Documentation Verification Report

CommGrp_

📁 Source: Mathlib/CategoryTheory/Monoidal/CommGrp_.lean

Statistics

MetricCount
DefinitionsmapCommGrp, CommGrp, X, forget, forget₂CommMon, forget₂CommMon_, forget₂Grp, forget₂Grp_, fullyFaithfulForget₂CommMon, fullyFaithfulForget₂Grp, fullyFaithfulForget₂Grp_, grp, instCategory, instInhabited, mkIso, mkIso', toCommMon, toCommMon_, toGrp, toGrp_, toMon, toMon_, trivial, uniqueHomFromTrivial, mapCommGrp, mapCommGrp, mapCommGrp, mapCommGrpCompIso, mapCommGrpFunctor, mapCommGrpIdIso, mapCommGrpNatIso, mapCommGrpNatTrans
32
TheoremsmapCommGrp_counit, mapCommGrp_unit, comm, comp', comp_hom, forget_map, forget_obj, forget₂CommMon_comp_forget, forget₂CommMon_map_hom, forget₂CommMon_obj_mul, forget₂CommMon_obj_one, forget₂Grp_comp_forget, forget₂Grp_map_hom, forget₂Grp_obj_X, forget₂Grp_obj_mul, forget₂Grp_obj_one, hom_ext, hom_ext_iff, id', id_hom, instFaithfulCommMonForget₂CommMon, instFaithfulForget, instFaithfulGrpForget₂Grp, instFullCommMonForget₂CommMon, instFullGrpForget₂Grp, instHasInitial, instIsIsoGrpHom, instIsIsoMonHomGrp, mkIso'_hom_hom_hom_hom, mkIso'_inv_hom_hom_hom, mkIso_hom_hom, mkIso_hom_hom_hom_hom, mkIso_inv_hom, mkIso_inv_hom_hom_hom, toCommMon_X, toGrp_X, trivial_X, trivial_grp_inv, trivial_grp_mul, trivial_grp_one, mapCommGrp_counitIso, mapCommGrp_functor, mapCommGrp_inverse, mapCommGrp_unitIso, mapCommGrp, mapCommGrp, mapCommGrp_preimage, comp_mapCommGrp_mul, comp_mapCommGrp_one, mapCommGrpCompIso_hom_app_hom_hom_hom, mapCommGrpCompIso_inv_app_hom_hom_hom, mapCommGrpFunctor_map, mapCommGrpFunctor_obj, mapCommGrpIdIso_hom_app_hom_hom_hom, mapCommGrpIdIso_inv_app_hom_hom_hom, mapCommGrpNatIso_hom_app_hom_hom_hom, mapCommGrpNatIso_inv_app_hom_hom_hom, mapCommGrpNatTrans_app_hom_hom_hom, mapCommGrp_id_one, mapCommGrp_map_hom_hom_hom, mapCommGrp_obj_X, mapCommGrp_obj_grp_inv, mapCommGrp_obj_grp_mul, mapCommGrp_obj_grp_one, mapCommpGrp_id_mul
65
Total97

