Documentation Verification Report

DayConvolution

📁 Source: Mathlib/CategoryTheory/Monoidal/DayConvolution.lean

Statistics

MetricCount
DefinitionsDayConvolution, associator, associatorCorepresentingIso, convolution, corepresentableBy, corepresentableBy₂, corepresentableBy₂', isPointwiseLeftKanExtensionUnit, map, uniqueUpToIso, unit, «term_⊛_», DayConvolutionUnit, can, corepresentableByLeft, corepresentableByRight, isPointwiseLeftKanExtensionCan, leftUnitor, leftUnitorCorepresentingIso, rightUnitor, rightUnitorCorepresentingIso, φ, InducedLawfulDayConvolutionMonoidalCategoryStructCore, convolutionUnitApp, convolutions, convolutions', fullyFaithulι, mkLawfulDayConvolutionMonoidalCategoryStruct, mkMonoidalCategoryStruct, ofHasDayConvolutions, tensorHom, tensorObj, tensorObjIsoConvolution, tensorUnit, tensorUnitConvolutionUnit, ι, LawfulDayConvolutionMonoidalCategoryStruct, convolution, convolutionExtensionUnit, convolutionUnit, convolution₂, convolution₂', isPointwiseLeftKanExtensionConvolutionExtensionUnit, isPointwiseLeftKanExtensionUnitUnit, unitUnit, ι, lawfulDayConvolutionMonoidalCategoryStructOfHasDayConvolutions, monoidalOfHasDayConvolutions, monoidalOfLawfulDayConvolutionMonoidalCategoryStruct
49
TheoremsassociatorCorepresentingIso_hom_app_app, associatorCorepresentingIso_inv_app_app, associator_hom_unit_unit, associator_hom_unit_unit_assoc, associator_inv_unit_unit, associator_inv_unit_unit_assoc, associator_naturality, convolution_hom_ext_at, corepresentableBy_homEquiv_apply_app, corepresentableBy_homEquiv_symm_apply, corepresentableBy₂'_homEquiv, corepresentableBy₂_homEquiv, instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit, instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitRightUnit, leftKanExtension, pentagon, triangle, unit_app_map_app, unit_app_map_app_assoc, unit_naturality, unit_naturality_assoc, unit_uniqueUpToIso_hom, unit_uniqueUpToIso_hom_assoc, unit_uniqueUpToIso_inv, unit_uniqueUpToIso_inv_assoc, whiskerLeft_comp_unit_app, whiskerLeft_comp_unit_app_assoc, whiskerRight_comp_unit_app, whiskerRight_comp_unit_app_assoc, corepresentableByLeft_homEquiv, corepresentableByRight_homEquiv, hom_ext, instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ, instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ, leftUnitorCorepresentingIso_hom_app_app, leftUnitorCorepresentingIso_inv_app_app, leftUnitor_hom_unit_app, leftUnitor_hom_unit_app_assoc, leftUnitor_inv_app, leftUnitor_inv_app_assoc, leftUnitor_naturality, leftUnitor_naturality_assoc, rightUnitorCorepresentingIso_hom_app_app, rightUnitorCorepresentingIso_inv_app_app, rightUnitor_hom_unit_app, rightUnitor_hom_unit_app_assoc, rightUnitor_inv_app, rightUnitor_inv_app_assoc, rightUnitor_naturality, rightUnitor_naturality_assoc, convolutionUnitApp_eq, id_tensorHom, tensorHom_eq, tensorHom_id, ι_map_tensorHom_eq, associator_hom_unit_unit, convolutionExtensionUnit_comp_ι_map_tensorHom_app, convolutionExtensionUnit_comp_ι_map_whiskerLeft_app, convolutionExtensionUnit_comp_ι_map_whiskerRight_app, faithful_ι, leftUnitor_hom_unit_app, rightUnitor_hom_unit_app, ι_map_associator_hom_eq_associator_hom, ι_map_leftUnitor_hom_eq_leftUnitor_hom, ι_map_rightUnitor_hom_eq_rightUnitor_hom, ι_map_tensorHom_hom_eq_tensorHom
66
Total115

