Documentation Verification Report

Functor

📁 Source: Mathlib/CategoryTheory/Monoidal/Functor.lean

Statistics

MetricCount
DefinitionsIsMonoidal, rightAdjointLaxMonoidal, IsMonoidal, instMonoidalFunctorRefl, instMonoidalFunctorSymmOfInverse, instMonoidalFunctorTrans, instMonoidalInverseRefl, instMonoidalInverseSymmOfFunctor, instMonoidalInverseTrans, inverseMonoidal, monoidalOfPostcompFunctor, monoidalOfPostcompInverse, monoidalOfPrecompFunctor, monoidalOfPrecompInverse, CoreMonoidal, ofLaxMonoidal, ofOplaxMonoidal, toLaxMonoidal, toMonoidal, toOplaxMonoidal, εIso, μIso, LaxMonoidal, comp, id, ofTensorHom, prod', ε, μ, commTensorLeft, commTensorRight, coreMonoidalTransport, instComp, instId, ofLaxMonoidal, ofOplaxMonoidal, prod', toLaxMonoidal, toOplaxMonoidal, transport, εIso, μIso, μNatIso, OplaxMonoidal, comp, id, prod', δ, η, instLaxMonoidalProdProd, instMonoidalProdDiag, instMonoidalProdProd, instOplaxMonoidalProdProd, LaxMonoidalFunctor, laxMonoidal, of, toFunctor
57
TheoremsleftAdjoint_ε, leftAdjoint_μ, instIsMonoidal, instIsMonoidalId, isMonoidal_comp, map_ε_comp_counit_app_unit, map_ε_comp_counit_app_unit_assoc, map_η_comp_η, map_η_comp_η_assoc, map_μ_comp_counit_app_tensor, map_μ_comp_counit_app_tensor_assoc, rightAdjointLaxMonoidal_ε, rightAdjointLaxMonoidal_μ, unit_app_tensor_comp_map_δ, unit_app_tensor_comp_map_δ_assoc, unit_app_unit_comp_map_η, unit_app_unit_comp_map_η_assoc, ε_comp_map_ε, ε_comp_map_ε_assoc, counitInv_app_comp_functor_map_η_inverse, counitInv_app_comp_functor_map_η_inverse_assoc, counitInv_app_tensor_comp_functor_map_δ_inverse, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, counitIso_inv_app_comp_functor_map_η_inverse, counitIso_inv_app_comp_functor_map_η_inverse_assoc, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, functor_map_ε_inverse_comp_counitIso_hom_app, functor_map_ε_inverse_comp_counitIso_hom_app_assoc, functor_map_ε_inverse_comp_counit_app, functor_map_ε_inverse_comp_counit_app_assoc, functor_map_μ_inverse_comp_counitIso_hom_app_tensor, functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, functor_map_μ_inverse_comp_counit_app_tensor, functor_map_μ_inverse_comp_counit_app_tensor_assoc, isMonoidal_refl, isMonoidal_symm, isMonoidal_trans, map_η_comp_η, map_η_comp_η_assoc, unitIso_hom_app_comp_inverse_map_η_functor, unitIso_hom_app_comp_inverse_map_η_functor_assoc, unitIso_hom_app_tensor_comp_inverse_map_δ_functor, unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, unit_app_comp_inverse_map_η_functor, unit_app_comp_inverse_map_η_functor_assoc, unit_app_tensor_comp_inverse_map_δ_functor, unit_app_tensor_comp_inverse_map_δ_functor_assoc, ε_comp_map_ε, ε_comp_map_ε_assoc, associativity, associativity_assoc, left_unitality, left_unitality_assoc, ofOplaxMonoidal_εIso, ofOplaxMonoidal_μIso, right_unitality, right_unitality_assoc, toLaxMonoidal_ε, toLaxMonoidal_μ, toMonoidal_toLaxMonoidal, toMonoidal_toOplaxMonoidal, toOplaxMonoidal_δ, toOplaxMonoidal_η, μIso_hom_natural_left, μIso_hom_natural_left_assoc, μIso_hom_natural_right, μIso_hom_natural_right_assoc, associativity, associativity_assoc, associativity_inv, associativity_inv_assoc, comp_ε, comp_μ, ext, ext_iff, id_ε, id_μ, left_unitality, left_unitality_assoc, left_unitality_inv, left_unitality_inv_assoc, right_unitality, right_unitality_assoc, right_unitality_inv, right_unitality_inv_assoc, tensorHom_ε_comp_μ, tensorHom_ε_comp_μ_assoc, tensorUnit_whiskerLeft_comp_leftUnitor_hom, tensorUnit_whiskerLeft_comp_leftUnitor_hom_assoc, whiskerLeft_μ_comp_μ, whiskerLeft_μ_comp_μ_assoc, whiskerRight_tensorUnit_comp_rightUnitor_hom, whiskerRight_tensorUnit_comp_rightUnitor_hom_assoc, ε_tensorHom_comp_μ, ε_tensorHom_comp_μ_assoc, μ_natural, μ_natural_assoc, μ_natural_left, μ_natural_left_assoc, μ_natural_right, μ_natural_right_assoc, μ_whiskerRight_comp_μ, μ_whiskerRight_comp_μ_assoc, commTensorLeft_hom_app, commTensorLeft_inv_app, commTensorRight_hom_app, commTensorRight_inv_app, coreMonoidalTransport_εIso_hom, coreMonoidalTransport_εIso_inv, coreMonoidalTransport_μIso_hom, coreMonoidalTransport_μIso_inv, ext, ext_iff, instIsIsoδ, instIsIsoε, instIsIsoη, instIsIsoμ, inv_δ, inv_ε, inv_η, inv_μ, map_associator, map_associator', map_associator'_assoc, map_associator_assoc, map_associator_inv, map_associator_inv', map_associator_inv'_assoc, map_associator_inv_assoc, map_leftUnitor, map_leftUnitor_assoc, map_leftUnitor_inv, map_leftUnitor_inv_assoc, map_rightUnitor, map_rightUnitor_assoc, map_rightUnitor_inv, map_rightUnitor_inv_assoc, map_tensor, map_tensor_assoc, map_whiskerLeft, map_whiskerLeft_assoc, map_whiskerRight, map_whiskerRight_assoc, map_δ_μ, map_δ_μ_assoc, map_ε_η, map_ε_η_assoc, map_η_ε, map_η_ε_assoc, map_μ_δ, map_μ_δ_assoc, toLaxMonoidal_injective, toOplaxMonoidal_injective, transport_δ, transport_δ_assoc, transport_ε, transport_ε_assoc, transport_η, transport_η_assoc, transport_μ, transport_μ_assoc, whiskerLeft_δ_μ, whiskerLeft_δ_μ_assoc, whiskerLeft_ε_η, whiskerLeft_ε_η_assoc, whiskerLeft_η_ε, whiskerLeft_η_ε_assoc, whiskerLeft_μ_δ, whiskerLeft_μ_δ_assoc, whiskerRight_δ_μ, whiskerRight_δ_μ_assoc, whiskerRight_ε_η, whiskerRight_ε_η_assoc, whiskerRight_η_ε, whiskerRight_η_ε_assoc, whiskerRight_μ_δ, whiskerRight_μ_δ_assoc, δ_μ, δ_μ_assoc, εIso_hom, εIso_inv, ε_η, ε_η_assoc, η_ε, η_ε_assoc, μIso_hom, μIso_inv, μNatIso_hom_app, μNatIso_inv_app, μ_δ, μ_δ_assoc, associativity, associativity_assoc, associativity_inv, associativity_inv_assoc, comp_δ, comp_η, ext, ext_iff, id_δ, id_η, left_unitality, left_unitality_assoc, left_unitality_hom, left_unitality_hom_assoc, oplax_associativity, oplax_left_unitality, oplax_right_unitality, right_unitality, right_unitality_assoc, right_unitality_hom, right_unitality_hom_assoc, δ_comp_tensorHom_η, δ_comp_tensorHom_η_assoc, δ_comp_whiskerLeft_δ, δ_comp_whiskerLeft_δ_assoc, δ_comp_δ_whiskerRight, δ_comp_δ_whiskerRight_assoc, δ_comp_η_tensorHom, δ_comp_η_tensorHom_assoc, δ_natural, δ_natural_assoc, δ_natural_left, δ_natural_left_assoc, δ_natural_right, δ_natural_right_assoc, diag_δ, diag_ε, diag_η, diag_μ, prod'_δ_fst, prod'_δ_snd, prod'_ε_fst, prod'_ε_snd, prod'_η_fst, prod'_η_snd, prod'_μ_fst, prod'_μ_snd, prod_δ_fst, prod_δ_snd, prod_ε_fst, prod_ε_snd, prod_η_fst, prod_η_snd, prod_μ_fst, prod_μ_snd, of_toFunctor
248
Total305

CategoryTheory

Definitions

NameCategoryTheorems
LaxMonoidalFunctor 📖CompData
47 mathmath: TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, Mon.EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, Mon.equivLaxMonoidalFunctorPUnit_inverse, LaxBraidedFunctor.isoOfComponents_inv_hom_hom_app, CommMon.EquivLaxBraidedFunctorPUnit.unitIso_hom_app_hom_hom_app, LaxBraidedFunctor.comp_hom, LaxBraidedFunctor.isoOfComponents_hom_hom_app, LaxMonoidalFunctor.isoOfComponents_inv_hom_app, LaxBraidedFunctor.forget_map, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, LaxMonoidalFunctor.isoMk_inv, LaxBraidedFunctor.isoOfComponents_hom_hom_hom_app, CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, Functor.mapCommMonFunctor_map_app, LaxBraidedFunctor.comp_hom_assoc, Functor.mapMonFunctor_obj, LaxMonoidalFunctor.isoOfComponents_hom_hom_app, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, Functor.mapMonFunctor_map_app_hom, Mon.equivLaxMonoidalFunctorPUnit_counitIso, Mon.equivLaxMonoidalFunctorPUnit_unitIso, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_obj, Mon.EquivLaxMonoidalFunctorPUnit.unitIso_hom_app_hom_app, Mon.EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, LaxBraidedFunctor.homMk_hom_hom, LaxBraidedFunctor.forget_obj, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_inv, Mon.equivLaxMonoidalFunctorPUnit_functor, LaxBraidedFunctor.isoOfComponents_inv_hom_app, LaxMonoidalFunctor.comp_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map, LaxMonoidalFunctor.isoMk_hom, CommMon.EquivLaxBraidedFunctorPUnit.unitIso_inv_app_hom_hom_app, LaxMonoidalFunctor.comp_hom_assoc, LaxBraidedFunctor.id_hom, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, LaxBraidedFunctor.hom_ext_iff, Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj, TannakaDuality.FiniteGroup.equivHom_surjective, TannakaDuality.FiniteGroup.equivHom_injective, LaxMonoidalFunctor.id_hom, Mon.EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app, TannakaDuality.FiniteGroup.equivHom_apply

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
IsMonoidal 📖CompData
3 mathmath: isMonoidal_comp, instIsMonoidalId, instIsMonoidal
rightAdjointLaxMonoidal 📖CompOp
3 mathmath: rightAdjointLaxMonoidal_μ, instIsMonoidal, rightAdjointLaxMonoidal_ε