CategoryTheory

Definitions

NameCategoryTheorems
CommGrp 📖CompData
79 mathmath: CommGrp.instFullCommMonForget₂CommMon, Preadditive.commGrpEquivalence_functor_obj_grp_one, Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, Functor.mapCommGrp_obj_grp_one, Preadditive.toCommGrp_map, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CommGrp.mkIso_inv_hom, CommGrp.id', CommGrp.comp', CommGrp.comp_hom, Preadditive.commGrpEquivalence_unitIso_inv_app, CommGrp.instFaithfulGrpForget₂Grp, Preadditive.commGrpEquivalence_unitIso_hom_app, Preadditive.commGrpEquivalence_functor_obj_grp_mul, CommGrp.instFaithfulForget, Functor.mapCommGrpFunctor_obj, Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_X, Adjunction.mapCommGrp_unit, Functor.Full.mapCommGrp, Preadditive.commGrpEquivalence_functor_obj_grp_inv, CommGrp.instIsIsoMonHomGrp, Equivalence.mapCommGrp_functor, Functor.mapCommGrp_obj_X, CommGrp.forget₂CommMon_map_hom, CommGrp.forget₂Grp_obj_mul, Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, Preadditive.commGrpEquivalence_functor_obj_X, CommGrp.forget₂Grp_obj_X, Equivalence.mapCommGrp_unitIso, Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, CommGrp.instFaithfulCommMonForget₂CommMon, CommGrp.hom_ext_iff, Functor.comp_mapCommGrp_mul, CommGrp.mkIso_inv_hom_hom_hom, CommGrp.mkIso'_inv_hom_hom_hom, yonedaCommGrpGrp_obj, CommGrp.forget₂Grp_obj_one, Functor.mapCommGrp_id_one, CommGrp.forget₂Grp_comp_forget, Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CommGrp.forget₂Grp_map_hom, CommGrp.forget₂CommMon_obj_mul, Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CommGrp.mkIso_hom_hom, Preadditive.toCommGrp_obj_grp, CommGrpTypeEquivalenceCommGrp.inverse_obj_inv, Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, Equivalence.mapCommGrp_inverse, Functor.FullyFaithful.mapCommGrp_preimage, CommGrp.instIsIsoGrpHom, CommGrp.instHasInitial, CommGrp.mkIso_hom_hom_hom_hom, CommGrp.id_hom, Functor.mapCommpGrp_id_mul, CommGrp.forget₂CommMon_obj_one, Functor.mapCommGrpFunctor_map, Functor.comp_mapCommGrp_one, Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, yonedaCommGrpGrp_map_app, CommGrp.forget_obj, Equivalence.mapCommGrp_counitIso, Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, Functor.mapCommGrp_map_hom_hom_hom, Preadditive.commGrpEquivalence_inverse_map, Functor.mapCommGrpNatTrans_app_hom_hom_hom, CommGrp.mkIso'_hom_hom_hom_hom, Functor.mapCommGrp_obj_grp_mul, Preadditive.toCommGrp_obj_X, Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, Functor.Faithful.mapCommGrp, CommGrp.forget₂CommMon_comp_forget, Preadditive.commGrpEquivalence_inverse_obj, Adjunction.mapCommGrp_counit, Functor.mapCommGrp_obj_grp_inv, CommGrp.forget_map, CommGrp.instFullGrpForget₂Grp

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
mapCommGrp 📖CompOp
2 mathmath: mapCommGrp_unit, mapCommGrp_counit

Theorems

NameKindAssumesProvesValidatesDepends On
mapCommGrp_counit 📖mathematicalcounit
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
CategoryTheory.Functor.mapCommGrp
mapCommGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.Braided.instComp
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapCommGrpCompIso
CategoryTheory.Functor.Braided.instId
CategoryTheory.Functor.mapCommGrpNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapCommGrpIdIso
mapCommGrp_unit 📖mathematicalunit
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
CategoryTheory.Functor.mapCommGrp
mapCommGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.Braided.instId
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapCommGrpIdIso
CategoryTheory.Functor.Braided.instComp
CategoryTheory.Functor.mapCommGrpNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapCommGrpCompIso

CategoryTheory.CommGrp

Definitions

NameCategoryTheorems
X 📖CompOp
37 mathmath: CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, comm, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, toCommMon_X, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_X, CategoryTheory.Functor.mapCommGrp_obj_X, trivial_X, forget₂Grp_obj_mul, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_X, forget₂Grp_obj_X, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, CategoryTheory.Functor.comp_mapCommGrp_mul, forget₂Grp_obj_one, CategoryTheory.Functor.mapCommGrp_id_one, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂CommMon_obj_mul, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_inv, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommpGrp_id_mul, forget₂CommMon_obj_one, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, toGrp_X, forget_obj, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Preadditive.toCommGrp_obj_X, CategoryTheory.Preadditive.commGrpEquivalence_inverse_obj, CategoryTheory.Functor.mapCommGrp_obj_grp_inv
forget 📖CompOp
9 mathmath: instFaithfulForget, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, forget₂Grp_comp_forget, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, forget_obj, forget₂CommMon_comp_forget, forget_map
forget₂CommMon 📖CompOp
6 mathmath: instFullCommMonForget₂CommMon, forget₂CommMon_map_hom, instFaithfulCommMonForget₂CommMon, forget₂CommMon_obj_mul, forget₂CommMon_obj_one, forget₂CommMon_comp_forget
forget₂CommMon_ 📖CompOp
forget₂Grp 📖CompOp
21 mathmath: CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, instFaithfulGrpForget₂Grp, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, forget₂Grp_obj_mul, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, forget₂Grp_obj_X, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, mkIso'_inv_hom_hom_hom, forget₂Grp_obj_one, forget₂Grp_comp_forget, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂Grp_map_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, mkIso'_hom_hom_hom_hom, forget_map, instFullGrpForget₂Grp
forget₂Grp_ 📖CompOp
fullyFaithfulForget₂CommMon 📖CompOp
fullyFaithfulForget₂Grp 📖CompOp
fullyFaithfulForget₂Grp_ 📖CompOp
grp 📖CompOp
32 mathmath: CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, comm, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, forget₂Grp_obj_mul, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, trivial_grp_one, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, CategoryTheory.Functor.comp_mapCommGrp_mul, forget₂Grp_obj_one, CategoryTheory.Functor.mapCommGrp_id_one, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂CommMon_obj_mul, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.toCommGrp_obj_grp, CommGrpTypeEquivalenceCommGrp.inverse_obj_inv, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommpGrp_id_mul, forget₂CommMon_obj_one, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, trivial_grp_mul, trivial_grp_inv, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Functor.mapCommGrp_obj_grp_inv
instCategory 📖CompOp
76 mathmath: instFullCommMonForget₂CommMon, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.Preadditive.toCommGrp_map, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, mkIso_inv_hom, id', comp', comp_hom, CategoryTheory.Preadditive.commGrpEquivalence_unitIso_inv_app, instFaithfulGrpForget₂Grp, CategoryTheory.Preadditive.commGrpEquivalence_unitIso_hom_app, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, instFaithfulForget, CategoryTheory.Functor.mapCommGrpFunctor_obj, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_X, CategoryTheory.Adjunction.mapCommGrp_unit, CategoryTheory.Functor.Full.mapCommGrp, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, CategoryTheory.Equivalence.mapCommGrp_functor, CategoryTheory.Functor.mapCommGrp_obj_X, forget₂CommMon_map_hom, forget₂Grp_obj_mul, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_X, forget₂Grp_obj_X, CategoryTheory.Equivalence.mapCommGrp_unitIso, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, instFaithfulCommMonForget₂CommMon, CategoryTheory.Functor.comp_mapCommGrp_mul, mkIso_inv_hom_hom_hom, mkIso'_inv_hom_hom_hom, CategoryTheory.yonedaCommGrpGrp_obj, forget₂Grp_obj_one, CategoryTheory.Functor.mapCommGrp_id_one, forget₂Grp_comp_forget, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂Grp_map_hom, forget₂CommMon_obj_mul, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, mkIso_hom_hom, CategoryTheory.Preadditive.toCommGrp_obj_grp, CommGrpTypeEquivalenceCommGrp.inverse_obj_inv, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Equivalence.mapCommGrp_inverse, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, instHasInitial, mkIso_hom_hom_hom_hom, id_hom, CategoryTheory.Functor.mapCommpGrp_id_mul, forget₂CommMon_obj_one, CategoryTheory.Functor.mapCommGrpFunctor_map, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.yonedaCommGrpGrp_map_app, forget_obj, CategoryTheory.Equivalence.mapCommGrp_counitIso, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, mkIso'_hom_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Preadditive.toCommGrp_obj_X, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.Functor.Faithful.mapCommGrp, forget₂CommMon_comp_forget, CategoryTheory.Preadditive.commGrpEquivalence_inverse_obj, CategoryTheory.Adjunction.mapCommGrp_counit, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, forget_map, instFullGrpForget₂Grp
instInhabited 📖CompOp
mkIso 📖CompOp
4 mathmath: mkIso_inv_hom, mkIso_inv_hom_hom_hom, mkIso_hom_hom, mkIso_hom_hom_hom_hom
mkIso' 📖CompOp
2 mathmath: mkIso'_inv_hom_hom_hom, mkIso'_hom_hom_hom_hom
toCommMon 📖CompOp
1 mathmath: toCommMon_X
toCommMon_ 📖CompOp
toGrp 📖CompOp
39 mathmath: CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.yonedaCommGrpGrpObj_map, CategoryTheory.Preadditive.toCommGrp_map, mkIso_inv_hom, id', comp', comp_hom, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, instIsIsoMonHomGrp, forget₂CommMon_map_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, hom_ext_iff, mkIso_inv_hom_hom_hom, mkIso'_inv_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂Grp_map_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, mkIso_hom_hom, CategoryTheory.yonedaCommGrpGrpObj_obj_coe, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, instIsIsoGrpHom, mkIso_hom_hom_hom_hom, id_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.yonedaCommGrpGrp_map_app, toGrp_X, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, mkIso'_hom_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, forget_map
toGrp_ 📖CompOp
toMon 📖CompOp
toMon_ 📖CompOp
trivial 📖CompOp
4 mathmath: trivial_X, trivial_grp_one, trivial_grp_mul, trivial_grp_inv
uniqueHomFromTrivial 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.IsCommMonObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.GrpObj.toMonObj
grp
comp' 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommGrp
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
toGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instCategory
comp_hom
comp_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommGrp
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
toGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instCategory
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CommGrp
instCategory
forget
CategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.toMon
CategoryTheory.Functor.obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
forget₂Grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
toGrp
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CommGrp
instCategory
forget
X