CategoryTheory.MonoidalCategory

Definitions

NameCategoryTheorems
DayConvolution 📖CompData
DayConvolutionUnit 📖CompData
InducedLawfulDayConvolutionMonoidalCategoryStructCore 📖CompData
LawfulDayConvolutionMonoidalCategoryStruct 📖CompData
lawfulDayConvolutionMonoidalCategoryStructOfHasDayConvolutions 📖CompOp
monoidalOfHasDayConvolutions 📖CompOp
monoidalOfLawfulDayConvolutionMonoidalCategoryStruct 📖CompOp

CategoryTheory.MonoidalCategory.DayConvolution

Definitions

NameCategoryTheorems
associator 📖CompOp
10 mathmath: CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι_map_associator_hom_eq_associator_hom, hexagon_forward, associator_inv_unit_unit, hexagon_reverse, pentagon, triangle, associator_hom_unit_unit_assoc, associator_naturality, associator_inv_unit_unit_assoc, associator_hom_unit_unit
associatorCorepresentingIso 📖CompOp
2 mathmath: associatorCorepresentingIso_inv_app_app, associatorCorepresentingIso_hom_app_app
convolution 📖CompOp
66 mathmath: braidingHomCorepresenting_app, CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι_map_associator_hom_eq_associator_hom, unit_naturality, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_naturality_assoc, braiding_naturality_left_assoc, corepresentableBy₂_homEquiv, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.unit_app_ev_app_app_assoc, whiskerRight_comp_unit_app_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_hom_unit_app, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.unit_app_ev_app_app, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.left_triangle_components, unit_naturality_assoc, whiskerLeft_comp_unit_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_inv_app, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_app_π_assoc, hexagon_forward, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_hom_unit_app_assoc, associator_inv_unit_unit, hexagon_reverse, pentagon, unit_uniqueUpToIso_inv, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.ev_naturality_app, unit_uniqueUpToIso_hom, instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitRightUnit, corepresentableBy₂'_homEquiv, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_hom_unit_app_assoc, braiding_naturality_right, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.right_triangle_components, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_hom_unit_app, braiding_naturality_right_assoc, corepresentableBy_homEquiv_symm_apply, triangle, unit_app_braiding_inv_app, symmetry, unit_app_braiding_hom_app, braidingInvCorepresenting_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_naturality_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_naturality, CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι_map_rightUnitor_hom_eq_rightUnitor_hom, CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι_map_leftUnitor_hom_eq_leftUnitor_hom, unit_uniqueUpToIso_hom_assoc, corepresentableBy_homEquiv_apply_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_inv_app, associator_hom_unit_unit_assoc, instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit, associator_naturality, unit_app_braiding_hom_app_assoc, whiskerLeft_comp_unit_app_assoc, associator_inv_unit_unit_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, unit_app_map_app_assoc, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_naturality_app, unit_app_braiding_inv_app_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_naturality, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_inv_app_assoc, CategoryTheory.MonoidalCategory.InducedLawfulDayConvolutionMonoidalCategoryStructCore.tensorHom_eq, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_app_π, whiskerRight_comp_unit_app, CategoryTheory.MonoidalCategory.InducedLawfulDayConvolutionMonoidalCategoryStructCore.convolutionUnitApp_eq, associator_hom_unit_unit, unit_app_map_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, braiding_naturality_left, unit_uniqueUpToIso_inv_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_inv_app_assoc, leftKanExtension
corepresentableBy 📖CompOp
4 mathmath: corepresentableBy₂_homEquiv, corepresentableBy₂'_homEquiv, corepresentableBy_homEquiv_symm_apply, corepresentableBy_homEquiv_apply_app
corepresentableBy₂ 📖CompOp
1 mathmath: corepresentableBy₂_homEquiv
corepresentableBy₂' 📖CompOp
1 mathmath: corepresentableBy₂'_homEquiv
isPointwiseLeftKanExtensionUnit 📖CompOp
map 📖CompOp
21 mathmath: CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_naturality_assoc, braiding_naturality_left_assoc, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.left_triangle_components, hexagon_forward, hexagon_reverse, pentagon, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.ev_naturality_app, CategoryTheory.MonoidalCategory.InducedLawfulDayConvolutionMonoidalCategoryStructCore.ι_map_tensorHom_eq, braiding_naturality_right, braiding_naturality_right_assoc, triangle, CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι_map_tensorHom_hom_eq_tensorHom, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_naturality_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_naturality, associator_naturality, unit_app_map_app_assoc, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_naturality_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_naturality, CategoryTheory.MonoidalCategory.InducedLawfulDayConvolutionMonoidalCategoryStructCore.tensorHom_eq, unit_app_map_app, braiding_naturality_left
uniqueUpToIso 📖CompOp
4 mathmath: unit_uniqueUpToIso_inv, unit_uniqueUpToIso_hom, unit_uniqueUpToIso_hom_assoc, unit_uniqueUpToIso_inv_assoc
unit 📖CompOp