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidal 📖mathematicalIsMonoidal
rightAdjointLaxMonoidal
instIsMonoidalId 📖mathematicalIsMonoidal
CategoryTheory.Functor.id
id
CategoryTheory.Functor.OplaxMonoidal.id
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
isMonoidal_comp 📖mathematicalIsMonoidal
CategoryTheory.Functor.comp
comp
CategoryTheory.Functor.OplaxMonoidal.comp
CategoryTheory.Functor.LaxMonoidal.comp
IsMonoidal.leftAdjoint_ε
CategoryTheory.Category.assoc
unit_naturality_assoc
comp_unit_app
IsMonoidal.leftAdjoint_μ
comp_counit_app
CategoryTheory.Functor.OplaxMonoidal.δ_natural_assoc
CategoryTheory.Functor.map_comp
map_ε_comp_counit_app_unit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
counit
CategoryTheory.Functor.OplaxMonoidal.η
IsMonoidal.leftAdjoint_ε
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
counit_naturality
left_triangle_components_assoc
map_ε_comp_counit_app_unit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_ε_comp_counit_app_unit
map_η_comp_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
map_ε_comp_counit_app_unit
CategoryTheory.Functor.Monoidal.map_η_ε_assoc
map_η_comp_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_η_comp_η
map_μ_comp_counit_app_tensor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
counit
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
IsMonoidal.leftAdjoint_μ
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
counit_naturality
counit_naturality_assoc
left_triangle_components_assoc
map_μ_comp_counit_app_tensor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_μ_comp_counit_app_tensor
rightAdjointLaxMonoidal_ε 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
rightAdjointLaxMonoidal
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.OplaxMonoidal.η
rightAdjointLaxMonoidal_μ 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
rightAdjointLaxMonoidal
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
unit_app_tensor_comp_map_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.LaxMonoidal.μ
IsMonoidal.leftAdjoint_μ
unit_naturality_assoc
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
left_triangle_components
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.comp_id
unit_app_tensor_comp_map_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_app_tensor_comp_map_δ
unit_app_unit_comp_map_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.LaxMonoidal.ε
IsMonoidal.leftAdjoint_ε
unit_app_unit_comp_map_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_app_unit_comp_map_η
ε_comp_map_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
unit_app_unit_comp_map_η
CategoryTheory.Category.assoc
CategoryTheory.Functor.Monoidal.map_η_ε
CategoryTheory.Category.comp_id
ε_comp_map_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ε_comp_map_ε

CategoryTheory.Adjunction.IsMonoidal

Theorems

NameKindAssumesProvesValidatesDepends On
leftAdjoint_ε 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
leftAdjoint_μ 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Adjunction.counit

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
IsMonoidal 📖MathDef
7 mathmath: isMonoidal_trans, CategoryTheory.instIsMonoidalFunctorCongrLeft, CategoryTheory.Monoidal.instIsMonoidalTransportedSymmEquivalenceTransported, isMonoidal_symm, CategoryTheory.instIsMonoidalOppositeOpOpEquivalence, isMonoidal_refl, CategoryTheory.instIsMonoidalMonoidalOppositeMopMopEquivalence
instMonoidalFunctorRefl 📖CompOp
1 mathmath: isMonoidal_refl
instMonoidalFunctorSymmOfInverse 📖CompOp
1 mathmath: isMonoidal_symm
instMonoidalFunctorTrans 📖CompOp
1 mathmath: isMonoidal_trans
instMonoidalInverseRefl 📖CompOp
1 mathmath: isMonoidal_refl
instMonoidalInverseSymmOfFunctor 📖CompOp
1 mathmath: isMonoidal_symm
instMonoidalInverseTrans 📖CompOp
1 mathmath: isMonoidal_trans
inverseMonoidal 📖CompOp
monoidalOfPostcompFunctor 📖CompOp
monoidalOfPostcompInverse 📖CompOp
monoidalOfPrecompFunctor 📖CompOp
monoidalOfPrecompInverse 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
counitInv_app_comp_functor_map_η_inverse 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.NatTrans.app
counitInv
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Functor.Monoidal.instIsIsoη
CategoryTheory.Functor.Monoidal.η_ε
functor_map_ε_inverse_comp_counitIso_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.Functor.Monoidal.map_ε_η
counitInv_app_comp_functor_map_η_inverse_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
counitInv
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counitInv_app_comp_functor_map_η_inverse
counitInv_app_tensor_comp_functor_map_δ_inverse 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
functor
CategoryTheory.Functor.comp
inverse
CategoryTheory.NatTrans.app
counitInv
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
counitIso_inv_app_tensor_comp_functor_map_δ_inverse
counitInv_app_tensor_comp_functor_map_δ_inverse_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
counitInv
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counitInv_app_tensor_comp_functor_map_δ_inverse
counitIso_inv_app_comp_functor_map_η_inverse 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Functor.Monoidal.instIsIsoη
CategoryTheory.Functor.Monoidal.η_ε
functor_map_ε_inverse_comp_counitIso_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.Functor.Monoidal.map_ε_η
counitIso_inv_app_comp_functor_map_η_inverse_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counitIso_inv_app_comp_functor_map_η_inverse
counitIso_inv_app_tensor_comp_functor_map_δ_inverse 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
functor
CategoryTheory.Functor.comp
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
unitIso
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Functor.Monoidal.instIsIsoδ
CategoryTheory.Functor.Monoidal.δ_μ_assoc
CategoryTheory.Functor.map_injective
faithful_inverse
CategoryTheory.Functor.map_comp
inv_fun_map
inverse_counitInv_comp_assoc
CategoryTheory.NatIso.hom_app_isIso
unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc
CategoryTheory.Functor.Monoidal.μ_δ_assoc
CategoryTheory.Iso.hom_inv_id_app_assoc
counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
unitIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counitIso_inv_app_tensor_comp_functor_map_δ_inverse
functor_map_ε_inverse_comp_counitIso_hom_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
inverse
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Adjunction.map_ε_comp_counit_app_unit
functor_map_ε_inverse_comp_counitIso_hom_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
inverse
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functor_map_ε_inverse_comp_counitIso_hom_app
functor_map_ε_inverse_comp_counit_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
inverse
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
counit
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Adjunction.map_ε_comp_counit_app_unit
functor_map_ε_inverse_comp_counit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
inverse
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functor_map_ε_inverse_comp_counit_app
functor_map_μ_inverse_comp_counitIso_hom_app_tensor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
inverse
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor
functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
inverse
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functor_map_μ_inverse_comp_counitIso_hom_app_tensor
functor_map_μ_inverse_comp_counit_app_tensor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
inverse
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
counit
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor
functor_map_μ_inverse_comp_counit_app_tensor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
inverse
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functor_map_μ_inverse_comp_counit_app_tensor
isMonoidal_refl 📖mathematicalIsMonoidal
refl
instMonoidalFunctorRefl
instMonoidalInverseRefl
CategoryTheory.Adjunction.instIsMonoidalId
isMonoidal_symm 📖mathematicalIsMonoidal
symm
instMonoidalFunctorSymmOfInverse
instMonoidalInverseSymmOfFunctor
counitIso_inv_app_comp_functor_map_η_inverse
CategoryTheory.Functor.map_comp
counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
isMonoidal_trans 📖mathematicalIsMonoidal
trans
instMonoidalFunctorTrans
instMonoidalInverseTrans
trans_toAdjunction
CategoryTheory.Adjunction.isMonoidal_comp
map_η_comp_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Adjunction.map_η_comp_η
map_η_comp_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_η_comp_η
unitIso_hom_app_comp_inverse_map_η_functor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Adjunction.unit_app_unit_comp_map_η
unitIso_hom_app_comp_inverse_map_η_functor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unitIso_hom_app_comp_inverse_map_η_functor
unitIso_hom_app_tensor_comp_inverse_map_δ_functor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ
unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unitIso_hom_app_tensor_comp_inverse_map_δ_functor
unit_app_comp_inverse_map_η_functor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Adjunction.unit_app_unit_comp_map_η
unit_app_comp_inverse_map_η_functor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_app_comp_inverse_map_η_functor
unit_app_tensor_comp_inverse_map_δ_functor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ
unit_app_tensor_comp_inverse_map_δ_functor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_app_tensor_comp_inverse_map_δ_functor
ε_comp_map_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Adjunction.ε_comp_map_ε
ε_comp_map_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
inverse
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.Monoidal.toLaxMonoidal
functor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ε_comp_map_ε

CategoryTheory.Functor

Definitions

NameCategoryTheorems
CoreMonoidal 📖CompData
LaxMonoidal 📖CompData
1 mathmath: Monoidal.toLaxMonoidal_injective
OplaxMonoidal 📖CompData
2 mathmath: OplaxMonoidal.instSubsingleton, Monoidal.toOplaxMonoidal_injective
instLaxMonoidalProdProd 📖CompOp
4 mathmath: prod_ε_snd, prod_ε_fst, prod_μ_fst, prod_μ_snd
instMonoidalProdDiag 📖CompOp
4 mathmath: diag_δ, diag_μ, diag_η, diag_ε
instMonoidalProdProd 📖CompOp
instOplaxMonoidalProdProd 📖CompOp
4 mathmath: prod_η_snd, prod_δ_snd, prod_η_fst, prod_δ_fst

Theorems

NameKindAssumesProvesValidatesDepends On
diag_δ 📖mathematicalOplaxMonoidal.δ
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.prodMonoidal
diag
Monoidal.toOplaxMonoidal
instMonoidalProdDiag
CategoryTheory.CategoryStruct.id
CategoryTheory.prod
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
diag_ε 📖mathematicalLaxMonoidal.ε
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.prodMonoidal
diag
Monoidal.toLaxMonoidal
instMonoidalProdDiag
CategoryTheory.CategoryStruct.id
CategoryTheory.prod
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
diag_η 📖mathematicalOplaxMonoidal.η
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.prodMonoidal
diag
Monoidal.toOplaxMonoidal
instMonoidalProdDiag
CategoryTheory.CategoryStruct.id
CategoryTheory.prod
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
diag_μ 📖mathematicalLaxMonoidal.μ
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategory.prodMonoidal
diag
Monoidal.toLaxMonoidal
instMonoidalProdDiag
CategoryTheory.CategoryStruct.id
CategoryTheory.prod
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
obj
prod'_δ_fst 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.prod'
prod'
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
OplaxMonoidal.δ
OplaxMonoidal.prod'
map_id
CategoryTheory.Category.id_comp
prod'_δ_snd 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.prod'
prod'
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
OplaxMonoidal.δ
OplaxMonoidal.prod'
map_id
CategoryTheory.Category.id_comp
prod'_ε_fst 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
obj
prod'
LaxMonoidal.ε
LaxMonoidal.prod'
map_id
CategoryTheory.Category.comp_id
prod'_ε_snd 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
obj
prod'
LaxMonoidal.ε
LaxMonoidal.prod'
map_id
CategoryTheory.Category.comp_id
prod'_η_fst 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.prod'
prod'
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
OplaxMonoidal.η
OplaxMonoidal.prod'
map_id
CategoryTheory.Category.id_comp
prod'_η_snd 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.prod'
prod'
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
OplaxMonoidal.η
OplaxMonoidal.prod'
map_id
CategoryTheory.Category.id_comp
prod'_μ_fst 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
obj
prod'
LaxMonoidal.μ
LaxMonoidal.prod'
map_id
CategoryTheory.Category.comp_id
prod'_μ_snd 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
obj
prod'
LaxMonoidal.μ
LaxMonoidal.prod'
map_id
CategoryTheory.Category.comp_id
prod_δ_fst 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.prod'
prod
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
OplaxMonoidal.δ
instOplaxMonoidalProdProd
prod_δ_snd 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.prod'
prod
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
OplaxMonoidal.δ
instOplaxMonoidalProdProd
prod_ε_fst 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
obj
prod
LaxMonoidal.ε
instLaxMonoidalProdProd
prod_ε_snd 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
obj
prod
LaxMonoidal.ε
instLaxMonoidalProdProd
prod_η_fst 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.prod'
prod
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
OplaxMonoidal.η
instOplaxMonoidalProdProd
prod_η_snd 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.prod'
prod
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
OplaxMonoidal.η
instOplaxMonoidalProdProd
prod_μ_fst 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
obj
prod
LaxMonoidal.μ
instLaxMonoidalProdProd
prod_μ_snd 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.prodMonoidal
obj
prod
LaxMonoidal.μ
instLaxMonoidalProdProd

