Documentation Verification Report

CommComon_

šŸ“ Source: Mathlib/CategoryTheory/Monoidal/CommComon_.lean

Statistics

MetricCount
DefinitionsCommComon, X, comon, forgetā‚‚Comon, instCategory, instInhabited, toComon, trivial
8
Theoremscomm, comp_hom, forgetā‚‚Comon_map, forgetā‚‚Comon_obj_X, forgetā‚‚Comon_obj_comon, hom_ext, hom_ext_iff, id_hom, instCommComonObjUnit, toComon_X, trivial_X, trivial_comon_comul, trivial_comon_counit
13
Total21

CategoryTheory

Definitions

NameCategoryTheorems
CommComon šŸ“–CompData
6 mathmath: CommComon.comp_hom, CommComon.forgetā‚‚Comon_map, CommComon.hom_ext_iff, CommComon.id_hom, CommComon.forgetā‚‚Comon_obj_comon, CommComon.forgetā‚‚Comon_obj_X

CategoryTheory.CommComon

Definitions

NameCategoryTheorems
X šŸ“–CompOp
5 mathmath: comm, toComon_X, trivial_X, id_hom, forgetā‚‚Comon_obj_X
comon šŸ“–CompOp
4 mathmath: trivial_comon_comul, comm, trivial_comon_counit, forgetā‚‚Comon_obj_comon
forgetā‚‚Comon šŸ“–CompOp
3 mathmath: forgetā‚‚Comon_map, forgetā‚‚Comon_obj_comon, forgetā‚‚Comon_obj_X
instCategory šŸ“–CompOp
5 mathmath: comp_hom, forgetā‚‚Comon_map, id_hom, forgetā‚‚Comon_obj_comon, forgetā‚‚Comon_obj_X
instInhabited šŸ“–CompOp—
toComon šŸ“–CompOp
5 mathmath: comp_hom, forgetā‚‚Comon_map, toComon_X, hom_ext_iff, id_hom
trivial šŸ“–CompOp
3 mathmath: trivial_comon_comul, trivial_comon_counit, trivial_X

Theorems

NameKindAssumesProvesValidatesDepends On
comm šŸ“–mathematical—CategoryTheory.IsCommComonObj
X
comon
——
comp_hom šŸ“–mathematical—CategoryTheory.Comon.Hom.hom
toComon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommComon
CategoryTheory.Comon
CategoryTheory.Comon.instCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Comon.X
——
forgetā‚‚Comon_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.CommComon
instCategory
CategoryTheory.Comon
CategoryTheory.Comon.instCategory
forgetā‚‚Comon
CategoryTheory.InducedCategory.Hom.hom
toComon
——
forgetā‚‚Comon_obj_X šŸ“–mathematical—CategoryTheory.Comon.X
CategoryTheory.Functor.obj
CategoryTheory.CommComon
instCategory
CategoryTheory.Comon
CategoryTheory.Comon.instCategory
forgetā‚‚Comon
X
——
forgetā‚‚Comon_obj_comon šŸ“–mathematical—CategoryTheory.Comon.comon
CategoryTheory.Functor.obj
CategoryTheory.CommComon
instCategory
CategoryTheory.Comon
CategoryTheory.Comon.instCategory
forgetā‚‚Comon
comon
——
hom_ext šŸ“–ā€”CategoryTheory.Comon.Hom.hom
toComon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommComon
CategoryTheory.Comon
CategoryTheory.Comon.instCategory
——CategoryTheory.InducedCategory.hom_ext
CategoryTheory.Comon.Hom.ext
hom_ext_iff šŸ“–mathematical—CategoryTheory.Comon.Hom.hom
toComon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommComon
CategoryTheory.Comon
CategoryTheory.Comon.instCategory
—hom_ext
id_hom šŸ“–mathematical—CategoryTheory.Comon.Hom.hom
toComon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommComon
CategoryTheory.Comon
CategoryTheory.Comon.instCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instCategory
X
——
instCommComonObjUnit šŸ“–mathematical—CategoryTheory.IsCommComonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.ComonObj.instTensorUnit
—CategoryTheory.braiding_tensorUnit_right
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
toComon_X šŸ“–mathematical—CategoryTheory.Comon.X
toComon
X
——
trivial_X šŸ“–mathematical—X
trivial
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
——
trivial_comon_comul šŸ“–mathematical—CategoryTheory.ComonObj.comul
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
comon
trivial
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
——
trivial_comon_counit šŸ“–mathematical—CategoryTheory.ComonObj.counit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
comon
trivial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——

---

← Back to Index