| Name | Category | Theorems |
X 📖 | CompOp | 37 mathmath: CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, comm, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, toCommMon_X, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_X, CategoryTheory.Functor.mapCommGrp_obj_X, trivial_X, forget₂Grp_obj_mul, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_X, forget₂Grp_obj_X, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, CategoryTheory.Functor.comp_mapCommGrp_mul, forget₂Grp_obj_one, CategoryTheory.Functor.mapCommGrp_id_one, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂CommMon_obj_mul, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_inv, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommpGrp_id_mul, forget₂CommMon_obj_one, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, toGrp_X, forget_obj, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Preadditive.toCommGrp_obj_X, CategoryTheory.Preadditive.commGrpEquivalence_inverse_obj, CategoryTheory.Functor.mapCommGrp_obj_grp_inv
|
forget 📖 | CompOp | 9 mathmath: instFaithfulForget, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, forget₂Grp_comp_forget, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, forget_obj, forget₂CommMon_comp_forget, forget_map
|
forget₂CommMon 📖 | CompOp | 6 mathmath: instFullCommMonForget₂CommMon, forget₂CommMon_map_hom, instFaithfulCommMonForget₂CommMon, forget₂CommMon_obj_mul, forget₂CommMon_obj_one, forget₂CommMon_comp_forget
|
forget₂CommMon_ 📖 | CompOp | — |
forget₂Grp 📖 | CompOp | 21 mathmath: CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, instFaithfulGrpForget₂Grp, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, forget₂Grp_obj_mul, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, forget₂Grp_obj_X, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, mkIso'_inv_hom_hom_hom, forget₂Grp_obj_one, forget₂Grp_comp_forget, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂Grp_map_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, mkIso'_hom_hom_hom_hom, forget_map, instFullGrpForget₂Grp
|
forget₂Grp_ 📖 | CompOp | — |
fullyFaithfulForget₂CommMon 📖 | CompOp | — |
fullyFaithfulForget₂Grp 📖 | CompOp | — |
fullyFaithfulForget₂Grp_ 📖 | CompOp | — |
grp 📖 | CompOp | 32 mathmath: CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, comm, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, forget₂Grp_obj_mul, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, trivial_grp_one, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, CategoryTheory.Functor.comp_mapCommGrp_mul, forget₂Grp_obj_one, CategoryTheory.Functor.mapCommGrp_id_one, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂CommMon_obj_mul, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.Preadditive.toCommGrp_obj_grp, CommGrpTypeEquivalenceCommGrp.inverse_obj_inv, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommpGrp_id_mul, forget₂CommMon_obj_one, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, trivial_grp_mul, trivial_grp_inv, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Functor.mapCommGrp_obj_grp_inv
|
instCategory 📖 | CompOp | 76 mathmath: instFullCommMonForget₂CommMon, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.Preadditive.toCommGrp_map, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, mkIso_inv_hom, id', comp', comp_hom, CategoryTheory.Preadditive.commGrpEquivalence_unitIso_inv_app, instFaithfulGrpForget₂Grp, CategoryTheory.Preadditive.commGrpEquivalence_unitIso_hom_app, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, instFaithfulForget, CategoryTheory.Functor.mapCommGrpFunctor_obj, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_X, CategoryTheory.Adjunction.mapCommGrp_unit, CategoryTheory.Functor.Full.mapCommGrp, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, CategoryTheory.Equivalence.mapCommGrp_functor, CategoryTheory.Functor.mapCommGrp_obj_X, forget₂CommMon_map_hom, forget₂Grp_obj_mul, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_X, forget₂Grp_obj_X, CategoryTheory.Equivalence.mapCommGrp_unitIso, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, instFaithfulCommMonForget₂CommMon, CategoryTheory.Functor.comp_mapCommGrp_mul, mkIso_inv_hom_hom_hom, mkIso'_inv_hom_hom_hom, CategoryTheory.yonedaCommGrpGrp_obj, forget₂Grp_obj_one, CategoryTheory.Functor.mapCommGrp_id_one, forget₂Grp_comp_forget, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂Grp_map_hom, forget₂CommMon_obj_mul, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, mkIso_hom_hom, CategoryTheory.Preadditive.toCommGrp_obj_grp, CommGrpTypeEquivalenceCommGrp.inverse_obj_inv, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Equivalence.mapCommGrp_inverse, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, instHasInitial, mkIso_hom_hom_hom_hom, id_hom, CategoryTheory.Functor.mapCommpGrp_id_mul, forget₂CommMon_obj_one, CategoryTheory.Functor.mapCommGrpFunctor_map, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.yonedaCommGrpGrp_map_app, forget_obj, CategoryTheory.Equivalence.mapCommGrp_counitIso, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, mkIso'_hom_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Preadditive.toCommGrp_obj_X, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.Functor.Faithful.mapCommGrp, forget₂CommMon_comp_forget, CategoryTheory.Preadditive.commGrpEquivalence_inverse_obj, CategoryTheory.Adjunction.mapCommGrp_counit, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, forget_map, instFullGrpForget₂Grp
|
instInhabited 📖 | CompOp | — |
mkIso 📖 | CompOp | 4 mathmath: mkIso_inv_hom, mkIso_inv_hom_hom_hom, mkIso_hom_hom, mkIso_hom_hom_hom_hom
|
mkIso' 📖 | CompOp | 2 mathmath: mkIso'_inv_hom_hom_hom, mkIso'_hom_hom_hom_hom
|
toCommMon 📖 | CompOp | 1 mathmath: toCommMon_X
|
toCommMon_ 📖 | CompOp | — |
toGrp 📖 | CompOp | 39 mathmath: CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.yonedaCommGrpGrpObj_map, CategoryTheory.Preadditive.toCommGrp_map, mkIso_inv_hom, id', comp', comp_hom, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, instIsIsoMonHomGrp, forget₂CommMon_map_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, hom_ext_iff, mkIso_inv_hom_hom_hom, mkIso'_inv_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, forget₂Grp_map_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, mkIso_hom_hom, CategoryTheory.yonedaCommGrpGrpObj_obj_coe, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, instIsIsoGrpHom, mkIso_hom_hom_hom_hom, id_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.yonedaCommGrpGrp_map_app, toGrp_X, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, mkIso'_hom_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.Functor.mapCommGrp_obj_grp_inv, forget_map
|
toGrp_ 📖 | CompOp | — |
toMon 📖 | CompOp | — |
toMon_ 📖 | CompOp | — |
trivial 📖 | CompOp | 4 mathmath: trivial_X, trivial_grp_one, trivial_grp_mul, trivial_grp_inv
|
uniqueHomFromTrivial 📖 | CompOp | — |