CategoryTheory.Functor.CoreMonoidal

Definitions

NameCategoryTheorems
ofLaxMonoidal 📖CompOp
ofOplaxMonoidal 📖CompOp
4 mathmath: CategoryTheory.Over.grpObjMkPullbackSnd_one, CategoryTheory.Over.grpObjMkPullbackSnd_mul, ofOplaxMonoidal_εIso, ofOplaxMonoidal_μIso
toLaxMonoidal 📖CompOp
5 mathmath: CategoryTheory.Over.grpObjMkPullbackSnd_one, CategoryTheory.Over.grpObjMkPullbackSnd_mul, toMonoidal_toLaxMonoidal, toLaxMonoidal_ε, toLaxMonoidal_μ
toMonoidal 📖CompOp
2 mathmath: toMonoidal_toLaxMonoidal, toMonoidal_toOplaxMonoidal
toOplaxMonoidal 📖CompOp
3 mathmath: toOplaxMonoidal_δ, toOplaxMonoidal_η, toMonoidal_toOplaxMonoidal
εIso 📖CompOp
11 mathmath: CategoryTheory.Functor.Monoidal.coreMonoidalTransport_εIso_inv, left_unitality, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_εIso_hom, right_unitality_assoc, ofOplaxMonoidal_εIso, right_unitality, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_inv, toLaxMonoidal_ε, left_unitality_assoc, toOplaxMonoidal_η, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_hom
μIso 📖CompOp
17 mathmath: left_unitality, μIso_hom_natural_left, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_μIso_hom, associativity_assoc, right_unitality_assoc, toOplaxMonoidal_δ, μIso_hom_natural_left_assoc, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_μIso_inv, associativity, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_μIso_inv, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_μIso_hom, μIso_hom_natural_right, right_unitality, μIso_hom_natural_right_assoc, toLaxMonoidal_μ, left_unitality_assoc, ofOplaxMonoidal_μIso

Theorems

NameKindAssumesProvesValidatesDepends On
associativity 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
μIso
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
associativity_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
μIso
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associativity
left_unitality 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
εIso
μIso
CategoryTheory.Functor.map
left_unitality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
εIso
μIso
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
left_unitality
ofOplaxMonoidal_εIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.δ
εIso
ofOplaxMonoidal
CategoryTheory.Iso.symm
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.asIso
CategoryTheory.Functor.OplaxMonoidal.η
ofOplaxMonoidal_μIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.δ
μIso
ofOplaxMonoidal
CategoryTheory.Iso.symm
CategoryTheory.asIso
right_unitality 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
εIso
μIso
CategoryTheory.Functor.map
right_unitality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
εIso
μIso
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
right_unitality
toLaxMonoidal_ε 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
εIso
toLaxMonoidal_μ 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
μIso
toMonoidal_toLaxMonoidal 📖mathematicalCategoryTheory.Functor.Monoidal.toLaxMonoidal
toMonoidal
toLaxMonoidal
toMonoidal_toOplaxMonoidal 📖mathematicalCategoryTheory.Functor.Monoidal.toOplaxMonoidal
toMonoidal
toOplaxMonoidal
toOplaxMonoidal_δ 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
μIso
toOplaxMonoidal_η 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
εIso
μIso_hom_natural_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
μIso
μIso_hom_natural_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
μIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μIso_hom_natural_left
μIso_hom_natural_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
μIso
μIso_hom_natural_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
μIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μIso_hom_natural_right