forget₂CommMon_comp_forget 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.CommGrp
instCategory
CategoryTheory.CommMon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommMon.instCategory
forget₂CommMon
CategoryTheory.CommMon.forget
forget
forget₂CommMon_map_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommMon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CommMon.toMon
CategoryTheory.Functor.obj
CategoryTheory.CommGrp
instCategory
CategoryTheory.CommMon.instCategory
forget₂CommMon
CategoryTheory.Functor.map
CategoryTheory.Grp
CategoryTheory.Grp.toMon
toGrp
CategoryTheory.Grp.instCategory
forget₂CommMon_obj_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommMon.X
CategoryTheory.Functor.obj
CategoryTheory.CommGrp
instCategory
CategoryTheory.CommMon
CategoryTheory.CommMon.instCategory
forget₂CommMon
CategoryTheory.CommMon.mon
X
CategoryTheory.GrpObj.toMonObj
grp
forget₂CommMon_obj_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommMon.X
CategoryTheory.Functor.obj
CategoryTheory.CommGrp
instCategory
CategoryTheory.CommMon
CategoryTheory.CommMon.instCategory
forget₂CommMon
CategoryTheory.CommMon.mon
X
CategoryTheory.GrpObj.toMonObj
grp
forget₂Grp_comp_forget 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.CommGrp
instCategory
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
forget₂Grp
CategoryTheory.Grp.forget
forget
forget₂Grp_map_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.toMon
CategoryTheory.Functor.obj
CategoryTheory.CommGrp
instCategory
CategoryTheory.Grp.instCategory
forget₂Grp
CategoryTheory.Functor.map
toGrp
forget₂Grp_obj_X 📖mathematicalCategoryTheory.Grp.X
CategoryTheory.Functor.obj
CategoryTheory.CommGrp
instCategory
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
forget₂Grp
X
forget₂Grp_obj_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.X
CategoryTheory.Functor.obj
CategoryTheory.CommGrp
instCategory
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
forget₂Grp
CategoryTheory.GrpObj.toMonObj
CategoryTheory.Grp.grp
X
grp
forget₂Grp_obj_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.X
CategoryTheory.Functor.obj
CategoryTheory.CommGrp
instCategory
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
forget₂Grp
CategoryTheory.GrpObj.toMonObj
CategoryTheory.Grp.grp
X
grp
hom_ext 📖CategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.toMon
toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CommGrp
CategoryTheory.Grp.instCategory
CategoryTheory.InducedCategory.hom_ext
CategoryTheory.Grp.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.toMon
toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CommGrp
CategoryTheory.Grp.instCategory
hom_ext
id' 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommGrp
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
toGrp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instCategory
id_hom
id_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommGrp
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
toGrp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instCategory
instFaithfulCommMonForget₂CommMon 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.CommGrp
instCategory
CategoryTheory.CommMon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommMon.instCategory
forget₂CommMon
CategoryTheory.Functor.FullyFaithful.faithful
instFaithfulForget 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.CommGrp
instCategory
forget
hom_ext
instFaithfulGrpForget₂Grp 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.CommGrp
instCategory
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
forget₂Grp
CategoryTheory.InducedCategory.faithful
instFullCommMonForget₂CommMon 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.CommGrp
instCategory
CategoryTheory.CommMon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommMon.instCategory
forget₂CommMon
CategoryTheory.Functor.FullyFaithful.full
instFullGrpForget₂Grp 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.CommGrp
instCategory
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
forget₂Grp
CategoryTheory.InducedCategory.full
instHasInitial 📖mathematicalCategoryTheory.Limits.HasInitial
CategoryTheory.CommGrp
instCategory
CategoryTheory.Limits.hasInitial_of_unique
Unique.instSubsingleton
instIsIsoGrpHom 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.CommGrp
CategoryTheory.Functor.map_isIso
instIsIsoMonHomGrp 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.toMon
toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.CommGrp
CategoryTheory.Grp.instCategory
CategoryTheory.Functor.map_isIso
mkIso'_hom_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp
instCategory
forget₂Grp
toGrp
CategoryTheory.Iso.hom
mkIso'
mkIso'_inv_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp
instCategory
forget₂Grp
toGrp
CategoryTheory.Iso.inv
mkIso'
mkIso_hom_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
CategoryTheory.Grp.toMon
toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CommGrp
CategoryTheory.Grp.instCategory
instCategory
mkIso
mkIso_hom_hom_hom_hom
mkIso_hom_hom_hom_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
CategoryTheory.Grp.toMon
toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CommGrp
CategoryTheory.Grp.instCategory
instCategory
mkIso
mkIso_inv_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
CategoryTheory.Grp.toMon
toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CommGrp
CategoryTheory.Grp.instCategory
CategoryTheory.Iso.inv
instCategory
mkIso
mkIso_inv_hom_hom_hom
mkIso_inv_hom_hom_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
grp
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon.Hom.hom
CategoryTheory.Grp.toMon
toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.CommGrp
CategoryTheory.Grp.instCategory
CategoryTheory.Iso.inv
instCategory
mkIso
toCommMon_X 📖mathematicalCategoryTheory.CommMon.X
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
toCommMon
X
toGrp_X 📖mathematicalCategoryTheory.Grp.X
toGrp
X
trivial_X 📖mathematicalX
trivial
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
trivial_grp_inv 📖mathematicalCategoryTheory.GrpObj.inv
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
grp
trivial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
trivial_grp_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.GrpObj.toMonObj
grp
trivial
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
trivial_grp_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.GrpObj.toMonObj
grp
trivial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
mapCommGrp 📖CompOp
4 mathmath: mapCommGrp_functor, mapCommGrp_unitIso, mapCommGrp_inverse, mapCommGrp_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
mapCommGrp_counitIso 📖mathematicalcounitIso
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapCommGrp
inverse
functor
CategoryTheory.Functor.Braided.instComp
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
CategoryTheory.Functor.mapCommGrpCompIso
CategoryTheory.Functor.Braided.instId
CategoryTheory.Functor.mapCommGrpNatIso
CategoryTheory.Functor.mapCommGrpIdIso
mapCommGrp_functor 📖mathematicalfunctor
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.Functor.mapCommGrp
mapCommGrp_inverse 📖mathematicalinverse
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.Functor.mapCommGrp
mapCommGrp_unitIso 📖mathematicalunitIso
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.mapCommGrp
CategoryTheory.Functor.Braided.instId
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Iso.symm
CategoryTheory.Functor.mapCommGrpIdIso
CategoryTheory.Functor.Braided.instComp
CategoryTheory.Functor.mapCommGrpNatIso
CategoryTheory.Functor.mapCommGrpCompIso

