Documentation Verification Report

Mon_

šŸ“ Source: Mathlib/CategoryTheory/Monoidal/Mon_.lean

Statistics

MetricCount
DefinitionsmapMon, mapMon, mapMon, monObj, mon_Class, instBraidedMonMapMon, instLaxBraidedMonMapMon, instLaxMonoidalMonMapMon, instMonoidalMonMapMon, mapMon, mapMonCompIso, mapMonFunctor, mapMonIdIso, mapMonNatIso, mapMonNatTrans, monObjObj, mon_ClassObj, IsCommMon, IsCommMonObj, IsMonHom, IsMon_Hom, Mon, counitIso, counitIsoAux, instLaxMonoidalDiscretePUnitMonToLaxMonoidalObj, laxMonoidalToMon, monToLaxMonoidal, monToLaxMonoidalObj, unitIso, hom, mk', X, comp, equivLaxMonoidalFunctorPUnit, forget, homInhabited, id, instCategory, instInhabited, instMonObjTensorObj, instMonoidalForget, instSymmetricCategory, mkIso, mkIso', mon, monMonoidal, monMonoidalStruct, trivial, uniqueHomFromTrivial, MonObj, instTensorUnit, mul, ofIso, one, instTensorObj, termη, termμ, «termη[_]», «termμ[_]», Mon_Class
60
TheoremsmapMon_counit, mapMon_unit, mapMon_counitIso, mapMon_functor, mapMon_inverse, mapMon_unitIso, mapMon, mapMon, isMonHom_preimage, mapMon_preimage_hom, monObj_mul, monObj_one, comp_mapMon_mul, comp_mapMon_one, essImage_mapMon, id_mapMon_mul, id_mapMon_one, instIsMonHomε, instIsMonHomμ, instIsMonHom, mapMonCompIso_hom_app_hom, mapMonCompIso_inv_app_hom, mapMonFunctor_map_app_hom, mapMonFunctor_obj, mapMonIdIso_hom_app_hom, mapMonIdIso_inv_app_hom, mapMonNatIso_hom_app_hom, mapMonNatIso_inv_app_hom, mapMonNatTrans_app_hom, mapMon_map_hom, mapMon_obj_X, mapMon_obj_mon_mul, mapMon_obj_mon_one, η_def, η_def_assoc, μ_def, μ_def_assoc, instTensorUnit, mul_comm, mul_comm', mul_comm'_assoc, mul_comm_assoc, mul_hom, mul_hom_assoc, one_hom, one_hom_assoc, associator_hom_comp_tensorHom_tensorHom, associator_hom_comp_tensorHom_tensorHom_assoc, associator_hom_comp_tensorHom_tensorHom_comp, associator_hom_comp_tensorHom_tensorHom_comp_assoc, associator_inv_comp_tensorHom_tensorHom, associator_inv_comp_tensorHom_tensorHom_assoc, associator_inv_comp_tensorHom_tensorHom_comp, associator_inv_comp_tensorHom_tensorHom_comp_assoc, eq_mul_one, eq_one_mul, leftUnitor_inv_one_tensor_mul, leftUnitor_inv_one_tensor_mul_assoc, mul_assoc_hom, mul_assoc_hom_assoc, mul_assoc_inv, mul_assoc_inv_assoc, rightUnitor_inv_tensor_one_mul, rightUnitor_inv_tensor_one