CategoryTheory.Functor.LaxMonoidal

Definitions

NameCategoryTheorems
comp 📖CompOp
32 mathmath: CategoryTheory.Adjunction.isMonoidal_comp, CategoryTheory.NatTrans.IsMonoidal.instHomFunctorAssociator, CategoryTheory.Adjunction.mapMon_unit, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, CategoryTheory.Discrete.monoidalFunctorComp_isMonoidal, CategoryTheory.Functor.mapMonCompIso_hom_app_hom, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, CategoryTheory.Localization.Monoidal.lifting_isMonoidal, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Equivalence.mapMon_unitIso, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, CategoryTheory.Adjunction.mapMon_counit, CategoryTheory.NatTrans.IsMonoidal.hcomp, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.Functor.comp_mapCommMon_mul, CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalUnit, CategoryTheory.Functor.comp_mapCommGrp_mul, CategoryTheory.NatTrans.IsMonoidal.whiskerRight, CategoryTheory.NatTrans.IsMonoidal.instHomFunctorRightUnitor, CategoryTheory.Equivalence.mapMon_counitIso, CategoryTheory.NatTrans.IsMonoidal.instHomFunctorLeftUnitor, comp_ε, CategoryTheory.Functor.mapMonCompIso_inv_app_hom, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Discrete.addMonoidalFunctorComp_isMonoidal, comp_μ, CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalCounit, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.Functor.comp_mapCommMon_one, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.NatTrans.IsMonoidal.whiskerLeft
id 📖CompOp
19 mathmath: CategoryTheory.Adjunction.mapMon_unit, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Equivalence.mapMon_unitIso, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, CategoryTheory.Adjunction.instIsMonoidalId, CategoryTheory.Adjunction.mapMon_counit, id_ε, CategoryTheory.Functor.mapMonIdIso_hom_app_hom, CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalUnit, id_μ, CategoryTheory.NatTrans.IsMonoidal.instHomFunctorRightUnitor, CategoryTheory.Functor.mapMonIdIso_inv_app_hom, CategoryTheory.Equivalence.mapMon_counitIso, CategoryTheory.NatTrans.IsMonoidal.instHomFunctorLeftUnitor, CategoryTheory.Functor.id_mapMon_mul, CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalCounit, CategoryTheory.Functor.id_mapMon_one
ofTensorHom 📖CompOp
prod' 📖CompOp
5 mathmath: CategoryTheory.Functor.prod'_μ_fst, CategoryTheory.NatTrans.instIsMonoidalProdProd', CategoryTheory.Functor.prod'_ε_fst, CategoryTheory.Functor.prod'_μ_snd, CategoryTheory.Functor.prod'_ε_snd
ε 📖CompOp
158 mathmath: CategoryTheory.Functor.Braided.ext_iff, CategoryTheory.obj_ε_app_assoc, CategoryTheory.Functor.Monoidal.ext_iff, right_unitality, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_η_ε, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse, CategoryTheory.Adjunction.map_ε_comp_counit_app_unit_assoc, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.Functor.Monoidal.εIso_hom, CategoryTheory.TransportEnrichment.eId_eq, CategoryTheory.Mon.forget_ε, CategoryTheory.MonoidalOpposite.mopFunctor_ε, CategoryTheory.Functor.Monoidal.η_ε_assoc, CategoryTheory.Over.grpObjMkPullbackSnd_one, CategoryTheory.Functor.Monoidal.toUnit_ε_assoc, CategoryTheory.η_ε_app_assoc, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ε_unmop_unmop, CategoryTheory.Functor.Monoidal.whiskerRight_η_ε, left_unitality_assoc, CategoryTheory.Functor.Monoidal.map_rightUnitor_inv, CategoryTheory.Grp.ε_def, CategoryTheory.Functor.Monoidal.map_leftUnitor_inv, CategoryTheory.ε_η_app_assoc, CategoryTheory.ε_naturality_assoc, CategoryTheory.Functor.prod'_ε_fst, CategoryTheory.Adjunction.ε_comp_map_ε_assoc, CategoryTheory.Functor.Monoidal.ε_η, CategoryTheory.ObjectProperty.ι_η, CategoryTheory.Pi.laxMonoidalPi'_ε, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionUnitIso_inv, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.Monoidal.map_ε_η_assoc, CategoryTheory.left_unitality_app_assoc, CategoryTheory.Functor.prod_ε_snd, CategoryTheory.NatTrans.IsMonoidal.unit, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_εIso_hom, CategoryTheory.Functor.Monoidal.whiskerLeft_ε_η_assoc, CategoryTheory.Functor.Monoidal.transport_ε, CategoryTheory.Functor.Monoidal.whiskerRight_η_ε_assoc, CategoryTheory.Adjunction.unit_app_unit_comp_map_η, CategoryTheory.ObjectProperty.ι_ε, SSet.hoFunctor.unitHomEquiv_eq, CategoryTheory.Adjunction.IsMonoidal.leftAdjoint_ε, CategoryTheory.Center.ofBraided_ε_f, left_unitality, CategoryTheory.right_unitality_app_assoc, CategoryTheory.Functor.obj.η_def_assoc, CategoryTheory.Center.forget_ε, CategoryTheory.Functor.obj.η_def, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_ε, CategoryTheory.Functor.Monoidal.whiskeringLeft_ε_app, CategoryTheory.Functor.Monoidal.map_leftUnitor_inv_assoc, CategoryTheory.Functor.Monoidal.whiskerRight_ε_η_assoc, CategoryTheory.Limits.lim_ε_π_assoc, CategoryTheory.monoidalUnopUnop_ε, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse_assoc, id_ε, CategoryTheory.Functor.Monoidal.inv_η, right_unitality_inv, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app_assoc, ModuleCat.free_ε_one, CategoryTheory.Functor.mapAction_ε_hom, CategoryTheory.Functor.Monoidal.toUnit_ε, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε, CategoryTheory.Functor.mapMon_obj_mon_one, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.Discrete.monoidalFunctor_ε, tensorHom_ε_comp_μ_assoc, CategoryTheory.ε_naturality, ε_tensorHom_comp_μ_assoc, CategoryTheory.Adjunction.ε_comp_map_ε, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse, CategoryTheory.Limits.lim_ε_π, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_ε_app, tensorUnit_whiskerLeft_comp_leftUnitor_hom, CategoryTheory.Functor.prod_ε_fst, CategoryTheory.Over.monObjMkPullbackSnd_one, CategoryTheory.unitOfTensorIsoUnit_inv_app, CategoryTheory.MonoidalCategory.tensoringRight_ε, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε_assoc, CategoryTheory.Functor.Monoidal.inv_ε, tensorUnit_whiskerLeft_comp_leftUnitor_hom_assoc, CategoryTheory.ε_app_obj, CategoryTheory.Functor.mapCommMon_obj_mon_one, CategoryTheory.monoidalOpOp_ε, whiskeringRight_ε_app, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.Functor.instIsMonHomε, CategoryTheory.Functor.Monoidal.ε_of_cartesianMonoidalCategory, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.ε_def, Action.forget_ε, CategoryTheory.left_unitality_app, CategoryTheory.Functor.Monoidal.whiskerLeft_ε_η, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app, CategoryTheory.Equivalence.ε_comp_map_ε, CategoryTheory.ε_η_app, CategoryTheory.Functor.prod'_ε_snd, right_unitality_assoc, CategoryTheory.Functor.Monoidal.map_ε_η, ext_iff, comp_ε, CategoryTheory.Functor.Monoidal.instIsIsoε, CategoryTheory.Pi.monoidalPi_ε, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_inv, CategoryTheory.NatTrans.IsMonoidal.unit_assoc, CategoryTheory.Discrete.addMonoidalFunctor_ε, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Functor.Monoidal.whiskerRight_ε_η, CategoryTheory.Functor.Monoidal.map_η_ε_assoc, whiskerRight_tensorUnit_comp_rightUnitor_hom, CategoryTheory.sheafToPresheaf_ε, CategoryTheory.Functor.Monoidal.map_η_ε, CategoryTheory.Pi.monoidalPi'_ε, CategoryTheory.Functor.CoreMonoidal.toLaxMonoidal_ε, CategoryTheory.Pi.laxMonoidalPi_ε, CategoryTheory.ObjectProperty.ιOfLE_ε, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_ε, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor_assoc, ε_tensorHom_comp_μ, CategoryTheory.Mon.limit_mon_one, right_unitality_inv_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, tensorHom_ε_comp_μ, whiskerRight_tensorUnit_comp_rightUnitor_hom_assoc, CategoryTheory.Adjunction.unit_app_unit_comp_map_η_assoc, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraidedObj_ε, CategoryTheory.MonoidalOpposite.unmopFunctor_ε, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.Equivalence.ε_comp_map_ε_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ε_unmop_app, CategoryTheory.obj_ε_app, CategoryTheory.Functor.Monoidal.transport_ε_assoc, CategoryTheory.Adjunction.map_ε_comp_counit_app_unit, CategoryTheory.Over.ε_pullback_left, CategoryTheory.Comon.forget_ε, CategoryTheory.Functor.Monoidal.ε_η_assoc, CategoryTheory.Functor.Monoidal.map_rightUnitor_inv_assoc, left_unitality_inv, CategoryTheory.Functor.diag_ε, left_unitality_inv_assoc, Rep.linearization_ε_hom, CategoryTheory.Functor.Monoidal.whiskerLeft_η_ε_assoc, CategoryTheory.Pi.ε_def, CategoryTheory.MonoidalCategory.tensor_ε, CategoryTheory.ε_app, CategoryTheory.right_unitality_app, CategoryTheory.η_ε_app, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.Functor.comp_mapCommMon_one, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_ε, CategoryTheory.Functor.comp_mapGrp_one, Action.FunctorCategoryEquivalence.functor_ε, CategoryTheory.Functor.Monoidal.η_ε, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_hom
μ 📖CompOp
230 mathmath: CategoryTheory.Functor.Braided.ext_iff, CategoryTheory.Over.μ_pullback_left_snd', associativity_assoc, whiskerLeft_μ_comp_μ_assoc, CategoryTheory.Functor.Monoidal.ext_iff, CategoryTheory.Functor.Monoidal.commTensorLeft_hom_app, μ_natural_right, right_unitality, CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ_assoc, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Functor.mapCommMon_obj_mon_mul, CategoryTheory.Mon.forget_μ, CategoryTheory.Functor.Monoidal.whiskerLeft_μ_δ_assoc, CategoryTheory.μ_def, CategoryTheory.Functor.prod'_μ_fst, CategoryTheory.Functor.mapMon_obj_mon_mul, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_μ, CategoryTheory.Adjunction.IsMonoidal.leftAdjoint_μ, CategoryTheory.Functor.Monoidal.inv_μ, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.Functor.Monoidal.map_associator_inv_assoc, CategoryTheory.μ_δ_app_assoc, CategoryTheory.Functor.Monoidal.map_associator_assoc, CategoryTheory.Functor.Monoidal.transport_μ, CategoryTheory.Functor.Monoidal.map_μ_δ_assoc, CategoryTheory.Functor.Monoidal.lift_μ_assoc, CategoryTheory.Functor.LaxBraided.braided, left_unitality_assoc, CategoryTheory.μ_naturality₂_assoc, CategoryTheory.Functor.Monoidal.δ_μ, CategoryTheory.Functor.Monoidal.whiskerLeft_μ_δ, CategoryTheory.Functor.Monoidal.map_rightUnitor_inv, CategoryTheory.sheafToPresheaf_μ, CategoryTheory.Functor.Monoidal.map_leftUnitor_inv, CategoryTheory.Functor.Monoidal.map_associator, CategoryTheory.MonoidalCategory.tensorμ_comp_μ_tensorHom_μ_comp_μ_assoc, CategoryTheory.obj_zero_map_μ_app_assoc, CategoryTheory.Functor.Monoidal.map_whiskerRight, CategoryTheory.μ_naturalityᵣ_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_μ_unmop_app, CategoryTheory.Functor.Monoidal.whiskerRight_μ_δ_assoc, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app', CommGrpCat.μ_forget_apply, CategoryTheory.obj_μ_app, CategoryTheory.μ_naturalityₗ, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionAssocIso_inv, CategoryTheory.Functor.Monoidal.μ_comp_assoc, CategoryTheory.left_unitality_app_assoc, CategoryTheory.μ_naturality₂, CategoryTheory.Functor.instIsMonHomμ, CategoryTheory.μ_naturalityᵣ, CategoryTheory.Functor.Monoidal.map_associator'_assoc, CategoryTheory.Functor.Monoidal.μ_fst_assoc, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_μIso_hom, CategoryTheory.Functor.Monoidal.map_δ_μ_assoc, CategoryTheory.Functor.Monoidal.map_whiskerLeft_assoc, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, CategoryTheory.δ_μ_app, CategoryTheory.Mon.limit_mon_mul, CategoryTheory.MonoidalCategory.tensorμ_comp_μ_tensorHom_μ_comp_μ, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ, CategoryTheory.Functor.Monoidal.transport_μ_assoc, left_unitality, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor, μ_natural_right_assoc, CategoryTheory.right_unitality_app_assoc, CategoryTheory.η_app_obj, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_μ, CategoryTheory.Grp.