Documentation Verification Report

Closed

πŸ“ Source: Mathlib/CategoryTheory/Monoidal/DayConvolution/Closed.lean

Statistics

MetricCount
DefinitionsDayConvolutionInternalHom, coev_app, ev_app, isLimitWedge, map, Ο€, dayConvolutionInternalHomDiagramFunctor
7
Theoremscoev_app_Ο€, coev_app_Ο€_assoc, coev_naturality_app, ev_naturality_app, hΟ€, hΟ€_assoc, left_triangle_components, map_app_comp_Ο€, map_app_comp_Ο€_assoc, map_comp_Ο€, map_comp_Ο€_assoc, right_triangle_components, unit_app_ev_app_app, unit_app_ev_app_app_assoc, dayConvolutionInternalHomDiagramFunctor_map_app_app_app, dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_map, dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_obj
19
Total26

CategoryTheory.MonoidalCategory

Definitions

NameCategoryTheorems
DayConvolutionInternalHom πŸ“–CompDataβ€”
dayConvolutionInternalHomDiagramFunctor πŸ“–CompOp
5 mathmath: dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_map, dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_obj, dayConvolutionInternalHomDiagramFunctor_map_app_app_app

Theorems

NameKindAssumesProvesValidatesDepends On
dayConvolutionInternalHomDiagramFunctor_map_app_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
tensorRight
CategoryTheory.MonoidalClosed.internalHom
CategoryTheory.Functor.op
CategoryTheory.Functor.whiskeringLeftβ‚‚
CategoryTheory.Functor.flip
curriedTensor
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight
dayConvolutionInternalHomDiagramFunctor
CategoryTheory.ihom
Opposite.unop
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
toMonoidalCategoryStruct
β€”β€”
dayConvolutionInternalHomDiagramFunctor_obj_map_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.flip
curriedTensor
CategoryTheory.MonoidalClosed.internalHom
CategoryTheory.Functor.op
CategoryTheory.Functor.whiskeringLeftβ‚‚
CategoryTheory.Functor.map
dayConvolutionInternalHomDiagramFunctor
CategoryTheory.ihom
Opposite.unop
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”β€”
dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
tensorRight
CategoryTheory.MonoidalClosed.internalHom
CategoryTheory.Functor.op
CategoryTheory.Functor.map
dayConvolutionInternalHomDiagramFunctor
CategoryTheory.ihom
Opposite.unop
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalClosed.pre
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
toMonoidalCategoryStruct
β€”β€”
dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
dayConvolutionInternalHomDiagramFunctor
CategoryTheory.ihom
Opposite.unop
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
β€”β€”
dayConvolutionInternalHomDiagramFunctor_obj_obj_obj_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
dayConvolutionInternalHomDiagramFunctor
CategoryTheory.ihom
Opposite.unop
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
toMonoidalCategoryStruct
β€”β€”

CategoryTheory.MonoidalCategory.DayConvolutionInternalHom

Definitions

NameCategoryTheorems
coev_app πŸ“–CompOp
5 mathmath: left_triangle_components, coev_app_Ο€_assoc, right_triangle_components, coev_naturality_app, coev_app_Ο€
ev_app πŸ“–CompOp
5 mathmath: unit_app_ev_app_app_assoc, unit_app_ev_app_app, left_triangle_components, ev_naturality_app, right_triangle_components
isLimitWedge πŸ“–CompOpβ€”
map πŸ“–CompOp
5 mathmath: ev_naturality_app, map_app_comp_Ο€, right_triangle_components, coev_naturality_app, map_app_comp_Ο€_assoc
Ο€ πŸ“–CompOp
10 mathmath: hΟ€_assoc, unit_app_ev_app_app_assoc, unit_app_ev_app_app, coev_app_Ο€_assoc, hΟ€, map_app_comp_Ο€, map_comp_Ο€_assoc, map_comp_Ο€, coev_app_Ο€, map_app_comp_Ο€_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
coev_app_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
coev_app
Ο€
CategoryTheory.MonoidalClosed.curry
CategoryTheory.Functor
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.MonoidalCategory.DayConvolution.unit
β€”hΟ€
CategoryTheory.Limits.Wedge.mk_ΞΉ
CategoryTheory.Limits.Wedge.IsLimit.lift_ΞΉ
coev_app_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
coev_app
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Ο€
CategoryTheory.MonoidalClosed.curry
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.DayConvolution.unit
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coev_app_Ο€
coev_naturality_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
coev_app
map
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.Wedge.IsLimit.hom_ext
hΟ€
CategoryTheory.MonoidalClosed.uncurry_injective
CategoryTheory.Category.assoc
coev_app_Ο€
map_app_comp_Ο€
coev_app_Ο€_assoc
CategoryTheory.MonoidalClosed.uncurry_natural_right
CategoryTheory.MonoidalClosed.uncurry_curry
CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.MonoidalClosed.uncurry_natural_left
ev_naturality_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.CategoryStruct.id
map
ev_app
β€”Equiv.injective
CategoryTheory.NatTrans.ext'
CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app_assoc
CategoryTheory.MonoidalCategory.id_tensorHom
unit_app_ev_app_app
CategoryTheory.MonoidalClosed.uncurry_eq
map_app_comp_Ο€
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Category.assoc
CategoryTheory.ihom.ev_naturality
unit_app_ev_app_app_assoc
hΟ€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Ο€
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalClosed.pre
β€”β€”
hΟ€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Ο€
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalClosed.pre
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hΟ€
left_triangle_components πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategory.DayConvolution.map
CategoryTheory.CategoryStruct.id
coev_app
ev_app
β€”Equiv.injective
CategoryTheory.NatTrans.ext'
CategoryTheory.MonoidalClosed.curry_injective
CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app_assoc
CategoryTheory.MonoidalCategory.id_tensorHom
unit_app_ev_app_app
CategoryTheory.MonoidalClosed.curry_natural_left
CategoryTheory.MonoidalClosed.curry_uncurry
coev_app_Ο€
CategoryTheory.Category.comp_id
map_app_comp_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
map
Ο€
CategoryTheory.Functor.map
β€”hΟ€
CategoryTheory.Limits.Wedge.mk_ΞΉ
CategoryTheory.Limits.Wedge.IsLimit.lift_ΞΉ
map_app_comp_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
map
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Ο€
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_app_comp_Ο€
map_comp_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
Ο€
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”β€”
map_comp_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Ο€
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp_Ο€
right_triangle_components πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
coev_app
map
CategoryTheory.MonoidalCategory.DayConvolution.convolution
ev_app
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.Wedge.IsLimit.hom_ext
hΟ€
CategoryTheory.MonoidalClosed.uncurry_injective
CategoryTheory.Category.assoc
map_app_comp_Ο€
coev_app_Ο€_assoc
CategoryTheory.MonoidalClosed.uncurry_natural_right
CategoryTheory.MonoidalClosed.uncurry_curry
unit_app_ev_app_app
CategoryTheory.Category.id_comp
unit_app_ev_app_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.DayConvolution.unit
ev_app
CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.MonoidalClosed.closed
Ο€
β€”CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
CategoryTheory.Functor.descOfIsLeftKanExtension_fac_app
unit_app_ev_app_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.externalProduct
CategoryTheory.MonoidalCategory.DayConvolution.convolution
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.DayConvolution.unit
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ev_app
CategoryTheory.MonoidalClosed.uncurry
CategoryTheory.MonoidalClosed.closed
Ο€
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_app_ev_app_app

---

← Back to Index