_mul_assoc, counitIsoAux_IsMon_Hom, counitIsoAux_hom, counitIsoAux_inv, counitIso_hom_app_hom, counitIso_inv_app_hom, isMonHom_counitIsoAux, laxMonoidalToMon_map, laxMonoidalToMon_obj, monToLaxMonoidalObj_map, monToLaxMonoidalObj_obj, monToLaxMonoidalObj_ε, monToLaxMonoidalObj_μ, monToLaxMonoidal_laxMonoidalToMon_obj_mul, monToLaxMonoidal_laxMonoidalToMon_obj_one, monToLaxMonoidal_map_hom_app, monToLaxMonoidal_obj, unitIso_hom_app_hom_app, unitIso_inv_app_hom_app, ext, ext', ext'_iff, ext_iff, isMonHom_hom, associator_hom_hom, associator_inv_hom, braiding_hom_hom, braiding_inv_hom, comp_hom, comp_hom', equivLaxMonoidalFunctorPUnit_counitIso, equivLaxMonoidalFunctorPUnit_functor, equivLaxMonoidalFunctorPUnit_inverse, equivLaxMonoidalFunctorPUnit_unitIso, forget_faithful, forget_map, forget_obj, forget_Γ, forget_ε, forget_η, forget_μ, hom_injective, id_hom, id_hom', instHasInitial, instIsIsoHom, instIsIsoHomOfMapForget, instIsMonHomHom, instReflectsIsomorphismsForget, leftUnitor_hom_hom, leftUnitor_inv_hom, mkIso'_hom_hom, mkIso'_inv_hom, mkIso_hom_hom, mkIso_inv_hom, monMonoidalStruct_tensorHom_hom, monMonoidalStruct_tensorObj_X, mul_def, one_def, rightUnitor_hom_hom, rightUnitor_inv_hom, tensorObj_mul, tensorObj_one, tensorUnit_X, tensorUnit_mul, tensorUnit_one, tensor_mul, tensor_one, trivial_X, trivial_mon_mul, trivial_mon_one, uniqueHomFromTrivial_default_hom, whiskerLeft_hom, whiskerRight_hom, Mon_tensor_mul_assoc, Mon_tensor_mul_one, Mon_tensor_one_mul, ext, ext_iff, instIsMonHomHomAssociator, instIsMonHomHomBraiding, instIsMonHomHomLeftUnitor, instIsMonHomHomRightUnitor, instIsMonHomId, instIsMonHomTensorHom, instIsMonHomWhiskerLeft, instIsMonHomWhiskerRight, mul_assoc, mul_assoc_assoc, mul_assoc_flip, mul_assoc_flip_assoc, mul_associator, mul_braiding, mul_def, mul_leftUnitor, mul_mul_mul_comm, mul_mul_mul_comm', mul_mul_mul_comm'_assoc, mul_mul_mul_comm_assoc, mul_one, mul_one_assoc, mul_one_hom, mul_rightUnitor, ofIso_mul, ofIso_one, one_associator, one_braiding, one_def, one_leftUnitor, one_mul, one_mul_assoc, one_mul_hom, one_rightUnitor, mul_def, one_def, mul_mul_mul_comm, mul_mul_mul_comm', instIsCommMonObjTensorObj, instIsMonHomComp, instIsMonHomHomAsIso, instIsMonHomId, instIsMonHomInvOfHom, isMonHom_ofIso
186
Total246