μ_def, CategoryTheory.Functor.Monoidal.map_leftUnitor_inv_assoc, CategoryTheory.NatTrans.IsMonoidal.tensor, CategoryTheory.μ_naturality, CategoryTheory.obj_zero_map_μ_app, CategoryTheory.Functor.Monoidal.whiskeringLeft_μ_app, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.Functor.Monoidal.map_associator_inv, CategoryTheory.associator_inv, CategoryTheory.Pi.laxMonoidalPi'_μ, CategoryTheory.Functor.Monoidal.μ_of_cartesianMonoidalCategory, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.Functor.Monoidal.map_associator_inv', right_unitality_inv, CategoryTheory.Functor.diag_μ, CategoryTheory.Functor.comp_mapCommMon_mul, CategoryTheory.Functor.Monoidal.instIsIsoμ, CategoryTheory.Functor.Monoidal.map_associator_inv'_assoc, CategoryTheory.Functor.Braided.braided, CategoryTheory.monoidalOpOp_μ, CategoryTheory.Functor.prod'_μ_snd, CategoryTheory.Functor.comp_mapCommGrp_mul, AddCommGrpCat.μ_forget_apply, tensorHom_ε_comp_μ_assoc, CategoryTheory.Functor.Monoidal.μIso_hom, CategoryTheory.Functor.mapAction_μ_hom, ε_tensorHom_comp_μ_assoc, associativity_inv, tensorUnit_whiskerLeft_comp_leftUnitor_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_μ, id_μ, CategoryTheory.Over.μ_pullback_left_fst_fst', μ_natural_left_assoc, CategoryTheory.Over.μ_pullback_left_fst_snd, associativity_inv_assoc, CategoryTheory.Functor.Monoidal.map_associator', CategoryTheory.obj_η_app_assoc, CategoryTheory.Functor.map_braiding_assoc, ModuleCat.free_μ_freeMk_tmul_freeMk, CategoryTheory.Functor.prod_μ_fst, AddGrpCat.μ_forget_apply, whiskeringRight_μ_app, CategoryTheory.Functor.obj.μ_def, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, CategoryTheory.TransportEnrichment.eComp_eq, CategoryTheory.Functor.Monoidal.μ_comp, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_left_assoc, CategoryTheory.Functor.Monoidal.whiskerRight_μ_δ, tensorUnit_whiskerLeft_comp_leftUnitor_hom_assoc, CategoryTheory.MonoidalCategory.Functor.curriedTensorPreIsoPost_hom_app_app, CategoryTheory.obj_μ_inv_app, CategoryTheory.Functor.Monoidal.μ_fst, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraidedObj_μ, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, μ_whiskerRight_comp_μ_assoc, CategoryTheory.ObjectProperty.ι_μ, CategoryTheory.associativity_app_assoc, CategoryTheory.Limits.lim_μ_π_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_μ_app, CategoryTheory.Functor.Monoidal.map_μ_δ, CategoryTheory.Functor.Monoidal.map_tensor_assoc, CategoryTheory.MonoidalOpposite.mopFunctor_μ, CategoryTheory.μ_δ_app, CategoryTheory.Functor.Monoidal.inv_δ, CategoryTheory.left_unitality_app, CategoryTheory.Functor.Monoidal.whiskerLeft_δ_μ, CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor, CategoryTheory.Center.ofBraided_μ_f, CategoryTheory.Functor.Monoidal.whiskerRight_δ_μ, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.Functor.obj.μ_def_assoc, right_unitality_assoc, CategoryTheory.Functor.Monoidal.map_whiskerRight_assoc, ext_iff, CategoryTheory.Discrete.addMonoidalFunctor_μ, CategoryTheory.MonoidalOpposite.unmopFunctor_μ, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor_assoc, CategoryTheory.Functor.Monoidal.map_whiskerLeft, μ_natural_left, CategoryTheory.Functor.Monoidal.map_δ_μ, CategoryTheory.monoidalUnopUnop_μ, associativity, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ, CategoryTheory.Functor.Monoidal.μ_snd, whiskerRight_tensorUnit_comp_rightUnitor_hom, CategoryTheory.Localization.Monoidal.β_hom_app, Action.FunctorCategoryEquivalence.functor_μ, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.Functor.Monoidal.μ_snd_assoc, CategoryTheory.Functor.Monoidal.map_tensor, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app, CategoryTheory.obj_μ_app_assoc, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_left, CategoryTheory.Functor.Monoidal.μNatIso_hom_app, CategoryTheory.Over.μ_pullback_left_fst_fst, ε_tensorHom_comp_μ, whiskerLeft_μ_comp_μ, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor, right_unitality_inv_assoc, Action.forget_μ, CategoryTheory.Discrete.monoidalFunctor_μ, CategoryTheory.Functor.prod_μ_snd, CategoryTheory.obj_μ_zero_app, tensorHom_ε_comp_μ, comp_μ, whiskerRight_tensorUnit_comp_rightUnitor_hom_assoc, CategoryTheory.Pi.monoidalPi_μ, CategoryTheory.associativity_app, μ_whiskerRight_comp_μ, CategoryTheory.NatTrans.IsMonoidal.tensor_assoc, CategoryTheory.obj_μ_inv_app_assoc, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app_assoc, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.μ_naturality_assoc, CategoryTheory.Comon.forget_μ, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, CategoryTheory.Functor.CoreMonoidal.toLaxMonoidal_μ, CategoryTheory.unitOfTensorIsoUnit_hom_app, μ_natural_assoc, CategoryTheory.Functor.Monoidal.lift_μ, CategoryTheory.Functor.LaxBraided.braided_assoc, CategoryTheory.Functor.Monoidal.commTensorRight_hom_app, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, CategoryTheory.Functor.Monoidal.whiskerRight_δ_μ_assoc, CategoryTheory.δ_μ_app_assoc, CategoryTheory.Functor.Monoidal.δ_μ_assoc, μ_natural, CategoryTheory.obj_η_app, GrpCat.μ_forget_apply, CategoryTheory.ObjectProperty.ιOfLE_μ, CategoryTheory.Pi.μ_def, CategoryTheory.Functor.Monoidal.map_rightUnitor_inv_assoc, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, left_unitality_inv, CategoryTheory.Center.forget_μ, CategoryTheory.Limits.lim_μ_π, CategoryTheory.Functor.map_braiding, left_unitality_inv_assoc, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_μ_unmop_unmop, CategoryTheory.right_unitality_app, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.Functor.Monoidal.μ_δ, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ_assoc, CategoryTheory.μ_naturalityₗ_assoc, CategoryTheory.MonoidalCategory.tensor_μ, CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor_assoc, CategoryTheory.Pi.laxMonoidalPi_μ, CategoryTheory.μ_app, CategoryTheory.Pi.monoidalPi'_μ, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_right, CategoryTheory.Functor.Monoidal.μ_δ_assoc, Rep.linearization_μ_hom, CategoryTheory.associator_hom, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_right_assoc, CategoryTheory.MonoidalCategory.tensoringRight_μ, CategoryTheory.Functor.Monoidal.whiskerLeft_δ_μ_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
associativity 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
μ
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
associativity_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
μ
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associativity
associativity_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
μ
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.eq_inv_comp
associativity_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
associativity_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
μ
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associativity_inv
comp_ε 📖mathematicalε
CategoryTheory.Functor.comp
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
comp_μ 📖mathematicalμ
CategoryTheory.Functor.comp
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
ext 📖ε
μ
ext_iff 📖mathematicalε
μ
ext
id_ε 📖mathematicalε
CategoryTheory.Functor.id
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
id_μ 📖mathematicalμ
CategoryTheory.Functor.id
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
left_unitality 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
ε
μ
CategoryTheory.Functor.map
left_unitality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
ε
μ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
left_unitality
left_unitality_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
ε
μ
CategoryTheory.Functor.map
CategoryTheory.Iso.inv_comp_eq
left_unitality
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
left_unitality_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
ε
μ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
left_unitality_inv
right_unitality 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
ε
μ
CategoryTheory.Functor.map
right_unitality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
ε
μ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
right_unitality
right_unitality_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
ε
μ
CategoryTheory.Functor.map
CategoryTheory.Iso.inv_comp_eq
right_unitality
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
right_unitality_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
ε
μ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
right_unitality_inv
tensorHom_ε_comp_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
ε
μ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.assoc
right_unitality_inv
right_unitality
CategoryTheory.Iso.map_hom_inv_id
CategoryTheory.Category.comp_id
tensorHom_ε_comp_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
ε
μ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorHom_ε_comp_μ
tensorUnit_whiskerLeft_comp_leftUnitor_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
ε
μ
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategory.id_whiskerLeft
left_unitality
CategoryTheory.Category.assoc
left_unitality_inv_assoc
CategoryTheory.Iso.map_inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_def'
tensorUnit_whiskerLeft_comp_leftUnitor_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
ε
μ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensorUnit_whiskerLeft_comp_leftUnitor_hom
whiskerLeft_μ_comp_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
μ
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
associativity
CategoryTheory.Iso.inv_hom_id_assoc
whiskerLeft_μ_comp_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
μ
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_μ_comp_μ
whiskerRight_tensorUnit_comp_rightUnitor_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
ε
μ
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategory.whiskerRight_id
right_unitality
CategoryTheory.Category.assoc
right_unitality_inv_assoc
CategoryTheory.Iso.map_inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_def
whiskerRight_tensorUnit_comp_rightUnitor_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
ε
μ
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_tensorUnit_comp_rightUnitor_hom
ε_tensorHom_comp_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
ε
μ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.tensorHom_def'
CategoryTheory.MonoidalCategory.id_whiskerLeft
CategoryTheory.Category.assoc
left_unitality_inv
left_unitality
CategoryTheory.Iso.map_hom_inv_id
CategoryTheory.Category.comp_id
ε_tensorHom_comp_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
ε
μ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ε_tensorHom_comp_μ
μ_natural 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.map
μ
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.Category.assoc
μ_natural_right
μ_natural_left_assoc
CategoryTheory.Functor.map_comp
μ_natural_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.map
μ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μ_natural
μ_natural_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
μ
μ_natural_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
μ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μ_natural_left
μ_natural_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
μ
μ_natural_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
μ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μ_natural_right
μ_whiskerRight_comp_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
μ
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
associativity_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
μ_whiskerRight_comp_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
μ
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μ_whiskerRight_comp_μ