44 mathmath: braidingHomCorepresenting_app, unit_naturality, corepresentableBy₂_homEquiv, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.unit_app_ev_app_app_assoc, whiskerRight_comp_unit_app_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_hom_unit_app, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.unit_app_ev_app_app, unit_naturality_assoc, whiskerLeft_comp_unit_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_inv_app, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_app_π_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_hom_unit_app_assoc, associator_inv_unit_unit, unit_uniqueUpToIso_inv, unit_uniqueUpToIso_hom, instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitRightUnit, corepresentableBy₂'_homEquiv, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_hom_unit_app_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_hom_unit_app, corepresentableBy_homEquiv_symm_apply, unit_app_braiding_inv_app, unit_app_braiding_hom_app, braidingInvCorepresenting_app, unit_uniqueUpToIso_hom_assoc, corepresentableBy_homEquiv_apply_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_inv_app, associator_hom_unit_unit_assoc, instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit, unit_app_braiding_hom_app_assoc, whiskerLeft_comp_unit_app_assoc, associator_inv_unit_unit_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, unit_app_map_app_assoc, unit_app_braiding_inv_app_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_inv_app_assoc, CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_app_π, whiskerRight_comp_unit_app, CategoryTheory.MonoidalCategory.InducedLawfulDayConvolutionMonoidalCategoryStructCore.convolutionUnitApp_eq, associator_hom_unit_unit, unit_app_map_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, unit_uniqueUpToIso_inv_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_inv_app_assoc, leftKanExtension
«term_⊛_» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
associatorCorepresentingIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.uniformProd
Opposite.unop
CategoryTheory.Functor
Opposite.op
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.obj
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.types
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
CategoryTheory.Iso.hom
associatorCorepresentingIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.prod.inverseAssociator
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.FullyFaithful.homEquiv
CategoryTheory.Equivalence.fullyFaithfulFunctor
CategoryTheory.Equivalence.congrLeft
CategoryTheory.prod.associativity
CategoryTheory.Functor.map
associatorCorepresentingIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.uniformProd
Opposite.unop
CategoryTheory.Functor
Opposite.op
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.obj
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.prod
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.Functor.id
CategoryTheory.types
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
CategoryTheory.Iso.inv
associatorCorepresentingIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.prod.associator
CategoryTheory.prod.inverseAssociator
CategoryTheory.Equivalence.unit
CategoryTheory.prod.associativity
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Equivalence.unitInv
CategoryTheory.Equivalence.funInvIdAssoc_inv_app
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Equivalence.funInvIdAssoc_hom_app
CategoryTheory.MonoidalCategory.associator_conjugation
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.map_inv_hom_id_assoc
associator_hom_unit_unit 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
convolution
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.NatTrans.app
unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
associator
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
Equiv.rightInverse_symm
leftKanExtension
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitRightUnit
CategoryTheory.Functor.descOfIsLeftKanExtension.congr_simp
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Equivalence.funInvIdAssoc_inv_app
CategoryTheory.Functor.map_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Equivalence.funInvIdAssoc_hom_app
CategoryTheory.MonoidalCategory.tensorHom_id
associator_hom_unit_unit_assoc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
convolution
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
associator
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_hom_unit_unit
associator_inv_unit_unit 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
convolution
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
unit
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
associator
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Equiv.rightInverse_symm
leftKanExtension
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitRightUnit
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
associator_inv_unit_unit_assoc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
convolution
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
unit
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
associator
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_unit_unit
associator_naturality 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
convolution
map
CategoryTheory.Iso.hom
associator
Equiv.injective
CategoryTheory.NatTrans.ext'
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
unit_app_map_app_assoc
associator_hom_unit_unit_assoc
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
unit_app_map_app
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
associator_hom_unit_unit
CategoryTheory.MonoidalCategory.whiskerLeft_comp_assoc
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Iso.hom_inv_id_assoc
convolution_hom_ext_at 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Category.assoc
corepresentableBy_homEquiv_apply_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
convolution
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.CorepresentableBy.homEquiv
CategoryTheory.uniformProd
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
Opposite.op
corepresentableBy
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
unit
corepresentableBy_homEquiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.CorepresentableBy.homEquiv
CategoryTheory.uniformProd
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
Opposite.op
corepresentableBy
CategoryTheory.Functor.descOfIsLeftKanExtension
unit
leftKanExtension
corepresentableBy₂'_homEquiv 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Functor.CorepresentableBy.homEquiv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.MonoidalCategory.externalProduct
convolution
corepresentableBy₂'
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
corepresentableBy
