Documentation Verification Report

FunctorCategory

📁 Source: Mathlib/CategoryTheory/Monoidal/FunctorCategory.lean

Statistics

MetricCount
DefinitionswhiskeringRight, whiskeringLeft, whiskeringRight, tensorHom, tensorObj, whiskerLeft, whiskerRight, functorCategoryBraided, functorCategoryMonoidal, functorCategoryMonoidalStruct, functorCategorySymmetric, instLaxMonoidalFunctorObjWhiskeringRight, instMonoidalFunctorFunctorCongrLeft, instMonoidalFunctorInverseCongrLeft, instMonoidalFunctorObjWhiskeringRight, instOplaxMonoidalFunctorObjWhiskeringRight
16
TheoremswhiskeringRight_ε_app, whiskeringRight_μ_app, whiskeringLeft_δ_app, whiskeringLeft_ε_app, whiskeringLeft_η_app, whiskeringLeft_μ_app, whiskeringRight_δ_app, whiskeringRight_η_app, tensorHom_app, tensorObj_map, tensorObj_obj, whiskerLeft_app, whiskerRight_app, associator_hom_app, associator_inv_app, leftUnitor_hom_app, leftUnitor_inv_app, rightUnitor_hom_app, rightUnitor_inv_app, tensorHom_app, tensorObj_map, tensorObj_obj, tensorUnit_map, tensorUnit_obj, whiskerLeft_app, whiskerRight_app, instIsMonoidalFunctorCongrLeft, δ_app, ε_app, η_app, μ_app
31
Total47

CategoryTheory

Definitions

NameCategoryTheorems
instLaxMonoidalFunctorObjWhiskeringRight 📖CompOp
instMonoidalFunctorFunctorCongrLeft 📖CompOp
1 mathmath: instIsMonoidalFunctorCongrLeft
instMonoidalFunctorInverseCongrLeft 📖CompOp
1 mathmath: instIsMonoidalFunctorCongrLeft
instMonoidalFunctorObjWhiskeringRight 📖CompOp
instOplaxMonoidalFunctorObjWhiskeringRight 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidalFunctorCongrLeft 📖mathematicalEquivalence.IsMonoidal
Functor
Functor.category
Monoidal.functorCategoryMonoidal
Equivalence.congrLeft
instMonoidalFunctorFunctorCongrLeft
instMonoidalFunctorInverseCongrLeft
NatTrans.ext'
Equivalence.funInvIdAssoc_inv_app
Category.comp_id
Equivalence.invFunIdAssoc_hom_app
Category.id_comp
MonoidalCategory.tensorHom_comp_tensorHom
Equivalence.functor_unit_comp
Functor.map_id
MonoidalCategory.tensorHom_id
MonoidalCategory.id_whiskerRight
δ_app 📖mathematicalNatTrans.app
Functor.obj
Functor
Functor.category
Functor.whiskeringRight
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Monoidal.functorCategoryMonoidal
Functor.OplaxMonoidal.δ
Functor.OplaxMonoidal.whiskeringRight
Functor.OplaxMonoidal.whiskeringRight_δ_app
ε_app 📖mathematicalNatTrans.app
MonoidalCategoryStruct.tensorUnit
Functor
Functor.category
MonoidalCategory.toMonoidalCategoryStruct
Monoidal.functorCategoryMonoidal
Functor.obj
Functor.whiskeringRight
Functor.LaxMonoidal.ε
Functor.LaxMonoidal.whiskeringRight
Functor.LaxMonoidal.whiskeringRight_ε_app
η_app 📖mathematicalNatTrans.app
Functor.obj
Functor
Functor.category
Functor.whiskeringRight
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
Monoidal.functorCategoryMonoidal
Functor.OplaxMonoidal.η
Functor.OplaxMonoidal.whiskeringRight
Functor.OplaxMonoidal.whiskeringRight_η_app
μ_app 📖mathematicalNatTrans.app
MonoidalCategoryStruct.tensorObj
Functor
Functor.category
MonoidalCategory.toMonoidalCategoryStruct
Monoidal.functorCategoryMonoidal
Functor.obj
Functor.whiskeringRight
Functor.LaxMonoidal.μ
Functor.LaxMonoidal.whiskeringRight
Functor.LaxMonoidal.whiskeringRight_μ_app

CategoryTheory.Functor.LaxMonoidal

Definitions

NameCategoryTheorems
whiskeringRight 📖CompOp
4 mathmath: whiskeringRight_μ_app, whiskeringRight_ε_app, CategoryTheory.ε_app, CategoryTheory.μ_app

Theorems

NameKindAssumesProvesValidatesDepends On
whiskeringRight_ε_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
ε
whiskeringRight
whiskeringRight_μ_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
μ
whiskeringRight

CategoryTheory.Functor.Monoidal

Definitions

NameCategoryTheorems
whiskeringLeft 📖CompOp
4 mathmath: whiskeringLeft_ε_app, whiskeringLeft_μ_app, whiskeringLeft_η_app, whiskeringLeft_δ_app

