Documentation Verification Report

Mod_

πŸ“ Source: Mathlib/CategoryTheory/Monoidal/Mod_.lean

Statistics

MetricCount
DefinitionsIsMod_Hom, ModObj, instTensorUnit, regular, smul, Mod_, hom, mk', mk'', X, comap, comp, forget, homInhabited, id, instCategory, instInhabited, regular, scalarRestriction, Mod_Class, termΞ³, Β«termΞ³[_,_]Β», Β«termΞ³[_]Β»
23
Theoremssmul_hom, smul_hom_assoc, assoc_flip, ext, ext_iff, mul_smul, mul_smul', mul_smul'_assoc, mul_smul_assoc, one_smul, one_smul', one_smul'_assoc, one_smul_assoc, smul_def, smul_eq_mul, ext, ext_iff, isMod_Hom, mk''_hom, mk'_hom, assoc_flip, comap_map_hom, comap_obj_X, comap_obj_mod, comp_hom, comp_hom', forget_map, forget_obj, hom_ext, hom_ext_iff, id_hom, id_hom', regular_X, regular_mod_smul, scalarRestriction_hom, scalarRestriction_smul, instIsMod_HomComp, instIsMod_HomId, instIsMod_HomInvOfHom
39
Total62

CategoryTheory

Definitions

NameCategoryTheorems
IsMod_Hom πŸ“–CompData
5 mathmath: Mod_.scalarRestriction_hom, instIsMod_HomComp, instIsMod_HomId, Mod_.Hom.isMod_Hom, instIsMod_HomInvOfHom
ModObj πŸ“–CompDataβ€”
Mod_ πŸ“–CompData
7 mathmath: Mod_.comap_obj_mod, Mod_.comap_map_hom, Mod_.comap_obj_X, Mod_.forget_obj, Mod_.comp_hom', Mod_.forget_map, Mod_.id_hom'
Mod_Class πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMod_HomComp πŸ“–mathematicalβ€”IsMod_Hom
CategoryStruct.comp
Category.toCategoryStruct
β€”IsMod_Hom.smul_hom_assoc
IsMod_Hom.smul_hom
MonoidalCategory.MonoidalLeftAction.actionHomRight_comp
Category.assoc
instIsMod_HomId πŸ“–mathematicalβ€”IsMod_Hom
CategoryStruct.id
Category.toCategoryStruct
β€”Category.comp_id
MonoidalCategory.MonoidalLeftAction.actionHomRight_id
Category.id_comp
instIsMod_HomInvOfHom πŸ“–mathematicalβ€”IsMod_Hom
Iso.inv
β€”Category.assoc
IsMod_Hom.smul_hom
MonoidalCategory.MonoidalLeftAction.actionHomRight_inv_hom_assoc

CategoryTheory.IsMod_Hom

Theorems

NameKindAssumesProvesValidatesDepends On
smul_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.ModObj.smul
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
β€”β€”
smul_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.ModObj.smul
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
smul_hom

CategoryTheory.ModObj

Definitions

NameCategoryTheorems
instTensorUnit πŸ“–CompOp
1 mathmath: smul_def
regular πŸ“–CompOp
1 mathmath: smul_eq_mul
smul πŸ“–CompOp
18 mathmath: one_smul_assoc, mul_smul_assoc, mul_smul'_assoc, CategoryTheory.IsMod_Hom.smul_hom, one_smul'_assoc, CategoryTheory.IsMod_Hom.smul_hom_assoc, smul_eq_mul, one_smul', assoc_flip, one_smul, ext_iff, CategoryTheory.Mod_.regular_mod_smul, CategoryTheory.Mod_.scalarRestriction_smul, smul_def, CategoryTheory.Mod_.assoc_flip, mul_smul, mul_smul', CategoryTheory.Mod_.trivialAction_mod_smul

Theorems

NameKindAssumesProvesValidatesDepends On
assoc_flip πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
smul
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.mul
β€”mul_smul
CategoryTheory.Iso.inv_hom_id_assoc
ext πŸ“–β€”smul
CategoryTheory.MonoidalCategory.selfLeftAction
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”smul
CategoryTheory.MonoidalCategory.selfLeftAction
β€”ext
mul_smul πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.mul
smul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
β€”mul_smul'
mul_smul' πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.mul
smul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
β€”β€”
mul_smul'_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.mul
smul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_smul'
mul_smul_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.mul
smul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_smul
one_smul πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.one
smul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
β€”one_smul'
one_smul' πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.one
smul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
β€”β€”
one_smul'_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.one
smul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
one_smul'
one_smul_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.one
smul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
one_smul
smul_def πŸ“–mathematicalβ€”smul
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonObj.instTensorUnit
instTensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionUnitIso
β€”β€”
smul_eq_mul πŸ“–mathematicalβ€”smul
CategoryTheory.MonoidalCategory.selfLeftAction
regular
CategoryTheory.MonObj.mul
β€”β€”