CategoryTheory.Functor.homEquivOfIsLeftKanExtension
CategoryTheory.MonoidalCategory.ExternalProduct.extensionUnitLeft
unit
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit
corepresentableBy₂_homEquiv 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.CorepresentableBy.homEquiv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.MonoidalCategory.externalProduct
convolution
corepresentableBy₂
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
corepresentableBy
CategoryTheory.Functor.homEquivOfIsLeftKanExtension
CategoryTheory.MonoidalCategory.ExternalProduct.extensionUnitRight
unit
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitRightUnit
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
convolution
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.ExternalProduct.extensionUnitLeft
unit
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitRightUnit 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
convolution
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.ExternalProduct.extensionUnitRight
unit
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
leftKanExtension 📖mathematicalCategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.prod'
convolution
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
unit
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
pentagon 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
convolution
map
CategoryTheory.Iso.hom
associator
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.hom_ext_of_isLeftKanExtension
leftKanExtension
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.naturality
associator_inv_unit_unit_assoc
CategoryTheory.Iso.map_hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensor_whiskerLeft_symm
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_id
unit_app_map_app_assoc
CategoryTheory.MonoidalCategory.tensorHom_id
associator_hom_unit_unit_assoc
CategoryTheory.MonoidalCategory.whiskerRight_tensor_symm_assoc
CategoryTheory.Iso.inv_hom_id_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_hom_unit_unit
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_assoc
whiskerRight_comp_unit_app_assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.MonoidalCategory.whiskerLeft_comp
whiskerLeft_comp_unit_app_assoc
CategoryTheory.MonoidalCategory.pentagon_inv
CategoryTheory.MonoidalCategory.pentagon_assoc
triangle 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
convolution
CategoryTheory.Iso.hom
associator
map
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor
CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor
CategoryTheory.Functor.hom_ext_of_isLeftKanExtension
leftKanExtension
instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
CategoryTheory.NatTrans.ext'
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
associator_hom_unit_unit_assoc
CategoryTheory.NatTrans.naturality
unit_app_map_app_assoc
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
unit_app_map_app
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_hom_unit_app
CategoryTheory.MonoidalCategory.associator_inv_naturality_middle_assoc
CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_hom_unit_app
CategoryTheory.MonoidalCategory.whiskerLeft_comp
whiskerLeft_comp_unit_app_assoc
CategoryTheory.MonoidalCategory.triangle_assoc_comp_left_inv
CategoryTheory.MonoidalCategory.comp_whiskerRight
whiskerRight_comp_unit_app
CategoryTheory.MonoidalCategory.triangle_assoc_comp_right_assoc
unit_app_map_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
unit
map
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.Category.assoc
leftKanExtension
CategoryTheory.Functor.descOfIsLeftKanExtension_fac_app
unit_app_map_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
convolution
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
unit
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
map
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_app_map_app
unit_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
unit
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.naturality
unit_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.map
convolution
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
unit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_naturality
unit_uniqueUpToIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
CategoryTheory.uniformProd
unit
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
uniqueUpToIso
leftKanExtension
CategoryTheory.Functor.leftKanExtensionUnique_hom
CategoryTheory.Functor.descOfIsLeftKanExtension_fac
unit_uniqueUpToIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
unit
CategoryTheory.uniformProd
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
uniqueUpToIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_uniqueUpToIso_hom
unit_uniqueUpToIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
CategoryTheory.uniformProd
unit
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.inv
uniqueUpToIso
leftKanExtension
CategoryTheory.Functor.leftKanExtensionUnique_inv
CategoryTheory.Functor.descOfIsLeftKanExtension_fac
unit_uniqueUpToIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
unit
CategoryTheory.uniformProd
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.inv
uniqueUpToIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_uniqueUpToIso_inv
whiskerLeft_comp_unit_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
unit
CategoryTheory.Functor.map_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.NatTrans.naturality
whiskerLeft_comp_unit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
convolution
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
unit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_comp_unit_app
whiskerRight_comp_unit_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
convolution
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
unit
CategoryTheory.Functor.map_id
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.NatTrans.naturality
whiskerRight_comp_unit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
convolution
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
unit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_comp_unit_app