CategoryTheory.Functor.Monoidal

Definitions

NameCategoryTheorems
commTensorLeft 📖CompOp
4 mathmath: commTensorLeft_hom_app, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, commTensorLeft_inv_app, CategoryTheory.MonoidalClosed.ofEquiv_curry_def
commTensorRight 📖CompOp
2 mathmath: commTensorRight_inv_app, commTensorRight_hom_app
coreMonoidalTransport 📖CompOp
4 mathmath: coreMonoidalTransport_εIso_inv, coreMonoidalTransport_μIso_hom, coreMonoidalTransport_εIso_hom, coreMonoidalTransport_μIso_inv
instComp 📖CompOp
8 mathmath: CategoryTheory.Equivalence.mapGrp_counitIso, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.Adjunction.mapGrp_unit, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, CategoryTheory.Equivalence.mapGrp_unitIso, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.Adjunction.mapGrp_counit, CategoryTheory.Functor.comp_mapGrp_one
instId 📖CompOp
10 mathmath: CategoryTheory.Equivalence.mapGrp_counitIso, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionUnitIso, CategoryTheory.Functor.mapGrp_id_one, CategoryTheory.Adjunction.mapGrp_unit, CategoryTheory.Equivalence.mapGrp_unitIso, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionAssocIso, CategoryTheory.Adjunction.mapGrp_counit
ofLaxMonoidal 📖CompOp
ofOplaxMonoidal 📖CompOp
prod' 📖CompOp
toLaxMonoidal 📖CompOp
258 mathmath: CategoryTheory.Functor.Braided.ext_iff, CategoryTheory.obj_ε_app_assoc, ext_iff, CategoryTheory.Functor.FullyFaithful.mapMon_preimage_hom, commTensorLeft_hom_app, CategoryTheory.Equivalence.mapMon_inverse, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor_assoc, whiskerLeft_η_ε, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Functor.map_mul, CategoryTheory.Mon.forget_μ, natTransIsMonoidal_of_transport, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse, CategoryTheory.Functor.mapCommGrp_obj_grp_one, εIso_hom, CategoryTheory.Adjunction.mapMon_unit, whiskerLeft_μ_δ_assoc, CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.Mon.forget_ε, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app, CategoryTheory.Functor.comp_mapGrp_mul, CategoryTheory.MonoidalOpposite.mopFunctor_ε, η_ε_assoc, CategoryTheory.Functor.FullyFaithful.homMulEquiv_apply, inv_μ, map_associator_inv_assoc, CategoryTheory.μ_δ_app_assoc, toUnit_ε_assoc, CategoryTheory.η_ε_app_assoc, map_associator_assoc, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, transport_μ, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ε_unmop_unmop, map_μ_δ_assoc, lift_μ_assoc, whiskerRight_η_ε, δ_μ, whiskerLeft_μ_δ, map_rightUnitor_inv, CategoryTheory.Grp.ε_def, CategoryTheory.sheafToPresheaf_μ, map_leftUnitor_inv, CategoryTheory.ε_η_app_assoc, map_associator, CategoryTheory.Adjunction.ε_comp_map_ε_assoc, CategoryTheory.obj_zero_map_μ_app_assoc, ε_η, CategoryTheory.Discrete.monoidalFunctorComp_isMonoidal, CategoryTheory.ObjectProperty.ι_η, map_whiskerRight, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_μ_unmop_app, whiskerRight_μ_δ_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionUnitIso_inv, CategoryTheory.Localization.Monoidal.lifting_isMonoidal, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app', CategoryTheory.Functor.mapGrp_obj_grp_one, map_ε_η_assoc, CategoryTheory.NatTrans.IsMonoidal.of_cartesianMonoidalCategory, CategoryTheory.obj_μ_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionAssocIso_inv, μ_comp_assoc, map_associator'_assoc, μ_fst_assoc, coreMonoidalTransport_μIso_hom, coreMonoidalTransport_εIso_hom, map_δ_μ_assoc, map_whiskerLeft_assoc, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, whiskerLeft_ε_η_assoc, transport_ε, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, whiskerRight_η_ε_assoc, CategoryTheory.δ_μ_app, CategoryTheory.ObjectProperty.ι_ε, CategoryTheory.Equivalence.mapMon_unitIso, SSet.hoFunctor.unitHomEquiv_eq, CategoryTheory.Center.ofBraided_ε_f, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ, transport_μ_assoc, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.right_unitality_app_assoc, CategoryTheory.η_app_obj, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, toLaxMonoidal_injective, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_μ, CategoryTheory.Grp.μ_def, CategoryTheory.Center.forget_ε, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_ε, whiskeringLeft_ε_app, map_leftUnitor_inv_assoc, whiskerRight_ε_η_assoc, CategoryTheory.Functor.CoreMonoidal.toMonoidal_toLaxMonoidal, CategoryTheory.obj_zero_map_μ_app, whiskeringLeft_μ_app, CategoryTheory.monoidalUnopUnop_ε, map_associator_inv, CategoryTheory.associator_inv, CategoryTheory.Adjunction.mapMon_counit, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse_assoc, μ_of_cartesianMonoidalCategory, map_associator_inv', inv_η, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.Functor.diag_μ, ModuleCat.free_ε_one, instIsIsoμ, toUnit_ε, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε, CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalUnit, map_associator_inv'_assoc, CategoryTheory.Functor.Braided.braided, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.monoidalOpOp_μ, CategoryTheory.Discrete.monoidalFunctor_ε, μIso_hom, CategoryTheory.Adjunction.ε_comp_map_ε, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_ε_app, CategoryTheory.unitOfTensorIsoUnit_inv_app, map_associator', CategoryTheory.obj_η_app_assoc, ModuleCat.free_μ_freeMk_tmul_freeMk, CategoryTheory.MonoidalCategory.tensoringRight_ε, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε_assoc, CategoryTheory.Functor.FullyFaithful.homMulEquiv_symm_apply, CategoryTheory.Functor.FullyFaithful.mapCommMon_preimage, inv_ε, CategoryTheory.Functor.mapGrp_map_hom_hom, μ_comp, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_left_assoc, whiskerRight_μ_δ, CategoryTheory.MonoidalCategory.Functor.curriedTensorPreIsoPost_hom_app_app, CategoryTheory.ε_app_obj, CategoryTheory.Equivalence.mapMon_counitIso, CategoryTheory.obj_μ_inv_app, μ_fst, CategoryTheory.Bimon.ofMonComon_map_hom, CategoryTheory.Functor.Full.mapMon, CategoryTheory.monoidalOpOp_ε, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.ObjectProperty.ι_μ, ε_of_cartesianMonoidalCategory, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_μ_app, map_μ_δ, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse_assoc, Action.forget_ε, map_tensor_assoc, CategoryTheory.MonoidalOpposite.mopFunctor_μ, CategoryTheory.μ_δ_app, inv_δ, whiskerLeft_δ_μ, whiskerLeft_ε_η, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app, CategoryTheory.Equivalence.ε_comp_map_ε, CategoryTheory.Center.ofBraided_μ_f, CategoryTheory.ε_η_app, whiskerRight_δ_μ, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor_assoc, map_whiskerRight_assoc, map_ε_η, CategoryTheory.Discrete.addMonoidalFunctor_μ, CategoryTheory.MonoidalOpposite.unmopFunctor_μ, instIsIsoε, CategoryTheory.Equivalence.mapMon_functor, CategoryTheory.Pi.monoidalPi_ε, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor_assoc, map_whiskerLeft, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_inv, map_δ_μ, CategoryTheory.Discrete.addMonoidalFunctor_ε, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, CategoryTheory.monoidalUnopUnop_μ, whiskerRight_ε_η, CategoryTheory.Discrete.addMonoidalFunctorComp_isMonoidal, CategoryTheory.Functor.essImage_mapMon, μ_snd, map_η_ε_assoc, CategoryTheory.sheafToPresheaf_ε, CategoryTheory.Localization.Monoidal.β_hom_app, Action.FunctorCategoryEquivalence.functor_μ, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor, μ_snd_assoc, map_η_ε, CategoryTheory.Pi.monoidalPi'_ε, map_tensor, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app, CategoryTheory.obj_μ_app_assoc, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_left, μNatIso_hom_app, CategoryTheory.Functor.homMonoidHom_apply, CategoryTheory.ObjectProperty.ιOfLE_ε, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor_assoc, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor, Action.forget_μ, CategoryTheory.Discrete.monoidalFunctor_μ, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, CategoryTheory.obj_μ_zero_app, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Pi.monoidalPi_μ, CategoryTheory.obj_μ_inv_app_assoc, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app_assoc, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Comon.forget_μ, CategoryTheory.MonoidalOpposite.unmopFunctor_ε, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalCounit, CategoryTheory.unitOfTensorIsoUnit_hom_app, lift_μ, CategoryTheory.Equivalence.ε_comp_map_ε_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ε_unmop_app, CategoryTheory.obj_ε_app, commTensorRight_hom_app, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, whiskerRight_δ_μ_assoc, CategoryTheory.δ_μ_app_assoc, δ_μ_assoc, transport_ε_assoc, CategoryTheory.obj_η_app, CategoryTheory.Comon.forget_ε, ε_η_assoc, CategoryTheory.ObjectProperty.ιOfLE_μ, CategoryTheory.Pi.μ_def, map_rightUnitor_inv_assoc, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Center.forget_μ, CategoryTheory.Functor.diag_ε, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_μ_unmop_unmop, Rep.linearization_ε_hom, whiskerLeft_η_ε_assoc, CategoryTheory.Pi.ε_def, CategoryTheory.MonoidalCategory.tensor_ε, CategoryTheory.right_unitality_app, CategoryTheory.Functor.map_one, CategoryTheory.η_ε_app, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor, μ_δ, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ_assoc, CategoryTheory.MonoidalCategory.tensor_μ, CategoryTheory.Pi.monoidalPi'_μ, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_right, CategoryTheory.Functor.comp_mapGrp_one, μ_δ_assoc, Action.FunctorCategoryEquivalence.functor_ε, Rep.linearization_μ_hom, CategoryTheory.associator_hom, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app_naturality_μ_right_assoc, η_ε, CategoryTheory.MonoidalCategory.tensoringRight_μ, whiskerLeft_δ_μ_assoc, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_hom
toOplaxMonoidal 📖CompOp
203 mathmath: Action.forget_η, CategoryTheory.Pi.monoidalPi'_η, CategoryTheory.Functor.Braided.ext_iff, CategoryTheory.obj_ε_app_assoc, CategoryTheory.Pi.monoidalPi_δ, μNatIso_inv_app, ext_iff, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, CategoryTheory.MonoidalOpposite.unmopFunctor_δ, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor_assoc, whiskerLeft_η_ε, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse, whiskerLeft_μ_δ_assoc, commTensorRight_inv_app, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app, instIsIsoδ, η_ε_assoc, coreMonoidalTransport_εIso_inv, inv_μ, map_associator_inv_assoc, CategoryTheory.μ_δ_app_assoc, CategoryTheory.Center.forget_η, CategoryTheory.η_ε_app_assoc, map_associator_assoc, map_μ_δ_assoc, instIsIsoη, whiskerRight_η_ε, δ_μ, whiskerLeft_μ_δ, CategoryTheory.monoidalOpOp_δ, CategoryTheory.Bimon.toComon_map_hom, CategoryTheory.ε_η_app_assoc, map_associator, CategoryTheory.obj_zero_map_μ_app_assoc, ε_η, map_whiskerRight, whiskerRight_μ_δ_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_η_app, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app', CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionUnitIso_hom, map_ε_η_assoc, CategoryTheory.obj_μ_app, CategoryTheory.Functor.diag_δ, Action.FunctorCategoryEquivalence.functor_δ, map_associator'_assoc, CategoryTheory.Equivalence.map_η_comp_η, map_δ_μ_assoc, CategoryTheory.Comon.forget_η, map_whiskerLeft_assoc, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, whiskerLeft_ε_η_assoc, CategoryTheory.Comon.forget_δ, whiskerRight_η_ε_assoc, CategoryTheory.δ_μ_app, CategoryTheory.MonoidalOpposite.mopFunctor_η, transport_δ, CategoryTheory.MonoidalCategory.tensoringRight_δ, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.η_app_obj, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, map_rightUnitor_assoc, whiskerRight_ε_η_assoc, CategoryTheory.obj_zero_map_μ_app, CategoryTheory.sheafToPresheaf_δ, map_associator_inv, CategoryTheory.associator_inv, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Pi.η_def, map_associator_inv', inv_η, Action.forget_δ, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.Center.ofBraided_δ_f, CategoryTheory.monoidalUnopUnop_δ, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app_assoc, coreMonoidalTransport_μIso_inv, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε, map_associator_inv'_assoc, Rep.linearization_η_hom_apply, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.ObjectProperty.ι_δ, CategoryTheory.Grp.δ_def, CategoryTheory.monoidalOpOp_η, ModuleCat.free_η_freeMk, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse, whiskeringLeft_η_app, CategoryTheory.unitOfTensorIsoUnit_inv_app, map_associator', CategoryTheory.obj_η_app_assoc, CategoryTheory.Functor.map_braiding_assoc, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε_assoc, transport_η_assoc, inv_ε, CategoryTheory.Adjunction.map_η_comp_η_assoc, whiskerRight_μ_δ, commTensorLeft_inv_app, CategoryTheory.ε_app_obj, CategoryTheory.obj_μ_inv_app, CategoryTheory.MonoidalCategory.tensor_η, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.Equivalence.map_η_comp_η_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_δ_unmop_app, map_μ_δ, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Discrete.addMonoidalFunctor_δ, CategoryTheory.Over.η_pullback_left, μIso_inv, map_tensor_assoc, CategoryTheory.μ_δ_app, inv_δ, whiskerLeft_δ_μ, whiskerLeft_ε_η, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app, transport_η, CategoryTheory.ε_η_app, whiskerRight_δ_μ, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor_assoc, ModuleCat.free_δ_freeMk, map_whiskerRight_assoc, map_leftUnitor, map_ε_η, toOplaxMonoidal_injective, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_δ_unmop_unmop, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_δ, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor, CategoryTheory.sheafToPresheaf_η, Rep.linearization_δ_hom, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor_assoc, map_whiskerLeft, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_inv, CategoryTheory.MonoidalCategory.tensor_δ, map_δ_μ, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_η, whiskerRight_ε_η, CategoryTheory.Functor.diag_η, CategoryTheory.Pi.