidalCategory.whiskerLeft_comp_assoc
Adjunction.left_triangle_components
MonoidalCategory.whiskerLeft_id
Category.id_comp
IsIso.hom_inv_id_assoc
mem_essImage_of_unit_isSplitMono
IsSplitMono.mk'
instExponentialIdealId 📖mathematicalExponentialIdeal
Functor.id
ExponentialIdeal.mk'
instExponentialIdealSubterminalsSubterminalInclusion 📖mathematicalExponentialIdeal
Subterminals
instCategorySubterminals
subterminalInclusion
ExponentialIdeal.mk'
MonoidalClosed.uncurry_injective
ObjectProperty.FullSubcategory.property
preservesBinaryProducts_of_exponentialIdeal 📖mathematicalLimits.PreservesLimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
reflector
Limits.preservesLimit_of_iso_diagram
CartesianMonoidalCategory.preservesLimit_pair_of_isIso_prodComparison
prodComparison_iso
prodComparison_iso 📖mathematicalIsIso
Functor.obj
reflector
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CartesianMonoidalCategory.prodComparison
Equiv.injective
bijection_natural
bijection_symm_apply_id
Equiv.apply_symm_apply
Category.id_comp
reflective_products 📖mathematicalLimits.HasFiniteProductshasLimitsOfShape_of_reflective
Limits.hasLimitsOfShape_discrete
Finite.of_fintype

CategoryTheory.CartesianMonoidalCategory

Definitions

NameCategoryTheorems
ofReflective 📖CompOp

CategoryTheory.ExponentialIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
exp_closed 📖mathematicalCategoryTheory.Functor.essImageCategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalClosed.closed
mk' 📖mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalClosed.closed
CategoryTheory.ExponentialIdealCategoryTheory.Functor.essImage.ofIso
mk_of_iso 📖mathematicalCategoryTheory.ExponentialIdealmk'

CategoryTheory.Limits.PreservesFiniteProducts

Theorems

NameKindAssumesProvesValidatesDepends On
of_exponentialIdeal 📖mathematicalCategoryTheory.Limits.PreservesFiniteProducts
CategoryTheory.reflector
CategoryTheory.preservesBinaryProducts_of_exponentialIdeal
CategoryTheory.leftAdjoint_preservesTerminal_of_reflective
of_preserves_binary_and_terminal
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts

---

← Back to Index