CategoryTheory.MonoidalCategory.DayConvolutionUnit

Definitions

NameCategoryTheorems
can 📖CompOp
8 mathmath: rightUnitor_hom_unit_app, leftUnitor_inv_app, rightUnitor_hom_unit_app_assoc, leftUnitor_hom_unit_app_assoc, leftUnitor_hom_unit_app, rightUnitor_inv_app, rightUnitor_inv_app_assoc, leftUnitor_inv_app_assoc
corepresentableByLeft 📖CompOp
1 mathmath: corepresentableByLeft_homEquiv
corepresentableByRight 📖CompOp
1 mathmath: corepresentableByRight_homEquiv
isPointwiseLeftKanExtensionCan 📖CompOp
leftUnitor 📖CompOp
8 mathmath: leftUnitor_naturality_assoc, leftUnitor_inv_app, leftUnitor_hom_unit_app_assoc, leftUnitor_hom_unit_app, CategoryTheory.MonoidalCategory.DayConvolution.triangle, leftUnitor_naturality, CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι_map_leftUnitor_hom_eq_leftUnitor_hom, leftUnitor_inv_app_assoc
leftUnitorCorepresentingIso 📖CompOp
2 mathmath: leftUnitorCorepresentingIso_inv_app_app, leftUnitorCorepresentingIso_hom_app_app
rightUnitor 📖CompOp
8 mathmath: rightUnitor_hom_unit_app, rightUnitor_hom_unit_app_assoc, CategoryTheory.MonoidalCategory.DayConvolution.triangle, rightUnitor_naturality_assoc, CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct.ι_map_rightUnitor_hom_eq_rightUnitor_hom, rightUnitor_inv_app, rightUnitor_naturality, rightUnitor_inv_app_assoc
rightUnitorCorepresentingIso 📖CompOp
2 mathmath: rightUnitorCorepresentingIso_hom_app_app, rightUnitorCorepresentingIso_inv_app_app
φ 📖CompOp
4 mathmath: instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ, corepresentableByLeft_homEquiv, corepresentableByRight_homEquiv, instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ

Theorems

NameKindAssumesProvesValidatesDepends On
corepresentableByLeft_homEquiv 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Functor.CorepresentableBy.homEquiv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.uniformProd
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.MonoidalCategory.DayConvolution.convolution
corepresentableByLeft
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.homEquivOfIsLeftKanExtension
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
CategoryTheory.MonoidalCategory.ExternalProduct.extensionUnitLeft
φ
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ
corepresentableByRight_homEquiv 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.CorepresentableBy.homEquiv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.uniformProd
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.MonoidalCategory.DayConvolution.convolution
corepresentableByRight
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.homEquivOfIsLeftKanExtension
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
CategoryTheory.MonoidalCategory.ExternalProduct.extensionUnitRight
φ
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
can
CategoryTheory.Functor.map
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Category.assoc
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.ExternalProduct.extensionUnitLeft
φ
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.ExternalProduct.extensionUnitRight
φ
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
leftUnitorCorepresentingIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite.unop
CategoryTheory.Functor
Opposite.op
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.uniformProd
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Iso.hom
leftUnitorCorepresentingIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.prod.leftInverseUnitor
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.FullyFaithful.homEquiv
CategoryTheory.Equivalence.fullyFaithfulFunctor
CategoryTheory.Equivalence.congrLeft
CategoryTheory.prod.leftUnitorEquivalence
CategoryTheory.Functor.map
leftUnitorCorepresentingIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Discrete
CategoryTheory.prod'
CategoryTheory.discreteCategory
Opposite.unop
CategoryTheory.Functor
Opposite.op
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.uniformProd
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.types
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
leftUnitorCorepresentingIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.prod.leftUnitor
CategoryTheory.prod.leftInverseUnitor
CategoryTheory.Equivalence.unit
CategoryTheory.prod.leftUnitorEquivalence
CategoryTheory.Equivalence.unitInv
CategoryTheory.Equivalence.funInvIdAssoc_inv_app
CategoryTheory.Discrete.functor_map_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.MonoidalCategory.id_whiskerLeft
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.funInvIdAssoc_hom_app
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.map_inv_hom_id_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.NatTrans.naturality_assoc
leftUnitor_hom_unit_app 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
can
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Iso.hom
CategoryTheory.Functor.category
leftUnitor
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
Equiv.rightInverse_symm
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ
CategoryTheory.Functor.descOfIsLeftKanExtension.congr_simp
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.funInvIdAssoc_inv_app
CategoryTheory.Discrete.functor_map_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Functor.map_id
CategoryTheory.Equivalence.funInvIdAssoc_hom_app
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.Category.id_comp
leftUnitor_hom_unit_app_assoc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
can
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftUnitor
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_hom_unit_app
leftUnitor_inv_app 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
can
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
leftUnitor_inv_app_assoc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
can
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_inv_app
leftUnitor_naturality 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
leftUnitor
CategoryTheory.Functor.hom_ext_of_isLeftKanExtension
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app_assoc
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.MonoidalCategory.id_whiskerLeft
leftUnitor_hom_unit_app
CategoryTheory.Iso.inv_hom_id_assoc
leftUnitor_hom_unit_app_assoc
CategoryTheory.NatTrans.naturality
leftUnitor_naturality_assoc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
leftUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_naturality
rightUnitorCorepresentingIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite.unop
CategoryTheory.Functor
Opposite.op
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.uniformProd
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Iso.hom
rightUnitorCorepresentingIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.prod.rightInverseUnitor
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.FullyFaithful.homEquiv
CategoryTheory.Equivalence.fullyFaithfulFunctor
CategoryTheory.Equivalence.congrLeft
CategoryTheory.prod.rightUnitorEquivalence
CategoryTheory.Functor.map
rightUnitorCorepresentingIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Discrete
CategoryTheory.prod'
CategoryTheory.discreteCategory
Opposite.unop
CategoryTheory.Functor
Opposite.op
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.uniformProd
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.types
Opposite
CategoryTheory.Category.opposite
CategoryTheory.coyoneda
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
rightUnitorCorepresentingIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.prod.rightUnitor
CategoryTheory.prod.rightInverseUnitor
CategoryTheory.Equivalence.unit
CategoryTheory.prod.rightUnitorEquivalence
CategoryTheory.Equivalence.unitInv
CategoryTheory.Equivalence.funInvIdAssoc_inv_app
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Discrete.functor_map_id
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.funInvIdAssoc_hom_app
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.map_inv_hom_id_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.NatTrans.naturality_assoc
rightUnitor_hom_unit_app 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
can
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Iso.hom
CategoryTheory.Functor.category
rightUnitor
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
Equiv.rightInverse_symm
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ
CategoryTheory.Functor.descOfIsLeftKanExtension.congr_simp
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.funInvIdAssoc_inv_app
CategoryTheory.Functor.map_id
CategoryTheory.Discrete.functor_map_id
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Equivalence.funInvIdAssoc_hom_app
CategoryTheory.MonoidalCategory.tensorHom_id
rightUnitor_hom_unit_app_assoc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
can
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightUnitor
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_hom_unit_app
rightUnitor_inv_app 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
can
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
rightUnitor_inv_app_assoc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
rightUnitor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
can
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_inv_app
rightUnitor_naturality 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
rightUnitor
CategoryTheory.Functor.hom_ext_of_isLeftKanExtension
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app_assoc
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
rightUnitor_hom_unit_app
CategoryTheory.Iso.inv_hom_id_assoc
rightUnitor_hom_unit_app_assoc
CategoryTheory.NatTrans.naturality
rightUnitor_naturality_assoc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
rightUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_naturality