Theorems

NameKindAssumesProvesValidatesDepends On
whiskeringLeft_δ_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Functor.OplaxMonoidal.δ
toOplaxMonoidal
whiskeringLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
whiskeringLeft_ε_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LaxMonoidal.ε
toLaxMonoidal
whiskeringLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
whiskeringLeft_η_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Functor.OplaxMonoidal.η
toOplaxMonoidal
whiskeringLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
whiskeringLeft_μ_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LaxMonoidal.μ
toLaxMonoidal
whiskeringLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct

CategoryTheory.Functor.OplaxMonoidal

Definitions

NameCategoryTheorems
whiskeringRight 📖CompOp
4 mathmath: CategoryTheory.δ_app, whiskeringRight_δ_app, CategoryTheory.η_app, whiskeringRight_η_app

Theorems

NameKindAssumesProvesValidatesDepends On
whiskeringRight_δ_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
δ
whiskeringRight
whiskeringRight_η_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Monoidal.functorCategoryMonoidal
η
whiskeringRight

CategoryTheory.Monoidal

Definitions

NameCategoryTheorems
functorCategoryBraided 📖CompOp
18 mathmath: CommMonFunctorCategoryEquivalence.counitIso_inv_app_app_hom_hom, CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CommMonFunctorCategoryEquivalence.unitIso_inv_app_hom_hom_app, CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CommMonFunctorCategoryEquivalence.unitIso_hom_app_hom_hom_app, commMonFunctorCategoryEquivalence_counitIso, CommMonFunctorCategoryEquivalence.functor_obj_obj_X, CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, CommMonFunctorCategoryEquivalence.counitIso_hom_app_app_hom_hom, commMonFunctorCategoryEquivalence_unitIso, CommMonFunctorCategoryEquivalence.inverse_obj_X_obj, CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CommMonFunctorCategoryEquivalence.inverse_obj_X_map, CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, commMonFunctorCategoryEquivalence_functor, CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, commMonFunctorCategoryEquivalence_inverse
functorCategoryMonoidal 📖CompOp
93 mathmath: MonFunctorCategoryEquivalence.inverse_obj, CategoryTheory.Functor.instIsLeftAdjointDiscreteTensorLeftCompIncl, CategoryTheory.MonoidalCategory.externalProductCompDiagIso_hom_app_app, Action.leftUnitor_inv_hom, CommMonFunctorCategoryEquivalence.counitIso_inv_app_app_hom_hom, Action.whiskerRight_hom, CategoryTheory.IsSifted.factorization_prodComparison_colim, CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CommMonFunctorCategoryEquivalence.unitIso_inv_app_hom_hom_app, MonFunctorCategoryEquivalence.functorObjObj_mon_one, Action.FunctorCategoryEquivalence.functor_δ, MonFunctorCategoryEquivalence.functorObjObj_mon_mul, CategoryTheory.GrothendieckTopology.W.transport_isMonoidal, monFunctorCategoryEquivalence_unitIso, CategoryTheory.Functor.ihom_ev_app, monFunctorCategoryEquivalence_functor, CategoryTheory.Mon.limit_mon_mul, CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CommMonFunctorCategoryEquivalence.unitIso_hom_app_hom_hom_app, CategoryTheory.Functor.ihom_map, MonFunctorCategoryEquivalence.functor_obj, CategoryTheory.δ_app, CategoryTheory.Functor.Monoidal.whiskeringLeft_ε_app, ComonFunctorCategoryEquivalence.inverseObj_comon_counit_app, CategoryTheory.instIsMonoidalFunctorCongrLeft, CategoryTheory.Functor.Monoidal.whiskeringLeft_μ_app, CategoryTheory.Limits.lim_ε_π_assoc, ComonFunctorCategoryEquivalence.inverseObj_X, commMonFunctorCategoryEquivalence_counitIso, CommMonFunctorCategoryEquivalence.functor_obj_obj_X, ComonFunctorCategoryEquivalence.functorObjObj_comon_counit, CategoryTheory.Functor.OplaxMonoidal.whiskeringRight_δ_app, CategoryTheory.MonoidalCategory.externalProductCompDiagIso_inv_app_app, CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, MonFunctorCategoryEquivalence.functor_map_app_hom, MonFunctorCategoryEquivalence.inverse_map_hom_app, CommMonFunctorCategoryEquivalence.counitIso_hom_app_app_hom_hom, CategoryTheory.GrothendieckTopology.W.monoidal, ComonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, comonFunctorCategoryEquivalence_unitIso, commMonFunctorCategoryEquivalence_unitIso, CategoryTheory.Limits.lim_ε_π, CommMonFunctorCategoryEquivalence.inverse_obj_X_obj, MonFunctorCategoryEquivalence.inverseObj_X, comonFunctorCategoryEquivalence_functor, CategoryTheory.Functor.Monoidal.whiskeringLeft_η_app, CategoryTheory.Functor.closedUnit_app_app, CategoryTheory.Functor.LaxMonoidal.whiskeringRight_μ_app, ComonFunctorCategoryEquivalence.functor_obj, CategoryTheory.Functor.ihom_coev_app, CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.Functor.LaxMonoidal.whiskeringRight_ε_app, ComonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.Limits.lim_μ_π_assoc, CategoryTheory.