CategoryTheory.Mod_

Definitions

NameCategoryTheorems
X πŸ“–CompOp
12 mathmath: comap_obj_mod, comap_map_hom, comap_obj_X, forget_obj, comp_hom', Hom.isMod_Hom, trivialAction_X, assoc_flip, regular_X, id_hom, comp_hom, id_hom'
comap πŸ“–CompOp
3 mathmath: comap_obj_mod, comap_map_hom, comap_obj_X
comp πŸ“–CompOp
1 mathmath: comp_hom
forget πŸ“–CompOp
2 mathmath: forget_obj, forget_map
homInhabited πŸ“–CompOpβ€”
id πŸ“–CompOp
1 mathmath: id_hom
instCategory πŸ“–CompOp
7 mathmath: comap_obj_mod, comap_map_hom, comap_obj_X, forget_obj, comp_hom', forget_map, id_hom'
instInhabited πŸ“–CompOpβ€”
regular πŸ“–CompOp
2 mathmath: regular_mod_smul, regular_X
scalarRestriction πŸ“–CompOp
4 mathmath: comap_obj_mod, comap_map_hom, scalarRestriction_hom, scalarRestriction_smul

Theorems

NameKindAssumesProvesValidatesDepends On
assoc_flip πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
X
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
CategoryTheory.ModObj.smul
mod
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionAssocIso
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
CategoryTheory.MonObj.mul
β€”CategoryTheory.ModObj.mul_smul
CategoryTheory.Iso.inv_hom_id_assoc
comap_map_hom πŸ“–mathematicalβ€”Hom.hom
X
scalarRestriction
mod
CategoryTheory.Functor.map
CategoryTheory.Mod_
instCategory
comap
β€”β€”
comap_obj_X πŸ“–mathematicalβ€”X
CategoryTheory.Functor.obj
CategoryTheory.Mod_
instCategory
comap
β€”β€”
comap_obj_mod πŸ“–mathematicalβ€”mod
CategoryTheory.Functor.obj
CategoryTheory.Mod_
instCategory
comap
scalarRestriction
X
β€”β€”
comp_hom πŸ“–mathematicalβ€”Hom.hom
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
β€”β€”
comp_hom' πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Mod_
CategoryTheory.Category.toCategoryStruct
instCategory
X
β€”β€”
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Mod_
instCategory
forget
Hom.hom
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Mod_
instCategory
forget
X
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
id_hom πŸ“–mathematicalβ€”Hom.hom
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
β€”β€”
id_hom' πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Mod_
CategoryTheory.Category.toCategoryStruct
instCategory
X
β€”β€”
regular_X πŸ“–mathematicalβ€”X
CategoryTheory.MonoidalCategory.selfLeftAction
regular
β€”β€”
regular_mod_smul πŸ“–mathematicalβ€”CategoryTheory.ModObj.smul
CategoryTheory.MonoidalCategory.selfLeftAction
mod
regular
CategoryTheory.MonObj.mul
β€”β€”
scalarRestriction_hom πŸ“–mathematicalβ€”CategoryTheory.IsMod_Hom
scalarRestriction
β€”CategoryTheory.Category.assoc
CategoryTheory.IsMod_Hom.smul_hom
CategoryTheory.MonoidalCategory.MonoidalLeftAction.action_exchange_assoc
scalarRestriction_smul πŸ“–mathematicalβ€”CategoryTheory.ModObj.smul
scalarRestriction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomLeft
β€”β€”

CategoryTheory.Mod_.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
11 mathmath: CategoryTheory.Mod_.comap_map_hom, mk'_hom, CategoryTheory.Mod_.comp_hom', isMod_Hom, CategoryTheory.Mod_.forget_map, mk''_hom, ext_iff, CategoryTheory.Mod_.id_hom, CategoryTheory.Mod_.hom_ext_iff, CategoryTheory.Mod_.comp_hom, CategoryTheory.Mod_.id_hom'
mk' πŸ“–CompOp
1 mathmath: mk'_hom
mk'' πŸ“–CompOp
1 mathmath: mk''_hom

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”homβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”homβ€”ext
isMod_Hom πŸ“–mathematicalβ€”CategoryTheory.IsMod_Hom
CategoryTheory.Mod_.X
CategoryTheory.Mod_.mod
hom
β€”β€”
mk''_hom πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.ModObj.smul
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
hom
mk''
β€”β€”
mk'_hom πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.MonoidalLeftAction.toMonoidalLeftActionStruct
CategoryTheory.Mod_.X
CategoryTheory.CategoryStruct.comp
CategoryTheory.ModObj.smul
CategoryTheory.Mod_.mod
CategoryTheory.MonoidalCategory.MonoidalLeftActionStruct.actionHomRight
hom
mk'
β€”β€”

CategoryTheory.MonObj

Definitions

NameCategoryTheorems
termΞ³ πŸ“–CompOpβ€”
Β«termΞ³[_,_]Β» πŸ“–CompOpβ€”
Β«termΞ³[_]Β» πŸ“–CompOpβ€”

---

← Back to Index