CategoryTheory.MonoidalCategory.InducedLawfulDayConvolutionMonoidalCategoryStructCore

Definitions

NameCategoryTheorems
convolutionUnitApp 📖CompOp
1 mathmath: convolutionUnitApp_eq
convolutions 📖CompOp
1 mathmath: ι_map_tensorHom_eq
convolutions' 📖CompOp
2 mathmath: tensorHom_eq, convolutionUnitApp_eq
fullyFaithulι 📖CompOp
mkLawfulDayConvolutionMonoidalCategoryStruct 📖CompOp
mkMonoidalCategoryStruct 📖CompOp
3 mathmath: ι_map_tensorHom_eq, tensorHom_id, id_tensorHom
ofHasDayConvolutions 📖CompOp
tensorHom 📖CompOp
1 mathmath: tensorHom_eq
tensorObj 📖CompOp
2 mathmath: tensorHom_eq, convolutionUnitApp_eq
tensorObjIsoConvolution 📖CompOp
2 mathmath: tensorHom_eq, convolutionUnitApp_eq
tensorUnit 📖CompOp
tensorUnitConvolutionUnit 📖CompOp
ι 📖CompOp
3 mathmath: ι_map_tensorHom_eq, tensorHom_eq, convolutionUnitApp_eq

Theorems

NameKindAssumesProvesValidatesDepends On
convolutionUnitApp_eq 📖mathematicalconvolutionUnitApp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.DayConvolution.convolution
convolutions'
tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.Iso.inv
tensorObjIsoConvolution
id_tensorHom 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
mkMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
tensorHom_eq 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
tensorObj
tensorHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.DayConvolution.convolution
convolutions'
CategoryTheory.Iso.hom
tensorObjIsoConvolution
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.Iso.inv
tensorHom_id 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
mkMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
ι_map_tensorHom_eq 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.MonoidalCategoryStruct.tensorObj
mkMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.Functor.obj
convolutions
tensorHom_eq
Equiv.injective
CategoryTheory.NatTrans.ext'
CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app
convolutionUnitApp_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app_assoc