δ_def, CategoryTheory.Pi.monoidalPi'_δ, CategoryTheory.Functor.FullyFaithful.grpObj_mul, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_δ_app, CategoryTheory.Mon.forget_η, map_η_ε_assoc, CategoryTheory.Discrete.addMonoidalFunctor_η, CategoryTheory.Localization.Monoidal.β_hom_app, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor, map_η_ε, map_tensor, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app, CategoryTheory.obj_μ_app_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor_assoc, CategoryTheory.MonoidalCategory.Functor.curriedTensorPreIsoPost_inv_app_app, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor, CategoryTheory.obj_μ_zero_app, CategoryTheory.Mon.forget_δ, CategoryTheory.Grp.η_def, map_leftUnitor_assoc, CategoryTheory.Functor.FullyFaithful.grpObj_one, CategoryTheory.obj_μ_inv_app_assoc, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app_assoc, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse, whiskeringLeft_δ_app, CategoryTheory.MonoidalOpposite.unmopFunctor_η, CategoryTheory.Pi.monoidalPi_η, CategoryTheory.unitOfTensorIsoUnit_hom_app, εIso_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_η_unmop_app, CategoryTheory.Discrete.monoidalFunctor_η, CategoryTheory.obj_ε_app, CategoryTheory.Center.forget_δ, map_rightUnitor, whiskerRight_δ_μ_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionAssocIso_hom, CategoryTheory.δ_μ_app_assoc, CategoryTheory.MonoidalOpposite.mopFunctor_δ, δ_μ_assoc, CategoryTheory.Adjunction.map_η_comp_η, transport_δ_assoc, CategoryTheory.ObjectProperty.ιOfLE_η, CategoryTheory.obj_η_app, ε_η_assoc, CategoryTheory.monoidalUnopUnop_η, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Center.ofBraided_η_f, CategoryTheory.Functor.map_braiding, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_η_unmop_unmop, whiskerLeft_η_ε_assoc, CategoryTheory.Discrete.monoidalFunctor_δ, CategoryTheory.η_ε_app, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.ObjectProperty.ιOfLE_δ, μ_δ, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ_assoc, CategoryTheory.MonoidalCategory.tensoringRight_η, Action.FunctorCategoryEquivalence.functor_η, μ_δ_assoc, CategoryTheory.Functor.CoreMonoidal.toMonoidal_toOplaxMonoidal, CategoryTheory.associator_hom, η_ε, whiskerLeft_δ_μ_assoc, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_hom
transport 📖CompOp
9 mathmath: natTransIsMonoidal_of_transport, transport_μ, transport_ε, transport_δ, transport_μ_assoc, transport_η_assoc, transport_η, transport_ε_assoc, transport_δ_assoc
εIso 📖CompOp
3 mathmath: εIso_hom, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionUnitIso, εIso_inv
μIso 📖CompOp
3 mathmath: μIso_hom, μIso_inv, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionAssocIso
μNatIso 📖CompOp
2 mathmath: μNatIso_inv_app, μNatIso_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
commTensorLeft_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
commTensorLeft
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
commTensorLeft_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
commTensorLeft
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
commTensorRight_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
commTensorRight
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
commTensorRight_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
commTensorRight
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
coreMonoidalTransport_εIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.CoreMonoidal.εIso
coreMonoidalTransport
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
coreMonoidalTransport_εIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.CoreMonoidal.εIso
coreMonoidalTransport
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
coreMonoidalTransport_μIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.CoreMonoidal.μIso
coreMonoidalTransport
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
coreMonoidalTransport_μIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.CoreMonoidal.μIso
coreMonoidalTransport
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
ext 📖CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
ext_iff 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
ext
instIsIsoδ 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Iso.isIso_inv
instIsIsoε 📖mathematicalCategoryTheory.IsIso
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Iso.isIso_hom
instIsIsoη 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Iso.isIso_inv
instIsIsoμ 📖mathematicalCategoryTheory.IsIso
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Iso.isIso_hom
inv_δ 📖mathematicalCategoryTheory.inv
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
instIsIsoδ
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
instIsIsoδ
instIsIsoμ
CategoryTheory.inv.congr_simp
CategoryTheory.IsIso.inv_inv
inv_ε 📖mathematicalCategoryTheory.inv
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
instIsIsoε
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
instIsIsoε
instIsIsoη
CategoryTheory.inv.congr_simp
CategoryTheory.IsIso.inv_inv
inv_η 📖mathematicalCategoryTheory.inv
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
instIsIsoη
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
instIsIsoη
εIso_hom
CategoryTheory.Iso.comp_inv_eq_id
εIso_inv
CategoryTheory.IsIso.inv_hom_id
inv_μ 📖mathematicalCategoryTheory.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
instIsIsoμ
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
instIsIsoμ
μIso_inv
CategoryTheory.IsIso.inv_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.inv_eq_inv
CategoryTheory.IsIso.inv_inv
CategoryTheory.IsIso.Iso.inv_inv
map_associator 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.associativity
whiskerRight_δ_μ_assoc
δ_μ_assoc
map_associator' 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.associativity_assoc
μ_δ_assoc
whiskerLeft_μ_δ
CategoryTheory.Category.comp_id
map_associator'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_associator'
map_associator_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_associator
map_associator_inv 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.instIsSplitEpiMap
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.map_hom_inv_id
map_associator
CategoryTheory.Category.assoc
CategoryTheory.Functor.OplaxMonoidal.associativity_inv_assoc
whiskerRight_δ_μ_assoc
δ_μ
CategoryTheory.Category.comp_id
CategoryTheory.Functor.LaxMonoidal.associativity_inv
CategoryTheory.Iso.hom_inv_id_assoc
map_associator_inv' 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Iso.isIso_hom
map_associator'
CategoryTheory.Functor.LaxMonoidal.associativity_assoc
μ_δ_assoc
whiskerLeft_μ_δ
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.LaxMonoidal.associativity_inv_assoc
whiskerRight_μ_δ
map_associator_inv'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_associator_inv'
map_associator_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_associator_inv
map_leftUnitor 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.LaxMonoidal.left_unitality
whiskerRight_η_ε_assoc
δ_μ_assoc
map_leftUnitor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_leftUnitor
map_leftUnitor_inv 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.OplaxMonoidal.left_unitality
CategoryTheory.Category.assoc
whiskerRight_η_ε_assoc
δ_μ
CategoryTheory.Category.comp_id
map_leftUnitor_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_leftUnitor_inv
map_rightUnitor 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.LaxMonoidal.right_unitality
whiskerLeft_η_ε_assoc
δ_μ_assoc
map_rightUnitor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_rightUnitor
map_rightUnitor_inv 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.OplaxMonoidal.right_unitality
CategoryTheory.Category.assoc
whiskerLeft_η_ε_assoc
δ_μ
CategoryTheory.Category.comp_id
map_rightUnitor_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_rightUnitor_inv
map_tensor 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ_natural
δ_μ_assoc
map_tensor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_tensor
map_whiskerLeft 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ_natural_right
δ_μ_assoc
map_whiskerLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_whiskerLeft
map_whiskerRight 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ_natural_left
δ_μ_assoc
map_whiskerRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_whiskerRight
map_δ_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.map_inv_hom_id
map_δ_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_δ_μ
map_ε_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.map_hom_inv_id
map_ε_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_ε_η
map_η_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.map_inv_hom_id
map_η_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_η_ε
map_μ_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.map_hom_inv_id
map_μ_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_μ_δ
toLaxMonoidal_injective 📖mathematicalCategoryTheory.Functor.Monoidal
CategoryTheory.Functor.LaxMonoidal
toLaxMonoidal
ext
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Iso.isIso_hom
εIso_hom
ε_η
μIso_hom
μ_δ
toOplaxMonoidal_injective 📖mathematicalCategoryTheory.Functor.Monoidal
CategoryTheory.Functor.OplaxMonoidal
toOplaxMonoidal
ext
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
εIso_inv
ε_η
μIso_inv
μ_δ
transport_δ 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
transport
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
coreMonoidalTransport_μIso_inv
transport_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
transport
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
transport_δ
transport_ε 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
transport
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
transport_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
transport
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
transport_ε
transport_η 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
transport
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
transport_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
transport
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
transport_η
transport_μ 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
transport
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
transport_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
transport
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
transport_μ
whiskerLeft_δ_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.whiskerLeft_comp
δ_μ
CategoryTheory.MonoidalCategory.whiskerLeft_id
whiskerLeft_δ_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_δ_μ
whiskerLeft_ε_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.whiskerLeft_comp
ε_η
CategoryTheory.MonoidalCategory.whiskerLeft_id
whiskerLeft_ε_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_ε_η
whiskerLeft_η_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.whiskerLeft_comp
η_ε
CategoryTheory.MonoidalCategory.whiskerLeft_id
whiskerLeft_η_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_η_ε
whiskerLeft_μ_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.whiskerLeft_comp
μ_δ
CategoryTheory.MonoidalCategory.whiskerLeft_id
whiskerLeft_μ_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_μ_δ
whiskerRight_δ_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.comp_whiskerRight
δ_μ
CategoryTheory.MonoidalCategory.id_whiskerRight
whiskerRight_δ_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_δ_μ
whiskerRight_ε_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.comp_whiskerRight
ε_η
CategoryTheory.MonoidalCategory.id_whiskerRight
whiskerRight_ε_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_ε_η
whiskerRight_η_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.comp_whiskerRight
η_ε
CategoryTheory.MonoidalCategory.id_whiskerRight
whiskerRight_η_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_η_ε
whiskerRight_μ_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategory.comp_whiskerRight
μ_δ
CategoryTheory.MonoidalCategory.id_whiskerRight
whiskerRight_μ_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_μ_δ
δ_μ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.CategoryStruct.id
δ_μ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_μ
εIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
εIso
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
εIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
εIso
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
ε_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.CategoryStruct.id
ε_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ε_η
η_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.CategoryStruct.id
η_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
η_ε
μIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
μIso
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
μIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
μIso
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
μNatIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.Functor.prod
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
μNatIso
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
μNatIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.Functor.prod
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
μNatIso
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
μ_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.CategoryStruct.id
μ_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
μ_δ