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapCommGrp 📖CompOp
26 mathmath: mapCommGrpCompIso_inv_app_hom_hom_hom, mapCommGrp_obj_grp_one, mapCommGrpFunctor_obj, mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Adjunction.mapCommGrp_unit, Full.mapCommGrp, CategoryTheory.Equivalence.mapCommGrp_functor, mapCommGrp_obj_X, CategoryTheory.Equivalence.mapCommGrp_unitIso, mapCommGrpNatIso_inv_app_hom_hom_hom, comp_mapCommGrp_mul, mapCommGrp_id_one, mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.Equivalence.mapCommGrp_inverse, FullyFaithful.mapCommGrp_preimage, mapCommpGrp_id_mul, comp_mapCommGrp_one, mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Equivalence.mapCommGrp_counitIso, mapCommGrpNatIso_hom_app_hom_hom_hom, mapCommGrp_map_hom_hom_hom, mapCommGrpNatTrans_app_hom_hom_hom, mapCommGrp_obj_grp_mul, Faithful.mapCommGrp, CategoryTheory.Adjunction.mapCommGrp_counit, mapCommGrp_obj_grp_inv
mapCommGrpCompIso 📖CompOp
6 mathmath: mapCommGrpCompIso_inv_app_hom_hom_hom, mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Adjunction.mapCommGrp_unit, CategoryTheory.Equivalence.mapCommGrp_unitIso, CategoryTheory.Equivalence.mapCommGrp_counitIso, CategoryTheory.Adjunction.mapCommGrp_counit
mapCommGrpFunctor 📖CompOp
2 mathmath: mapCommGrpFunctor_obj, mapCommGrpFunctor_map
mapCommGrpIdIso 📖CompOp
6 mathmath: CategoryTheory.Adjunction.mapCommGrp_unit, CategoryTheory.Equivalence.mapCommGrp_unitIso, mapCommGrpIdIso_hom_app_hom_hom_hom, mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Equivalence.mapCommGrp_counitIso, CategoryTheory.Adjunction.mapCommGrp_counit
mapCommGrpNatIso 📖CompOp
4 mathmath: CategoryTheory.Equivalence.mapCommGrp_unitIso, mapCommGrpNatIso_inv_app_hom_hom_hom, CategoryTheory.Equivalence.mapCommGrp_counitIso, mapCommGrpNatIso_hom_app_hom_hom_hom
mapCommGrpNatTrans 📖CompOp
4 mathmath: CategoryTheory.Adjunction.mapCommGrp_unit, mapCommGrpFunctor_map, mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Adjunction.mapCommGrp_counit

