Mod_
π Source: Mathlib/CategoryTheory/Monoidal/Mod_.lean
Statistics
| Metric | Count |
|---|---|
DefinitionsIsMod_Hom, ModObj, instTensorUnit, regular, smul, Mod_, hom, mk', mk'', X, comap, comp, forget, homInhabited, id, instCategory, instInhabited, regular, scalarRestriction, Mod_Class, termΞ³, Β«termΞ³[_,_]Β», Β«termΞ³[_]Β» | 23 |
Theoremssmul_hom, smul_hom_assoc, assoc_flip, ext, ext_iff, mul_smul, mul_smul', mul_smul'_assoc, mul_smul_assoc, one_smul, one_smul', one_smul'_assoc, one_smul_assoc, smul_def, smul_eq_mul, ext, ext_iff, isMod_Hom, mk''_hom, mk'_hom, assoc_flip, comap_map_hom, comap_obj_X, comap_obj_mod, comp_hom, comp_hom', forget_map, forget_obj, hom_ext, hom_ext_iff, id_hom, id_hom', regular_X, regular_mod_smul, scalarRestriction_hom, scalarRestriction_smul, instIsMod_HomComp, instIsMod_HomId, instIsMod_HomInvOfHom | 39 |
| Total | 62 |
CategoryTheory
Definitions
| Name | Category | Theorems |
|---|---|---|
IsMod_Hom π | CompData | |
ModObj π | CompData | β |
Mod_ π | CompData | |
Mod_Class π | CompOp | β |
Theorems
CategoryTheory.IsMod_Hom
Theorems
CategoryTheory.ModObj
Definitions
Theorems
CategoryTheory.Mod_
Definitions
| Name | Category | Theorems |
|---|---|---|
X π | CompOp | 12 mathmath:comap_obj_mod, comap_map_hom, comap_obj_X, forget_obj, comp_hom', Hom.isMod_Hom, trivialAction_X, assoc_flip, regular_X, id_hom, comp_hom, id_hom' |
comap π | CompOp | |
comp π | CompOp | |
forget π | CompOp | |
homInhabited π | CompOp | β |
id π | CompOp | |
instCategory π | CompOp | |
instInhabited π | CompOp | β |
regular π | CompOp | |
scalarRestriction π | CompOp |
Theorems
CategoryTheory.Mod_.Hom
Definitions
| Name | Category | Theorems |
|---|---|---|
hom π | CompOp | |
mk' π | CompOp | |
mk'' π | CompOp |
Theorems
CategoryTheory.MonObj
Definitions
| Name | Category | Theorems |
|---|---|---|
termΞ³ π | CompOp | β |
Β«termΞ³[_,_]Β» π | CompOp | β |
Β«termΞ³[_]Β» π | CompOp | β |
---