CategoryTheory.MonoidalCategory.LawfulDayConvolutionMonoidalCategoryStruct

Definitions

NameCategoryTheorems
convolution 📖CompOp
4 mathmath: ι_map_associator_hom_eq_associator_hom, ι_map_tensorHom_hom_eq_tensorHom, ι_map_rightUnitor_hom_eq_rightUnitor_hom, ι_map_leftUnitor_hom_eq_leftUnitor_hom
convolutionExtensionUnit 📖CompOp
6 mathmath: associator_hom_unit_unit, convolutionExtensionUnit_comp_ι_map_tensorHom_app, convolutionExtensionUnit_comp_ι_map_whiskerLeft_app, convolutionExtensionUnit_comp_ι_map_whiskerRight_app, leftUnitor_hom_unit_app, rightUnitor_hom_unit_app
convolutionUnit 📖CompOp
2 mathmath: ι_map_rightUnitor_hom_eq_rightUnitor_hom, ι_map_leftUnitor_hom_eq_leftUnitor_hom
convolution₂ 📖CompOp
1 mathmath: ι_map_associator_hom_eq_associator_hom
convolution₂' 📖CompOp
1 mathmath: ι_map_associator_hom_eq_associator_hom
isPointwiseLeftKanExtensionConvolutionExtensionUnit 📖CompOp
isPointwiseLeftKanExtensionUnitUnit 📖CompOp
unitUnit 📖CompOp
2 mathmath: leftUnitor_hom_unit_app, rightUnitor_hom_unit_app
ι 📖CompOp
13 mathmath: ι_map_associator_hom_eq_associator_hom, associator_hom_unit_unit, convolutionExtensionUnit_comp_ι_map_tensorHom_app, convolutionExtensionUnit_comp_ι_map_whiskerLeft_app, faithful_ι, convolutionExtensionUnit_comp_ι_map_whiskerRight_app, leftUnitor_hom_unit_app, ι_map_tensorHom_hom_eq_tensorHom, ι_map_rightUnitor_hom_eq_rightUnitor_hom, ι_map_leftUnitor_hom_eq_leftUnitor_hom, CategoryTheory.MonoidalCategory.DayFunctor.ι_obj, rightUnitor_hom_unit_app, CategoryTheory.MonoidalCategory.DayFunctor.ι_map

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_unit_unit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.NatTrans.app
convolutionExtensionUnit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.inv
convolutionExtensionUnit_comp_ι_map_tensorHom_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
convolutionExtensionUnit
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorHom
convolutionExtensionUnit_comp_ι_map_whiskerLeft_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
convolutionExtensionUnit
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
convolutionExtensionUnit_comp_ι_map_whiskerRight_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
convolutionExtensionUnit
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
faithful_ι 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
leftUnitor_hom_unit_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.MonoidalCategoryStruct.whiskerRight
unitUnit
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
convolutionExtensionUnit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.inv
rightUnitor_hom_unit_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
unitUnit
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.externalProduct
convolutionExtensionUnit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Iso.inv
ι_map_associator_hom_eq_associator_hom 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.Functor.obj
convolution
convolution₂'
convolution₂
CategoryTheory.MonoidalCategory.DayConvolution.associator
Equiv.injective
CategoryTheory.NatTrans.ext'
CategoryTheory.MonoidalCategory.DayConvolution.instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.DayConvolution.associator_hom_unit_unit
associator_hom_unit_unit
ι_map_leftUnitor_hom_eq_leftUnitor_hom 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.Functor.obj
convolution
CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor
convolutionUnit
Equiv.injective
CategoryTheory.NatTrans.ext'
CategoryTheory.MonoidalCategory.DayConvolutionUnit.instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_hom_unit_app
leftUnitor_hom_unit_app
ι_map_rightUnitor_hom_eq_rightUnitor_hom 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.Functor.obj
convolution
CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor
convolutionUnit
Equiv.injective
CategoryTheory.NatTrans.ext'
CategoryTheory.MonoidalCategory.DayConvolutionUnit.instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ
CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_hom_unit_app
rightUnitor_hom_unit_app
ι_map_tensorHom_hom_eq_tensorHom 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
ι
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.Functor.obj
convolution
Equiv.injective
CategoryTheory.NatTrans.ext'
CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app
convolutionExtensionUnit_comp_ι_map_tensorHom_app

---

← Back to Index