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mapCommGrp_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommGrp.X
obj
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
comp
Braided.instComp
CategoryTheory.GrpObj.toMonObj
CategoryTheory.CommGrp.grp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.μ
LaxMonoidal.comp
LaxBraided.toLaxMonoidal
Braided.toLaxBraided
map
comp_mapCommGrp_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommGrp.X
obj
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
comp
Braided.instComp
CategoryTheory.GrpObj.toMonObj
CategoryTheory.CommGrp.grp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.ε
LaxMonoidal.comp
LaxBraided.toLaxMonoidal
Braided.toLaxBraided
map
mapCommGrpCompIso_hom_app_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.CommGrp.X
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
comp
Braided.instComp
CategoryTheory.CommGrp.grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp.forget₂Grp
CategoryTheory.CommGrp.comm
CategoryTheory.CommGrp.toGrp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapCommGrpCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommGrp.comm
mapCommGrpCompIso_inv_app_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.CommGrp.X
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
comp
mapCommGrp
CategoryTheory.CommGrp.grp
Braided.instComp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp.forget₂Grp
CategoryTheory.CommGrp.comm
CategoryTheory.CommGrp.toGrp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapCommGrpCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommGrp.comm
mapCommGrpFunctor_map 📖mathematicalmap
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
category
CategoryTheory.leftExactFunctor
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrpFunctor
mapCommGrpNatTrans
CategoryTheory.ObjectProperty.FullSubcategory.obj
Braided.ofChosenFiniteProducts
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
mapCommGrpFunctor_obj 📖mathematicalobj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
category
CategoryTheory.leftExactFunctor
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrpFunctor
mapCommGrp
CategoryTheory.ObjectProperty.FullSubcategory.obj
Braided.ofChosenFiniteProducts
mapCommGrpIdIso_hom_app_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.CommGrp.X
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
id
Braided.instId
CategoryTheory.CommGrp.grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp.forget₂Grp
CategoryTheory.CommGrp.comm
CategoryTheory.CommGrp.toGrp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapCommGrpIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommGrp.comm
mapCommGrpIdIso_inv_app_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.CommGrp.X
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
id
CategoryTheory.CommGrp.grp
mapCommGrp
Braided.instId
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp.forget₂Grp
CategoryTheory.CommGrp.comm
CategoryTheory.CommGrp.toGrp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapCommGrpIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommGrp.comm
mapCommGrpNatIso_hom_app_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.CommGrp.X
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.CommGrp.grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp.forget₂Grp
CategoryTheory.CommGrp.comm
CategoryTheory.CommGrp.toGrp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapCommGrpNatIso
CategoryTheory.CommGrp.comm
mapCommGrpNatIso_inv_app_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Grp.forget₂Mon
CategoryTheory.CommGrp.X
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.CommGrp.grp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp.forget₂Grp
CategoryTheory.CommGrp.comm
CategoryTheory.CommGrp.toGrp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapCommGrpNatIso
CategoryTheory.CommGrp.comm
mapCommGrpNatTrans_app_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
Monoidal.toLaxMonoidal
Braided.toMonoidal
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp.toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.NatTrans.app
mapCommGrpNatTrans
CategoryTheory.CommGrp.X
mapCommGrp_id_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommGrp.X
obj
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
id
Braided.instId
CategoryTheory.GrpObj.toMonObj
CategoryTheory.CommGrp.grp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
mapCommGrp_map_hom_hom_hom 📖mathematicalCategoryTheory.Mon.Hom.hom
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
Monoidal.toLaxMonoidal
Braided.toMonoidal
CategoryTheory.Grp.toMon
CategoryTheory.CommGrp.toGrp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
CategoryTheory.CommGrp
map
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.CommGrp.X
mapCommGrp_obj_X 📖mathematicalCategoryTheory.CommGrp.X
obj
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
mapCommGrp_obj_grp_inv 📖mathematicalCategoryTheory.GrpObj.inv
CategoryTheory.Grp.X
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
Braided.toMonoidal
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommGrp.toGrp
CategoryTheory.CommGrp.grp
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
map
CategoryTheory.CommGrp.X
mapCommGrp_obj_grp_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.X
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
Braided.toMonoidal
CategoryTheory.CommGrp.toGrp
CategoryTheory.GrpObj.toMonObj
CategoryTheory.CommGrp.grp
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CommGrp.X
LaxMonoidal.μ
Monoidal.toLaxMonoidal
map
mapCommGrp_obj_grp_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Grp.X
obj
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
mapGrp
Braided.toMonoidal
CategoryTheory.CommGrp.toGrp
CategoryTheory.GrpObj.toMonObj
CategoryTheory.CommGrp.grp
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CommGrp.X
LaxMonoidal.ε
Monoidal.toLaxMonoidal
map
mapCommpGrp_id_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.CommGrp.X
obj
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
mapCommGrp
id
Braided.instId
CategoryTheory.GrpObj.toMonObj
CategoryTheory.CommGrp.grp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id