CategoryTheory

Definitions

NameCategoryTheorems
IsCommMon šŸ“–MathDef—
IsCommMonObj šŸ“–CompData
19 mathmath: AlgebraicGeometry.isCommMonObj_of_isProper_of_geometricallyIntegral, CommGrp.comm, IsCommMonObj.instTensorUnit, Over.isCommMonObj_mk_pullbackSnd, Preadditive.instIsCommMonObj, IsCommMonObj.ofRepresentableBy, isCommMonObj_iff_commutator_eq_toUnit_Ī·, IsCommMon.ofRepresentableBy, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, Functor.isCommMonObj_obj, isCommMonObj_iff_isMulCommutative, Mon.instIsCommMonObj, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CommGrpObj.toIsCommMonObj, Grp.instIsCommMonObj, instIsCommMonObjTensorObj, CommMon.comm, instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm, AlgebraicGeometry.isCommMonObj_of_isProper_of_isIntegral_tensorObj_of_isAlgClosed
IsMonHom šŸ“–CompData
38 mathmath: MonObj.instIsMonHomHomAssociator, Mon.EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, MonObj.instIsMonHomHomBraiding, instIsMonHomHomAsIso, Mon.instIsMonHomHom, MonObj.instIsMonHomOne, MonObj.instIsMonHomToUnit, MonObj.instIsMonHomTensorHom, Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, MonObj.instIsMonHomId, MonObj.mop_isMonHom, Functor.instIsMonHomμ, instIsMonHomComp, MonObj.instIsMonHomSnd, Grp.instIsMonHom, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, Functor.map.instIsMonHom, MonObj.instIsMonHomHomLeftUnitor, MonObj.instIsMonHomLift, MonObj.instIsMonHomFst, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, isMonHom_ofIso, instIsMonHomInvOfIsCommMonObj, Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, instIsMonHomInvHomOfIsCommMonObj, IsBimonHom.toIsMonHom, MonObj.instIsMonHomHomRightUnitor, Functor.instIsMonHomε, instIsMonHomId, Functor.FullyFaithful.isMonHom_preimage, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, MonObj.instIsMonHomWhiskerLeft, instIsMonHomInvOfHom, MonObj.instIsMonHomWhiskerRight, Mon.Hom.isMonHom_hom, Over.isMonHom_pullbackFst_id_right, MonObj.instIsMonHomMulOfIsCommMonObj, MonObj.unmop_isMonHom
IsMon_Hom šŸ“–MathDef—
Mon šŸ“–CompData
378 mathmath: Grp.mkIso_inv_hom, Grp.Hom.hom_div, Grp.comp', Monoidal.MonFunctorCategoryEquivalence.inverse_obj, Grp.mkIso_hom_hom, Monad.monadMonEquiv_unitIso_inv_app_toNatTrans_app, Grp.instIsIsoHomHomMon, Grp.homMk'_hom, Bimon.toMonComonObj_mon_mul_hom, Bimon.Bimon_ClassAux_comul, Functor.mapMonNatTrans_app_hom, Bimon.equivMonComonUnitIsoAppX_hom_hom, Functor.FullyFaithful.mapMon_preimage_hom, CommMon.comp_hom, Grp.Hom.hom_hom_zpow, Equivalence.mapMon_inverse, Mon.EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, Functor.mapCommMonNatIso_inv_app_hom_hom, Mon.forget_obj, instFullMonFunctorOppositeMonCatYonedaMon, Mon.leftUnitor_inv_hom, Functor.mapCommMon_obj_mon_mul, Mon.forget_μ, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, Adjunction.mapMon_unit, Grp.id', Bimon.ext_iff, Mon.equivLaxMonoidalFunctorPUnit_inverse, Comon.MonOpOpToComon_obj, CommMon.forget_map, Functor.FullyFaithful.mapGrp_preimage, Comon.ComonToMonOpOp_obj, Functor.mapMon_obj_mon_mul, CommGrp.mkIso_inv_hom, Mon.forget_ε, Bimon.toMonComon_ofMonComon_obj_one, Grp.whiskerLeft_hom_hom, Functor.mapGrpIdIso_hom_app_hom_hom, Bimon.toMon_forget, Comon.Comon_EquivMon_OpOp_counitIso, MonObj.mopEquivCompForgetIso_hom_app_unmop, Bimon.equivMonComonUnitIsoAppXAux_hom, Monoidal.CommMonFunctorCategoryEquivalence.counitIso_inv_app_app_hom_hom, Grp.leftUnitor_hom_hom, Functor.mapCommMonNatTrans_app_hom_hom, Comon.monoidal_rightUnitor_inv_hom, Monad.monadMonEquiv_counitIso_hom_app_hom, Bimon.trivial_comon_counit_hom, Bimon.toTrivial_hom, Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, Bimon.instIsComonHomHomEquivMonComonCounitIsoAppXAux, Bimon.equivMonComonUnitIsoApp_hom_hom_hom, Mon.rightUnitor_inv_hom, CommMon.mkIso'_inv_hom_hom, Grp.ε_def, Grp.rightUnitor_hom_hom_hom, Bimon.toComon_obj_comon_counit, Mon.mkIso_hom_hom, Bimon.toComon_map_hom, Grp.lift_hom, Grp.hom_mul, Bimon.trivial_X_X, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, Bimon.ofMonComonObj_comon_comul_hom, Monad.monadToMon_obj, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, Functor.mapMonCompIso_hom_app_hom, Mon.limitConeIsLimit_lift_hom, Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, Grp.Hom.hom_zpow, Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, Comon.Comon_EquivMon_OpOp_functor, Bimon.toComon_obj_X, Monoidal.CommMonFunctorCategoryEquivalence.unitIso_inv_app_hom_hom_app, Bimon.trivial_comon_comul_hom, Comon.MonOpOpToComon_map_hom, Grp.associator_inv_hom_hom, Monad.monToMonad_obj, Functor.mapCommMonNatIso_hom_app_hom_hom, MonObj.mopEquiv_functor_obj_mon_one_unmop, Grp.Hom.hom_hom_div, Grp.leftUnitor_hom_hom_hom, CommGrp.instIsIsoMonHomGrp, Grp.forget_map, Monoidal.monFunctorCategoryEquivalence_unitIso, Mon.tensorObj_one, Mon.lift_hom, Mon.whiskerRight_hom, Grp.mkIso_hom_hom_hom, CommMon.instIsIsoHomHomMon, Bimon.equivMonComonCounitIsoAppXAux_inv, CommGrp.forgetā‚‚CommMon_map_hom, essImage_yonedaMon, Comon.ComonToMonOpOp_map, Mon.forget_faithful, Grp.rightUnitor_inv_hom_hom, Grp.forgetā‚‚Mon_map_hom, Comon.monoidal_whiskerLeft_hom, Equivalence.mapMon_unitIso, Monoidal.monFunctorCategoryEquivalence_functor, Mon.tensorUnit_X, instFaithfulMonFunctorOppositeMonCatYonedaMon, Mon.limit_mon_mul, Functor.mapMon_obj_X, Grp.whiskerRight_hom_hom, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, Functor.mapMonNatIso_hom_app_hom, Grp.Hom.hom_hom_inv, Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, Comon.monoidal_leftUnitor_hom_hom, Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, Mon.fst_hom, CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, Grp.μ_def, Functor.mapMonNatIso_inv_app_hom, Monoidal.CommMonFunctorCategoryEquivalence.unitIso_hom_app_hom_hom_app, Grp.snd_hom, Monoidal.MonFunctorCategoryEquivalence.functor_obj, Monad.monadToMon_map_hom, Mon.mkIso_inv_hom, Bimon.Bimon_ClassAux_counit, Grp.whiskerLeft_hom, Bimon.equivMonComonUnitIsoAppX_inv_hom, Adjunction.mapMon_counit, Functor.mapMonFunctor_obj, Functor.mapGrpNatIso_hom_app_hom_hom, Bimon.instIsComonHomMonHomEquivMonComonUnitIsoAppX, Functor.mapCommMonCompIso_inv_app_hom_hom, Functor.comp_mapMon_mul, Functor.mapCommMonIdIso_hom_app_hom_hom, Grp.leftUnitor_inv_hom_hom, yonedaMon_map_app, Mon.instReflectsIsomorphismsForget, Mon.associator_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, MonObj.mopEquiv_inverse_map_hom, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, Bimon.BimonObjAux_counit, Grp.rightUnitor_inv_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, Functor.mapMonFunctor_map_app_hom, Functor.mapMon_obj_mon_one, Functor.mapMonIdIso_hom_app_hom, Comon.monoidal_whiskerRight_hom, Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CommGrp.hom_ext_iff, Grp.forgetā‚‚Mon_obj_mul, MonObj.mopEquiv_inverse_obj_X, Mon.tensorObj_mul, Monoidal.MonFunctorCategoryEquivalence.inverse_map_hom_app, Monoidal.CommMonFunctorCategoryEquivalence.counitIso_hom_app_app_hom_hom, Grp.Hom.hom_pow, Grp.Ī“_def, Bimon.ofMonComon_toMonComon_obj_counit, Mon.whiskerLeft_hom, Grp.associator_hom_hom_hom, CommMon.mkIso_inv_hom_hom, Mon.limitCone_Ļ€_app_hom, Grp.braiding_inv_hom, Grp.mkIso'_hom_hom_hom, Grp.id_hom, Comon.monoidal_associator_hom_hom, Mon.equivLaxMonoidalFunctorPUnit_counitIso, Functor.mapGrpCompIso_hom_app_hom_hom, Mon.equivLaxMonoidalFunctorPUnit_unitIso, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_obj, Mon.EquivLaxMonoidalFunctorPUnit.unitIso_hom_app_hom_app, Grp.fst_hom, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, Bimon.ofMon_Comon_toMon_Comon_obj_comul, Bimon.equivMonComonUnitIsoAppXAux_inv, CommGrp.mkIso_inv_hom_hom_hom, CommGrp.mkIso'_inv_hom_hom_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, Mon.instIsCommMonObj, Mon.Hom.hom_mul, Monoidal.MonFunctorCategoryEquivalence.inverseObj_X, Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, Mon.associator_inv_hom, CommMon.forgetā‚‚Mon_obj_mul, Bimon.equivMonComonCounitIsoAppX_hom_hom, Monad.monToMonad_map_toNatTrans, Mon.mkIso'_inv_hom, Mon.uniqueHomFromTrivial_default_hom, Comon.Comon_EquivMon_OpOp_unitIso, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_inv, MonObj.mopEquiv_functor_map_hom_unmop, Monoidal.MonFunctorCategoryEquivalence.functorObj_map_hom, MonObj.mopEquivCompForgetIso_inv_app_unmop, Mon.equivLaxMonoidalFunctorPUnit_functor, Functor.mapCommMon_map_hom_hom, Functor.FullyFaithful.mapCommMon_preimage, Bimon.equivMonComonUnitIsoApp_inv_hom_hom, Bimon.ofMon_Comon_toMon_Comon_obj_counit, Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, Functor.mapGrp_map_hom_hom, CommGrp.forgetā‚‚Grp_map_hom, Grp.comp_hom_hom, Bimon.id_hom', Functor.mapMonIdIso_inv_app_hom, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, Bimon.trivialTo_hom, Equivalence.mapMon_counitIso, Bimon.ofMonComonObj_comon_counit_hom, MonObj.mopEquiv_unitIso_hom_app_hom, Grp.braiding_inv_hom_hom, Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CommGrp.mkIso_hom_hom, Functor.mapCommMon_obj_mon_one, Bimon.ofMonComon_map_hom, Functor.Full.mapMon, Mon.tensorUnit_one, MonObj.mopEquiv_functor_obj_X_unmop, Grp.Hom.hom_mul, Mon.Hom.hom_pow, Grp.rightUnitor_hom_hom, Monad.monadMonEquiv_inverse, Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, Bimon.ofMonComon_obj, Grp.forgetā‚‚Mon_obj_X, Grp.hom_ext_iff, Grp.homMk''_hom_hom, Comon.monoidal_tensorUnit_comon_comul, CommMon.id_hom, Grp.forgetā‚‚Mon_comp_forget, Bimon.toMonComon_obj, Functor.mapMon_map_hom, Functor.FullyFaithful.mapCommGrp_preimage, Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_X_map, Mon.leftUnitor_hom_hom, Mon.hasLimitsOfShape, Bimon.equivMonComonCounitIsoAppX_inv_hom, Functor.mapGrpIdIso_inv_app_hom_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, Bimon.toMonComonObj_mon_one_hom, Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map, Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, CommGrp.mkIso_hom_hom_hom_hom, CommMon.homMk_hom, Grp.leftUnitor_inv_hom, Functor.id_mapMon_mul, CommMon.mkIso_hom_hom_hom, Equivalence.mapMon_functor, Bimon.toMonComon_ofMonComon_obj_mul, Monoidal.MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, MonObj.mopEquiv_functor_obj_mon_mul_unmop, Bimon.BimonObjAux_comul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, Functor.mapMonCompIso_inv_app_hom, Mon.limit_X, CommMon.hom_ext_iff, Grp.mkIso_inv_hom_hom, Bimon.equivMonComonCounitIsoApp_hom_hom_hom, Grp.snd_hom_hom, Functor.mapGrpNatTrans_app_hom_hom, Bimon.ofMonComon_toMonComon_obj_comul, Comon.monoidal_leftUnitor_inv_hom, Monoidal.monFunctorCategoryEquivalence_counitIso, CommMon.instFullMonForgetā‚‚Mon, Grp.hom_one, Grp.forgetā‚‚Mon_obj_one, Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, Mon.forget_preservesLimitsOfShape, Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, Mon.comp_hom', Grp.associator_inv_hom, Monoidal.MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, Mon.braiding_inv_hom, Grp.homMk_hom_hom, Comon.monoidal_rightUnitor_hom_hom, Functor.essImage_mapMon, Mon.forget_Ī·, Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, Monoidal.MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, Bimon.mk'_X, Functor.mapGrpNatIso_inv_app_hom_hom, commBialgCatEquivComonCommAlgCat_inverse_obj, Mon.hom_mul, Mon.limitCone_pt, Functor.mapGrpCompIso_inv_app_hom_hom, Grp.Hom.hom_inv, CommMon.forgetā‚‚Mon_comp_forget, Mon.limit_mon_one, Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, MonObj.mopEquiv_inverse_obj_mon_one, Grp.instFaithfulMonForgetā‚‚Mon, Monad.monadMonEquiv_functor, Mon.forget_Ī“, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, Mon.rightUnitor_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, Bimon.ofMonComonObj_X, Grp.braiding_hom_hom, Functor.mapCommGrp_map_hom_hom_hom, Grp.Ī·_def, Comon.monoidal_associator_inv_hom, Comon.Comon_EquivMon_OpOp_inverse, Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, Bimon.toMonComon_map_hom, Grp.associator_hom_hom, Preadditive.commGrpEquivalence_inverse_map, Mon.forget_map, Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, Functor.mapCommGrpNatTrans_app_hom_hom_hom, Functor.mapCommMonIdIso_inv_app_hom_hom, Comon.monoidal_tensorUnit_comon_counit, MonObj.mopEquiv_unitIso_inv_app_hom, CommMon.EquivLaxBraidedFunctorPUnit.counitIso_inv_app_hom_hom, CommMon.forgetā‚‚Mon_obj_X, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, Monad.monadMonEquiv_unitIso_hom_app_toNatTrans_app, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj, yonedaGrp_map_app, Bimon.equivMonComonCounitIsoAppXAux_hom, Mon.monMonoidalStruct_tensorHom_hom, CommGrp.mkIso'_hom_hom_hom_hom, Grp.whiskerRight_hom, Mon.braiding_hom_hom, Grp.tensorHom_hom, Monoidal.MonFunctorCategoryEquivalence.functorObj_obj, CommMon.mkIso'_hom_hom_hom, Grp.Hom.hom_one, CommMon.instFaithfulMonForgetā‚‚Mon, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, Grp.fst_hom_hom, Grp.mkIso'_inv_hom_hom, Comon.monoidal_tensorHom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, Functor.id_mapMon_one, Bimon.trivial_X_mon_mul, CommMon.EquivLaxBraidedFunctorPUnit.counitIso_hom_app_hom_hom, Bimon.toMon_Comon_ofMon_Comon_obj_mul, Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, Bimon.comp_hom', Monoidal.MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, Grp.braiding_hom_hom_hom, Bimon.toMon_Comon_ofMon_Comon_obj_one, Mon.tensorUnit_mul, Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CommMon.forgetā‚‚Mon_map_hom, Comon.monoidal_tensorObj_comon_counit, Mon.tensor_one, Mon.hom_one, yonedaMon_obj, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, Mon.mkIso'_hom_hom, Mon.monMonoidalStruct_tensorObj_X, Mon.EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app, Monoidal.monFunctorCategoryEquivalence_inverse, Functor.comp_mapMon_one, Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, Monoidal.CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, CommMon.forgetā‚‚Mon_obj_one, Grp.comp_hom, Mon.id_hom', Grp.instFullMonForgetā‚‚Mon, Grp.id_hom_hom, Functor.Faithful.mapMon, Bimon.toComon_obj_comon_comul, Mon.snd_hom, Mon.Hom.hom_one, CommGrp.forget_map, Mon.instHasInitial, Comon.monoidal_tensorObj_comon_comul, Bimon.trivial_X_mon_one, Mon.tensor_mul, Functor.mapCommMonCompIso_hom_app_hom_hom, MonObj.mopEquiv_inverse_obj_mon_mul
MonObj šŸ“–CompData
2 mathmath: GrpObj.toMon_Class_injective, GrpObj.toMonObj_injective
Mon_Class šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCommMonObjTensorObj šŸ“–mathematical—IsCommMonObj
SymmetricCategory.toBraidedCategory
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Mon.instMonObjTensorObj
—Iso.isIso_hom
BraidedCategory.braiding_tensor_right_hom
BraidedCategory.braiding_tensor_left_hom
SymmetricCategory.braiding_swap_eq_inv_braiding
MonoidalCategory.comp_whiskerRight
MonoidalCategory.whisker_assoc
Category.assoc
MonoidalCategory.pentagon_inv_hom_hom_hom_inv_assoc
Iso.inv_hom_id_assoc
Iso.hom_inv_id_assoc
MonoidalCategory.hom_inv_whiskerRight_assoc
Iso.inv_hom_id
Category.comp_id
MonoidalCategory.whiskerLeft_isIso
IsIso.comp_isIso
Iso.isIso_inv
MonoidalCategory.whiskerRight_isIso
IsIso.Iso.inv_hom
MonoidalCategory.inv_whiskerLeft
IsIso.inv_comp
MonoidalCategory.inv_whiskerRight
IsIso.Iso.inv_inv
MonoidalCategory.hom_inv_whiskerRight
MonoidalCategory.pentagon_inv_assoc
MonoidalCategory.tensorHom_comp_tensorHom
IsCommMonObj.mul_comm
instIsMonHomComp šŸ“–mathematical—IsMonHom
CategoryStruct.comp
Category.toCategoryStruct
—IsMonHom.one_hom_assoc
IsMonHom.one_hom
IsMonHom.mul_hom_assoc
IsMonHom.mul_hom
MonoidalCategory.tensorHom_comp_tensorHom_assoc
instIsMonHomHomAsIso šŸ“–mathematical—IsMonHom
Iso.hom
asIso
——
instIsMonHomId šŸ“–mathematical—IsMonHom
CategoryStruct.id
Category.toCategoryStruct
—Category.comp_id
MonoidalCategory.tensorHom_id
MonoidalCategory.id_whiskerRight
Category.id_comp
instIsMonHomInvOfHom šŸ“–mathematical—IsMonHom
Iso.inv
—IsMonHom.one_hom
Category.assoc
IsMonHom.mul_hom
MonoidalCategory.tensorHom_comp_tensorHom_assoc
Iso.inv_hom_id
MonoidalCategory.tensorHom_id
MonoidalCategory.id_whiskerRight
Category.id_comp
isMonHom_ofIso šŸ“–mathematical—IsMonHom
MonObj.ofIso
Iso.hom
—MonoidalCategory.tensorHom_comp_tensorHom_assoc
Iso.hom_inv_id
MonoidalCategory.tensorHom_id
MonoidalCategory.id_whiskerRight
Category.id_comp