η_app, CommMonFunctorCategoryEquivalence.inverse_obj_X_map, Action.tensorHom_hom, Action.associator_hom_hom, CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, ComonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, comonFunctorCategoryEquivalence_counitIso, MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, Action.whiskerLeft_hom, ComonFunctorCategoryEquivalence.inverseObj_comon_comul_app, ComonFunctorCategoryEquivalence.functorObjObj_comon_comul, monFunctorCategoryEquivalence_counitIso, MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, commMonFunctorCategoryEquivalence_functor, MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, Action.FunctorCategoryEquivalence.functor_μ, CategoryTheory.Functor.closedCounit_app_app, CategoryTheory.Mon.limit_mon_one, CategoryTheory.Functor.OplaxMonoidal.whiskeringRight_η_app, Action.rightUnitor_hom_hom, CategoryTheory.Functor.monoidalClosed_closed_adj, Action.associator_inv_hom, MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, MonFunctorCategoryEquivalence.inverseObj_mon_one_app, comonFunctorCategoryEquivalence_inverse, CategoryTheory.Functor.Monoidal.whiskeringLeft_δ_app, Action.rightUnitor_inv_hom, MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, CategoryTheory.Limits.lim_μ_π, CategoryTheory.ε_app, monFunctorCategoryEquivalence_inverse, CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, commMonFunctorCategoryEquivalence_inverse, Action.leftUnitor_hom_hom, Action.FunctorCategoryEquivalence.functor_η, CategoryTheory.μ_app, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, Action.FunctorCategoryEquivalence.functor_ε
functorCategoryMonoidalStruct 📖CompOp
42 mathmath: tensorHom_app, CategoryTheory.Enriched.Functor.associator_inv_apply, CategoryTheory.Functor.natTransEquiv_apply_app, CategoryTheory.Functor.homObjEquiv_apply_app, leftUnitor_hom_app, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_comp, CategoryTheory.Enriched.Functor.whiskerLeft_app_apply, associator_hom_app, CategoryTheory.Functor.homObjEquiv_symm_apply_app, tensorUnit_map, CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, whiskerRight_app, tensorUnit_obj, tensorObj_obj, CategoryTheory.Enriched.Functor.associator_hom_apply, rightUnitor_inv_app, CategoryTheory.Enriched.FunctorCategory.functorEnriched_id_comp, CategoryTheory.Enriched.Functor.whiskerRight_app_apply, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, leftUnitor_inv_app, CategoryTheory.GrothendieckTopology.W.whiskerLeft, CategoryTheory.Enriched.FunctorCategory.functorEnrichedComp_app, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, rightUnitor_hom_app, CategoryTheory.Enriched.FunctorCategory.functorEnriched_id_comp_assoc, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_two_symm, associator_inv_app, CategoryTheory.Enriched.FunctorCategory.functorEnriched_comp_id_assoc, CategoryTheory.Enriched.FunctorCategory.functorEnriched_assoc_assoc, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_apply_app, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_id, tensorObj_map, CategoryTheory.Enriched.FunctorCategory.functorEnriched_assoc, CategoryTheory.Enriched.FunctorCategory.functorEnriched_comp_id, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three, whiskerLeft_app, CategoryTheory.Enriched.FunctorCategory.functorEnrichedId_app, CategoryTheory.GrothendieckTopology.W.whiskerRight
functorCategorySymmetric 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
associator_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
leftUnitor_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
leftUnitor_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
rightUnitor_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
rightUnitor_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
tensorHom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
tensorObj_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
tensorObj_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorUnit_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorUnit_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
whiskerLeft_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
whiskerRight_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj

CategoryTheory.Monoidal.FunctorCategory

Definitions

NameCategoryTheorems
tensorHom 📖CompOp
1 mathmath: tensorHom_app
tensorObj 📖CompOp
5 mathmath: whiskerLeft_app, tensorObj_map, tensorHom_app, whiskerRight_app, tensorObj_obj
whiskerLeft 📖CompOp
1 mathmath: whiskerLeft_app
whiskerRight 📖CompOp
1 mathmath: whiskerRight_app

Theorems

NameKindAssumesProvesValidatesDepends On
tensorHom_app 📖mathematicalCategoryTheory.NatTrans.app
tensorObj
tensorHom
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
tensorObj_map 📖mathematicalCategoryTheory.Functor.map
tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
tensorObj_obj 📖mathematicalCategoryTheory.Functor.obj
tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
whiskerLeft_app 📖mathematicalCategoryTheory.NatTrans.app
tensorObj
whiskerLeft
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
whiskerRight_app 📖mathematicalCategoryTheory.NatTrans.app
tensorObj
whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj

---

← Back to Index