CategoryTheory.Functor.OplaxMonoidal

Definitions

NameCategoryTheorems
comp 📖CompOp
3 mathmath: CategoryTheory.Adjunction.isMonoidal_comp, comp_η, comp_δ
id 📖CompOp
3 mathmath: id_δ, CategoryTheory.Adjunction.instIsMonoidalId, id_η
prod' 📖CompOp
4 mathmath: CategoryTheory.Functor.prod'_δ_snd, CategoryTheory.Functor.prod'_δ_fst, CategoryTheory.Functor.prod'_η_snd, CategoryTheory.Functor.prod'_η_fst
δ 📖CompOp
183 mathmath: CategoryTheory.Functor.Braided.ext_iff, δ_comp_tensorHom_η, associativity, CategoryTheory.obj_ε_app_assoc, δ_natural_left_assoc, CategoryTheory.Pi.monoidalPi_δ, CategoryTheory.Functor.Monoidal.μNatIso_inv_app, CategoryTheory.Functor.Monoidal.ext_iff, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, CategoryTheory.MonoidalOpposite.unmopFunctor_δ, δ_comp_η_tensorHom_assoc, CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ_assoc, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse, left_unitality, CategoryTheory.Functor.Monoidal.whiskerLeft_μ_δ_assoc, δ_snd_assoc, CategoryTheory.Functor.Monoidal.commTensorRight_inv_app, associativity_assoc, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app, CategoryTheory.Functor.mapAction_δ_hom, CategoryTheory.Functor.Monoidal.instIsIsoδ, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_μ, CategoryTheory.Adjunction.IsMonoidal.leftAdjoint_μ, CategoryTheory.δ_naturalityₗ_assoc, CategoryTheory.Functor.Monoidal.inv_μ, CategoryTheory.Functor.Monoidal.map_associator_inv_assoc, CategoryTheory.μ_δ_app_assoc, CategoryTheory.Functor.Monoidal.map_associator_assoc, CategoryTheory.Functor.FullyFaithful.monObj_mul, CategoryTheory.Functor.Monoidal.map_μ_δ_assoc, δ_of_cartesianMonoidalCategory, CategoryTheory.Functor.prod'_δ_snd, δ_snd, CategoryTheory.Functor.Monoidal.δ_μ, CategoryTheory.monoidalOfHasFiniteProducts.δ_eq, CategoryTheory.Functor.Monoidal.whiskerLeft_μ_δ, CategoryTheory.monoidalOpOp_δ, CategoryTheory.Functor.Monoidal.map_associator, δ_fst_assoc, CategoryTheory.Functor.Monoidal.map_whiskerRight, CategoryTheory.Functor.Monoidal.whiskerRight_μ_δ_assoc, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app', CategoryTheory.obj_μ_app, CategoryTheory.δ_naturalityᵣ_assoc, id_δ, CategoryTheory.Functor.diag_δ, Action.FunctorCategoryEquivalence.functor_δ, CategoryTheory.Functor.Monoidal.map_associator'_assoc, CategoryTheory.Functor.Monoidal.map_δ_μ_assoc, oplax_right_unitality, CategoryTheory.Functor.Monoidal.map_whiskerLeft_assoc, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, δ_comp_whiskerLeft_δ_assoc, CategoryTheory.Comon.forget_δ, CategoryTheory.δ_μ_app, CategoryTheory.Functor.obj.Δ_def_assoc, CategoryTheory.Functor.Monoidal.transport_δ, CategoryTheory.Functor.CoreMonoidal.toOplaxMonoidal_δ, CategoryTheory.MonoidalCategory.tensoringRight_δ, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor, δ_comp_δ_whiskerRight_assoc, CategoryTheory.Equivalence.unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.Functor.Monoidal.map_rightUnitor_assoc, lift_δ, CategoryTheory.δ_app, oplax_associativity, CategoryTheory.sheafToPresheaf_δ, CategoryTheory.Functor.Monoidal.map_associator_inv, CategoryTheory.associator_inv, CategoryTheory.Functor.Monoidal.map_associator_inv', Action.forget_δ, CategoryTheory.Center.ofBraided_δ_f, CategoryTheory.monoidalUnopUnop_δ, whiskeringRight_δ_app, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_μIso_inv, δ_natural_left, CategoryTheory.Functor.mapComon_obj_comon_comul, right_unitality_hom, CategoryTheory.Functor.Monoidal.map_associator_inv'_assoc, CategoryTheory.ObjectProperty.ι_δ, CategoryTheory.Functor.prod'_δ_fst, CategoryTheory.Grp.δ_def, CategoryTheory.unitOfTensorIsoUnit_inv_app, CategoryTheory.Functor.Monoidal.map_associator', CategoryTheory.Functor.map_braiding_assoc, δ_comp_whiskerLeft_δ, δ_comp_η_tensorHom, left_unitality_hom, CategoryTheory.Functor.Monoidal.whiskerRight_μ_δ, CategoryTheory.Functor.Monoidal.commTensorLeft_inv_app, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoδ, CategoryTheory.ε_app_obj, CategoryTheory.obj_μ_inv_app, associativity_inv, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Functor.prod_δ_snd, δ_fst, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_δ_unmop_app, CategoryTheory.Functor.Monoidal.map_μ_δ, CategoryTheory.Discrete.addMonoidalFunctor_δ, CategoryTheory.Functor.Monoidal.μIso_inv, CategoryTheory.Functor.Monoidal.map_tensor_assoc, oplax_left_unitality, CategoryTheory.μ_δ_app, CategoryTheory.Functor.Monoidal.inv_δ, CategoryTheory.Functor.Monoidal.whiskerLeft_δ_μ, CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor, CategoryTheory.Functor.Monoidal.whiskerRight_δ_μ, CategoryTheory.Pi.opLaxMonoidalPi_δ, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor_assoc, ModuleCat.free_δ_freeMk, CategoryTheory.Functor.Monoidal.map_whiskerRight_assoc, CategoryTheory.Functor.Monoidal.map_leftUnitor, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_δ_unmop_unmop, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_δ, Rep.linearization_δ_hom, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor_assoc, CategoryTheory.Functor.Monoidal.map_whiskerLeft, CategoryTheory.δ_naturality_assoc, CategoryTheory.MonoidalCategory.tensor_δ, CategoryTheory.Functor.Monoidal.map_δ_μ, CategoryTheory.δ_naturality, CategoryTheory.Pi.δ_def, CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ, CategoryTheory.Pi.monoidalPi'_δ, δ_comp_tensorHom_η_assoc, CategoryTheory.Functor.FullyFaithful.grpObj_mul, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_δ_app, CategoryTheory.Localization.Monoidal.β_hom_app, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.Functor.Monoidal.map_tensor, CategoryTheory.Localization.Monoidal.braidingNatIso_hom_app, CategoryTheory.obj_μ_app_assoc, ext_iff, δ_natural, δ_natural_right, CategoryTheory.MonoidalCategory.Functor.curriedTensorPreIsoPost_inv_app_app, CategoryTheory.Equivalence.functor_map_μ_inverse_comp_counit_app_tensor, δ_natural_assoc, left_unitality_assoc, CategoryTheory.obj_μ_zero_app, CategoryTheory.Mon.forget_δ, CategoryTheory.Functor.Monoidal.map_leftUnitor_assoc, right_unitality_assoc, δ_comp_δ_whiskerRight, CategoryTheory.obj_μ_inv_app_assoc, CategoryTheory.δ_naturalityₗ, CategoryTheory.Localization.Monoidal.curriedTensorPreIsoPost_hom_app_app_assoc, CategoryTheory.Equivalence.counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Functor.Monoidal.whiskeringLeft_δ_app, CategoryTheory.δ_naturalityᵣ, CategoryTheory.obj_ε_app, CategoryTheory.Center.forget_δ, comp_δ, CategoryTheory.Functor.Monoidal.map_rightUnitor, CategoryTheory.Functor.Monoidal.whiskerRight_δ_μ_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionAssocIso_hom, lift_δ_assoc, CategoryTheory.δ_μ_app_assoc, CategoryTheory.MonoidalOpposite.mopFunctor_δ, CategoryTheory.Functor.Monoidal.δ_μ_assoc, right_unitality, CategoryTheory.Functor.Monoidal.transport_δ_assoc, δ_natural_right_assoc, CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Functor.map_braiding, left_unitality_hom_assoc, CategoryTheory.Discrete.monoidalFunctor_δ, CategoryTheory.Equivalence.unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.ObjectProperty.ιOfLE_δ, CategoryTheory.Functor.Monoidal.μ_δ, CategoryTheory.Pi.opLaxMonoidalPi'_δ, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_μ_assoc, CategoryTheory.Functor.obj.Δ_def, CategoryTheory.Functor.prod_δ_fst, right_unitality_hom_assoc, associativity_inv_assoc, CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor_assoc, instIsIsoδ, CategoryTheory.Functor.Monoidal.μ_δ_assoc, CategoryTheory.associator_hom, CategoryTheory.Functor.Monoidal.whiskerLeft_δ_μ_assoc
η 📖CompOp
135 mathmath: Action.forget_η, CategoryTheory.Pi.monoidalPi'_η, CategoryTheory.Functor.Braided.ext_iff, δ_comp_tensorHom_η, CategoryTheory.Functor.Monoidal.ext_iff, δ_comp_η_tensorHom_assoc, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.Functor.Monoidal.whiskerLeft_η_ε, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse, CategoryTheory.Adjunction.map_ε_comp_counit_app_unit_assoc, left_unitality, CategoryTheory.Functor.Monoidal.η_ε_assoc, CategoryTheory.Pi.opLaxMonoidalPi_η, CategoryTheory.Functor.Monoidal.coreMonoidalTransport_εIso_inv, CategoryTheory.η_naturality_assoc, η_of_cartesianMonoidalCategory, CategoryTheory.Center.forget_η, CategoryTheory.η_ε_app_assoc, CategoryTheory.Functor.Monoidal.instIsIsoη, CategoryTheory.Functor.Monoidal.whiskerRight_η_ε, CategoryTheory.ε_η_app_assoc, CategoryTheory.obj_zero_map_μ_app_assoc, CategoryTheory.Functor.obj.ε_def_assoc, CategoryTheory.Functor.Monoidal.ε_η, CategoryTheory.MonoidalCategory.MonoidalRightAction.curriedActionMonoidal_η_app, CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor_actionUnitIso_hom, CategoryTheory.Functor.Monoidal.map_ε_η_assoc, CategoryTheory.Equivalence.map_η_comp_η, CategoryTheory.Comon.forget_η, CategoryTheory.Functor.prod_η_snd, oplax_right_unitality, CategoryTheory.Functor.Monoidal.whiskerLeft_ε_η_assoc, CategoryTheory.Functor.Monoidal.whiskerRight_η_ε_assoc, CategoryTheory.Adjunction.unit_app_unit_comp_map_η, CategoryTheory.MonoidalOpposite.mopFunctor_η, CategoryTheory.Adjunction.IsMonoidal.leftAdjoint_ε, CategoryTheory.η_app_obj, CategoryTheory.Functor.mapAction_η_hom, CategoryTheory.Functor.Monoidal.map_rightUnitor_assoc, CategoryTheory.Functor.Monoidal.whiskerRight_ε_η_assoc, CategoryTheory.obj_zero_map_μ_app, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Pi.η_def, CategoryTheory.Functor.Monoidal.inv_η, CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_η_functor, instIsIsoη, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε, right_unitality_hom, Rep.linearization_η_hom_apply, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.η_naturality, CategoryTheory.Functor.CoreMonoidal.ofOplaxMonoidal_εIso, CategoryTheory.monoidalOpOp_η, ModuleCat.free_η_freeMk, CategoryTheory.Functor.obj.ε_def, CategoryTheory.Equivalence.counitInv_app_comp_functor_map_η_inverse, CategoryTheory.Functor.FullyFaithful.monObj_one, CategoryTheory.Functor.Monoidal.whiskeringLeft_η_app, CategoryTheory.obj_η_app_assoc, CategoryTheory.Localization.Monoidal.functorMonoidalOfComp_ε_assoc, CategoryTheory.Functor.Monoidal.transport_η_assoc, comp_η, δ_comp_η_tensorHom, left_unitality_hom, CategoryTheory.Functor.Monoidal.inv_ε, CategoryTheory.Adjunction.map_η_comp_η_assoc, CategoryTheory.Functor.prod'_η_snd, CategoryTheory.MonoidalCategory.tensor_η, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.Pi.opLaxMonoidalPi'_η, CategoryTheory.Equivalence.map_η_comp_η_assoc, CategoryTheory.Equivalence.counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.η_app, CategoryTheory.Over.η_pullback_left, oplax_left_unitality, CategoryTheory.Functor.mapComon_obj_comon_counit, CategoryTheory.Functor.prod_η_fst, CategoryTheory.Functor.Monoidal.whiskerLeft_ε_η, CategoryTheory.Equivalence.functor_map_ε_inverse_comp_counit_app, CategoryTheory.Functor.Monoidal.transport_η, CategoryTheory.ε_η_app, CategoryTheory.Functor.Monoidal.map_leftUnitor, CategoryTheory.Functor.Monoidal.map_ε_η, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor, CategoryTheory.sheafToPresheaf_η, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_inv, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_η, CategoryTheory.Functor.Monoidal.whiskerRight_ε_η, CategoryTheory.Functor.diag_η, δ_comp_tensorHom_η_assoc, CategoryTheory.Mon.forget_η, id_η, CategoryTheory.Functor.Monoidal.map_η_ε_assoc, CategoryTheory.Discrete.addMonoidalFunctor_η, CategoryTheory.Functor.prod'_η_fst, CategoryTheory.Functor.Monoidal.map_η_ε, ext_iff, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_ε, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, CategoryTheory.Equivalence.unit_app_comp_inverse_map_η_functor_assoc, whiskeringRight_η_app, left_unitality_assoc, CategoryTheory.monoidalOfHasFiniteProducts.η_eq, CategoryTheory.Grp.η_def, CategoryTheory.Functor.Monoidal.map_leftUnitor_assoc, right_unitality_assoc, CategoryTheory.Functor.FullyFaithful.grpObj_one, CategoryTheory.Adjunction.unit_app_unit_comp_map_η_assoc, CategoryTheory.MonoidalOpposite.unmopFunctor_η, CategoryTheory.Pi.monoidalPi_η, CategoryTheory.unitOfTensorIsoUnit_hom_app, CategoryTheory.Functor.Monoidal.εIso_inv, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_η_unmop_app, CategoryTheory.Discrete.monoidalFunctor_η, CategoryTheory.Functor.Monoidal.map_rightUnitor, CategoryTheory.Adjunction.map_η_comp_η, right_unitality, CategoryTheory.Adjunction.map_ε_comp_counit_app_unit, CategoryTheory.ObjectProperty.ιOfLE_η, CategoryTheory.obj_η_app, CategoryTheory.Functor.Monoidal.ε_η_assoc, CategoryTheory.monoidalUnopUnop_η, CategoryTheory.Center.ofBraided_η_f, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_η_unmop_unmop, CategoryTheory.Functor.Monoidal.whiskerLeft_η_ε_assoc, left_unitality_hom_assoc, CategoryTheory.η_ε_app, CategoryTheory.monoidalOfHasFiniteProducts.instIsIsoη, right_unitality_hom_assoc, CategoryTheory.MonoidalCategory.tensoringRight_η, Action.FunctorCategoryEquivalence.functor_η, CategoryTheory.Functor.CoreMonoidal.toOplaxMonoidal_η, CategoryTheory.Functor.Monoidal.η_ε, CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp_εIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
associativity 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
oplax_associativity
associativity_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associativity
associativity_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
CategoryTheory.Iso.comp_inv_eq
associativity
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
associativity_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associativity_inv
comp_δ 📖mathematicalδ
CategoryTheory.Functor.comp
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
comp_η 📖mathematicalη
CategoryTheory.Functor.comp
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.map
ext 📖η
δ
ext_iff 📖mathematicalη
δ
ext
id_δ 📖mathematicalδ
CategoryTheory.Functor.id
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
id_η 📖mathematicalη
CategoryTheory.Functor.id
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
left_unitality 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
η
oplax_left_unitality
left_unitality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.map
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
η
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
left_unitality
left_unitality_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
η
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_comp_inv
left_unitality
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
left_unitality_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
η
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
left_unitality_hom
oplax_associativity 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
oplax_left_unitality 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
η
oplax_right_unitality 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
η
right_unitality 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
η
oplax_right_unitality
right_unitality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
η
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
right_unitality
right_unitality_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
η
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_comp_inv
right_unitality
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
right_unitality_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
η
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
right_unitality_hom
δ_comp_tensorHom_η 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
η
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.tensorHom_def'
CategoryTheory.MonoidalCategory.whiskerRight_id
right_unitality_hom_assoc
right_unitality
CategoryTheory.Category.assoc
CategoryTheory.Iso.map_inv_hom_id_assoc
δ_comp_tensorHom_η_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
η
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_tensorHom_η
δ_comp_whiskerLeft_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
associativity
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
δ_comp_whiskerLeft_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_whiskerLeft_δ
δ_comp_δ_whiskerRight 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.inv
associativity_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
δ_comp_δ_whiskerRight_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ_whiskerRight
δ_comp_η_tensorHom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
η
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.id_whiskerLeft
left_unitality_hom_assoc
left_unitality
CategoryTheory.Category.assoc
CategoryTheory.Iso.map_inv_hom_id_assoc
δ_comp_η_tensorHom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
η
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_η_tensorHom
δ_natural 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategory.tensorHom_def
δ_natural_left_assoc
δ_natural_right
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
δ_natural_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_natural
δ_natural_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
δ_natural_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_natural_left
δ_natural_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
δ_natural_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
δ
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_natural_right

CategoryTheory.LaxMonoidalFunctor

Definitions

NameCategoryTheorems
laxMonoidal 📖CompOp
4 mathmath: CategoryTheory.Functor.mapMonFunctor_obj, CategoryTheory.Functor.mapMonFunctor_map_app_hom, Hom.isMonoidal, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj
of 📖CompOp
3 mathmath: CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_obj, of_toFunctor
toFunctor 📖CompOp
27 mathmath: TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, TannakaDuality.FiniteGroup.forget_obj, CategoryTheory.LaxBraidedFunctor.isoOfComponents_inv_hom_hom_app, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.unitIso_hom_app_hom_hom_app, CategoryTheory.LaxBraidedFunctor.isoOfComponents_hom_hom_app, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, isoMk_inv, CategoryTheory.LaxBraidedFunctor.isoOfComponents_hom_hom_hom_app, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, CategoryTheory.Functor.mapCommMonFunctor_map_app, CategoryTheory.Functor.mapMonFunctor_obj, TannakaDuality.FiniteGroup.forget_map, CategoryTheory.Functor.mapMonFunctor_map_app_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.unitIso_hom_app_hom_app, CategoryTheory.LaxBraidedFunctor.toLaxMonoidalFunctor_toFunctor, CategoryTheory.LaxBraidedFunctor.isoOfComponents_inv_hom_app, comp_hom, isoMk_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.unitIso_inv_app_hom_hom_app, Hom.isMonoidal, comp_hom_assoc, CategoryTheory.LaxBraidedFunctor.id_hom, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj, id_hom, of_toFunctor, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
of_toFunctor 📖mathematicaltoFunctor
of

---

← Back to Index