CategoryTheory.Functor.Faithful

Theorems

NameKindAssumesProvesValidatesDepends On
mapCommGrp 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
CategoryTheory.Functor.mapCommGrp
CategoryTheory.Functor.map_injective
comp
CategoryTheory.CommGrp.instFaithfulForget
CategoryTheory.Functor.congr_map

CategoryTheory.Functor.Full

Theorems

NameKindAssumesProvesValidatesDepends On
mapCommGrp 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
CategoryTheory.Functor.mapCommGrp
CategoryTheory.Functor.FullyFaithful.full

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
mapCommGrp 📖CompOp
1 mathmath: mapCommGrp_preimage

Theorems

NameKindAssumesProvesValidatesDepends On
mapCommGrp_preimage 📖mathematicalpreimage
CategoryTheory.CommGrp
CategoryTheory.CommGrp.instCategory
CategoryTheory.Functor.mapCommGrp
mapCommGrp
CategoryTheory.InducedCategory.homMk
CategoryTheory.Grp
CategoryTheory.Grp.instCategory
CategoryTheory.CommGrp.toGrp
CategoryTheory.Grp.homMk'
CategoryTheory.Mon
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Functor.Braided.toMonoidal
mapMon
CategoryTheory.Grp.toMon
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Functor.obj

---

← Back to Index