Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Monoidal/Free/Basic.lean

Statistics

MetricCount
DefinitionsFreeMonoidalCategory, categoryFreeMonoidalCategory, homMk, instMonoidalCategory, instMonoidalProject, project, projectMap, projectMapAux, projectObj, setoidHom, instInhabitedFreeMonoidalCategory, default
12
TheoremsinductionOn, mk_comp, mk_id, mk_l_hom, mk_l_inv, mk_tensor, mk_whiskerLeft, mk_whiskerRight, mk_α_hom, mk_α_inv, mk_ρ_hom, mk_ρ_inv, tensor_eq_tensor, unit_eq_unit
14
Total26

CategoryTheory

Definitions

NameCategoryTheorems
FreeMonoidalCategory 📖CompData
25 mathmath: FreeMonoidalCategory.mk_ρ_hom, FreeMonoidalCategory.mk_id, FreeMonoidalCategory.inclusion_obj, FreeMonoidalCategory.normalizeIsoAux_inv_app, FreeMonoidalCategory.tensor_eq_tensor, FreeMonoidalCategory.normalizeObj_tensor, FreeMonoidalCategory.normalize_naturality, FreeMonoidalCategory.mk_whiskerRight, FreeMonoidalCategory.normalizeObj_unitor, FreeMonoidalCategory.mk_comp, FreeMonoidalCategory.mk_l_inv, FreeMonoidalCategory.tensorFunc_map_app, FreeMonoidalCategory.inclusion_map, FreeMonoidalCategory.mk_l_hom, FreeMonoidalCategory.mk_α_hom, FreeMonoidalCategory.normalizeIsoApp_unitor, FreeMonoidalCategory.mk_ρ_inv, FreeMonoidalCategory.subsingleton_hom, FreeMonoidalCategory.mk_whiskerLeft, FreeMonoidalCategory.normalizeIsoAux_hom_app, FreeMonoidalCategory.mk_α_inv, FreeMonoidalCategory.normalizeIsoApp_tensor, FreeMonoidalCategory.unit_eq_unit, FreeMonoidalCategory.mk_tensor, FreeMonoidalCategory.tensorFunc_obj_map
instInhabitedFreeMonoidalCategory 📖CompOp

CategoryTheory.FreeMonoidalCategory

Definitions

NameCategoryTheorems
categoryFreeMonoidalCategory 📖CompOp
25 mathmath: mk_ρ_hom, mk_id, inclusion_obj, normalizeIsoAux_inv_app, tensor_eq_tensor, normalizeObj_tensor, normalize_naturality, mk_whiskerRight, normalizeObj_unitor, mk_comp, mk_l_inv, tensorFunc_map_app, inclusion_map, mk_l_hom, mk_α_hom, normalizeIsoApp_unitor, mk_ρ_inv, subsingleton_hom, mk_whiskerLeft, normalizeIsoAux_hom_app, mk_α_inv, normalizeIsoApp_tensor, unit_eq_unit, mk_tensor, tensorFunc_obj_map
homMk 📖CompOp
instMonoidalCategory 📖CompOp
20 mathmath: mk_ρ_hom, normalizeIsoAux_inv_app, tensor_eq_tensor, normalizeObj_tensor, normalize_naturality, mk_whiskerRight, normalizeObj_unitor, mk_l_inv, tensorFunc_map_app, mk_l_hom, mk_α_hom, normalizeIsoApp_unitor, mk_ρ_inv, mk_whiskerLeft, normalizeIsoAux_hom_app, mk_α_inv, normalizeIsoApp_tensor, unit_eq_unit, mk_tensor, tensorFunc_obj_map
instMonoidalProject 📖CompOp
project 📖CompOp
projectMap 📖CompOp
projectMapAux 📖CompOp
projectObj 📖CompOp
setoidHom 📖CompOp
11 mathmath: mk_ρ_hom, mk_id, mk_whiskerRight, mk_comp, mk_l_inv, mk_l_hom, mk_α_hom, mk_ρ_inv, mk_whiskerLeft, mk_α_inv, mk_tensor

Theorems

NameKindAssumesProvesValidatesDepends On
mk_comp 📖mathematicalHom
setoidHom
Hom.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeMonoidalCategory
CategoryTheory.Category.toCategoryStruct
categoryFreeMonoidalCategory
mk_id 📖mathematicalHom
setoidHom
Hom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.FreeMonoidalCategory
CategoryTheory.Category.toCategoryStruct
categoryFreeMonoidalCategory
mk_l_hom 📖mathematicalHom
tensor
unit
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
Hom.l_hom
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
mk_l_inv 📖mathematicalHom
tensor
unit
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
Hom.l_inv
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
mk_tensor 📖mathematicalHom
tensor
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
Hom.tensor
CategoryTheory.MonoidalCategoryStruct.tensorHom
mk_whiskerLeft 📖mathematicalHom
tensor
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
Hom.whiskerLeft
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
mk_whiskerRight 📖mathematicalHom
tensor
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
Hom.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerRight
mk_α_hom 📖mathematicalHom
tensor
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
Hom.α_hom
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
mk_α_inv 📖mathematicalHom
tensor
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
Hom.α_inv
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
mk_ρ_hom 📖mathematicalHom
tensor
unit
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
Hom.ρ_hom
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
mk_ρ_inv 📖mathematicalHom
tensor
unit
setoidHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
Hom.ρ_inv
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
tensor_eq_tensor 📖mathematicaltensor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory
unit_eq_unit 📖mathematicalunit
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.FreeMonoidalCategory
categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonoidalCategory

CategoryTheory.FreeMonoidalCategory.Hom

Theorems

NameKindAssumesProvesValidatesDepends On
inductionOn 📖CategoryTheory.CategoryStruct.id
CategoryTheory.FreeMonoidalCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.FreeMonoidalCategory.categoryFreeMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.FreeMonoidalCategory.instMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategoryStruct.whiskerRight

CategoryTheory.instInhabitedFreeMonoidalCategory

Definitions

NameCategoryTheorems
default 📖CompOp

---

← Back to Index