functorCategoryMonoidal 📖 | CompOp | 93 mathmath: MonFunctorCategoryEquivalence.inverse_obj, CategoryTheory.Functor.instIsLeftAdjointDiscreteTensorLeftCompIncl, CategoryTheory.MonoidalCategory.externalProductCompDiagIso_hom_app_app, Action.leftUnitor_inv_hom, CommMonFunctorCategoryEquivalence.counitIso_inv_app_app_hom_hom, Action.whiskerRight_hom, CategoryTheory.IsSifted.factorization_prodComparison_colim, CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CommMonFunctorCategoryEquivalence.unitIso_inv_app_hom_hom_app, MonFunctorCategoryEquivalence.functorObjObj_mon_one, Action.FunctorCategoryEquivalence.functor_δ, MonFunctorCategoryEquivalence.functorObjObj_mon_mul, CategoryTheory.GrothendieckTopology.W.transport_isMonoidal, monFunctorCategoryEquivalence_unitIso, CategoryTheory.Functor.ihom_ev_app, monFunctorCategoryEquivalence_functor, CategoryTheory.Mon.limit_mon_mul, CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CommMonFunctorCategoryEquivalence.unitIso_hom_app_hom_hom_app, CategoryTheory.Functor.ihom_map, MonFunctorCategoryEquivalence.functor_obj, CategoryTheory.δ_app, CategoryTheory.Functor.Monoidal.whiskeringLeft_ε_app, ComonFunctorCategoryEquivalence.inverseObj_comon_counit_app, CategoryTheory.instIsMonoidalFunctorCongrLeft, CategoryTheory.Functor.Monoidal.whiskeringLeft_μ_app, CategoryTheory.Limits.lim_ε_π_assoc, ComonFunctorCategoryEquivalence.inverseObj_X, commMonFunctorCategoryEquivalence_counitIso, CommMonFunctorCategoryEquivalence.functor_obj_obj_X, ComonFunctorCategoryEquivalence.functorObjObj_comon_counit, CategoryTheory.Functor.OplaxMonoidal.whiskeringRight_δ_app, CategoryTheory.MonoidalCategory.externalProductCompDiagIso_inv_app_app, CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, MonFunctorCategoryEquivalence.functor_map_app_hom, MonFunctorCategoryEquivalence.inverse_map_hom_app, CommMonFunctorCategoryEquivalence.counitIso_hom_app_app_hom_hom, CategoryTheory.GrothendieckTopology.W.monoidal, ComonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, comonFunctorCategoryEquivalence_unitIso, commMonFunctorCategoryEquivalence_unitIso, CategoryTheory.Limits.lim_ε_π, CommMonFunctorCategoryEquivalence.inverse_obj_X_obj, MonFunctorCategoryEquivalence.inverseObj_X, comonFunctorCategoryEquivalence_functor, CategoryTheory.Functor.Monoidal.whiskeringLeft_η_app, CategoryTheory.Functor.closedUnit_app_app, CategoryTheory.Functor.LaxMonoidal.whiskeringRight_μ_app, ComonFunctorCategoryEquivalence.functor_obj, CategoryTheory.Functor.ihom_coev_app, CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.Functor.LaxMonoidal.whiskeringRight_ε_app, ComonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.Limits.lim_μ_π_assoc, CategoryTheory.η_app, CommMonFunctorCategoryEquivalence.inverse_obj_X_map, Action.tensorHom_hom, Action.associator_hom_hom, CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, ComonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, comonFunctorCategoryEquivalence_counitIso, MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, Action.whiskerLeft_hom, ComonFunctorCategoryEquivalence.inverseObj_comon_comul_app, ComonFunctorCategoryEquivalence.functorObjObj_comon_comul, monFunctorCategoryEquivalence_counitIso, MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, commMonFunctorCategoryEquivalence_functor, MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, Action.FunctorCategoryEquivalence.functor_μ, CategoryTheory.Functor.closedCounit_app_app, CategoryTheory.Mon.limit_mon_one, CategoryTheory.Functor.OplaxMonoidal.whiskeringRight_η_app, Action.rightUnitor_hom_hom, CategoryTheory.Functor.monoidalClosed_closed_adj, Action.associator_inv_hom, MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, MonFunctorCategoryEquivalence.inverseObj_mon_one_app, comonFunctorCategoryEquivalence_inverse, CategoryTheory.Functor.Monoidal.whiskeringLeft_δ_app, Action.rightUnitor_inv_hom, MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, CategoryTheory.Limits.lim_μ_π, CategoryTheory.ε_app, monFunctorCategoryEquivalence_inverse, CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, commMonFunctorCategoryEquivalence_inverse, Action.leftUnitor_hom_hom, Action.FunctorCategoryEquivalence.functor_η, CategoryTheory.μ_app, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, Action.FunctorCategoryEquivalence.functor_ε
|