Documentation Verification Report

Limits

📁 Source: Mathlib/CategoryTheory/Monoidal/Internal/Limits.lean

Statistics

MetricCount
DefinitionsforgetMapConeLimitConeIso, limit, limitCone, limitConeIsLimit
4
Theoremsforget_preservesLimitsOfShape, hasLimitsOfShape, limitConeIsLimit_lift_hom, limitCone_pt, limitCone_π_app_hom, limit_X, limit_mon_mul, limit_mon_one
8
Total12

CategoryTheory.Mon

Definitions

NameCategoryTheorems
forgetMapConeLimitConeIso 📖CompOp
limit 📖CompOp
5 mathmath: limit_mon_mul, limitCone_π_app_hom, limit_X, limitCone_pt, limit_mon_one
limitCone 📖CompOp
3 mathmath: limitConeIsLimit_lift_hom, limitCone_π_app_hom, limitCone_pt
limitConeIsLimit 📖CompOp
1 mathmath: limitConeIsLimit_lift_hom

Theorems

NameKindAssumesProvesValidatesDepends On
forget_preservesLimitsOfShape 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.Mon
instCategory
forget
CategoryTheory.Limits.preservesLimit_of_preserves_limit_cone
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
hasLimitsOfShape 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Mon
instCategory
limitConeIsLimit_lift_hom 📖mathematicalHom.hom
CategoryTheory.Limits.Cone.pt
CategoryTheory.Mon
instCategory
limitCone
CategoryTheory.Limits.IsLimit.lift
limitConeIsLimit
CategoryTheory.Limits.limit.lift
CategoryTheory.Functor.comp
forget
CategoryTheory.Functor.mapCone
limitCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Mon
instCategory
limitCone
limit
limitCone_π_app_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Mon
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
limit
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
limitCone
CategoryTheory.Limits.limit.π
CategoryTheory.Functor.comp
forget
limit_X 📖mathematicalX
limit
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
CategoryTheory.Mon
instCategory
forget
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
limit_mon_mul 📖mathematicalCategoryTheory.MonObj.mul
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.lim
X
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Mon
instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.Monoidal.monFunctorCategoryEquivalence
mon
limit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Functor.comp
forget
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Limits.instLaxMonoidalFunctorLim
CategoryTheory.Limits.limMap
CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj
limit_mon_one 📖mathematicalCategoryTheory.MonObj.one
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.lim
X
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.Mon
instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.Monoidal.monFunctorCategoryEquivalence
mon
limit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.comp
forget
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Limits.instLaxMonoidalFunctorLim
CategoryTheory.Limits.limMap
CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj

---

← Back to Index