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
mapMon šŸ“–CompOp
2 mathmath: mapMon_unit, mapMon_counit

Theorems

NameKindAssumesProvesValidatesDepends On
mapMon_counit šŸ“–mathematical—counit
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
mapMon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapMonCompIso
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Functor.mapMonNatTrans
IsMonoidal.instIsMonoidalCounit
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapMonIdIso
——
mapMon_unit šŸ“–mathematical—unit
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
mapMon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapMonIdIso
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.mapMonNatTrans
IsMonoidal.instIsMonoidalUnit
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapMonCompIso
——

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
mapMon šŸ“–CompOp
4 mathmath: mapMon_inverse, mapMon_unitIso, mapMon_counitIso, mapMon_functor

Theorems

NameKindAssumesProvesValidatesDepends On
mapMon_counitIso šŸ“–mathematical—counitIso
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.mapMon
inverse
CategoryTheory.Functor.Monoidal.toLaxMonoidal
functor
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
CategoryTheory.Functor.mapMonCompIso
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Functor.mapMonNatIso
CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit
CategoryTheory.Functor.mapMonIdIso
——
mapMon_functor šŸ“–mathematical—functor
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
——
mapMon_inverse šŸ“–mathematical—inverse
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
——
mapMon_unitIso šŸ“–mathematical—unitIso
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Functor.comp
functor
CategoryTheory.Functor.Monoidal.toLaxMonoidal
inverse
CategoryTheory.Iso.symm
CategoryTheory.Functor.mapMonIdIso
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.mapMonNatIso
CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit
CategoryTheory.Functor.mapMonCompIso
——

CategoryTheory.Functor

Definitions

NameCategoryTheorems
instBraidedMonMapMon šŸ“–CompOp—
instLaxBraidedMonMapMon šŸ“–CompOp—
instLaxMonoidalMonMapMon šŸ“–CompOp—
instMonoidalMonMapMon šŸ“–CompOp—
mapMon šŸ“–CompOp
39 mathmath: mapMonNatTrans_app_hom, FullyFaithful.mapMon_preimage_hom, CategoryTheory.Equivalence.mapMon_inverse, mapCommMon_obj_mon_mul, CategoryTheory.Adjunction.mapMon_unit, FullyFaithful.mapGrp_preimage, mapMon_obj_mon_mul, mapMonCompIso_hom_app_hom, CategoryTheory.Equivalence.mapMon_unitIso, mapMon_obj_X, mapMonNatIso_hom_app_hom, mapMonNatIso_inv_app_hom, CategoryTheory.Adjunction.mapMon_counit, mapMonFunctor_obj, comp_mapMon_mul, mapMonFunctor_map_app_hom, mapMon_obj_mon_one, mapMonIdIso_hom_app_hom, mapCommMon_map_hom_hom, FullyFaithful.mapCommMon_preimage, mapGrp_map_hom_hom, mapMonIdIso_inv_app_hom, CategoryTheory.Equivalence.mapMon_counitIso, mapCommMon_obj_mon_one, CategoryTheory.Bimon.ofMonComon_map_hom, Full.mapMon, mapMon_map_hom, FullyFaithful.mapCommGrp_preimage, id_mapMon_mul, CategoryTheory.Equivalence.mapMon_functor, mapMonCompIso_inv_app_hom, mapGrpNatTrans_app_hom_hom, essImage_mapMon, mapCommGrp_map_hom_hom_hom, mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj, id_mapMon_one, comp_mapMon_one, Faithful.mapMon
mapMonCompIso šŸ“–CompOp
6 mathmath: CategoryTheory.Adjunction.mapMon_unit, mapMonCompIso_hom_app_hom, CategoryTheory.Equivalence.mapMon_unitIso, CategoryTheory.Adjunction.mapMon_counit, CategoryTheory.Equivalence.mapMon_counitIso, mapMonCompIso_inv_app_hom
mapMonFunctor šŸ“–CompOp
3 mathmath: mapMonFunctor_obj, mapMonFunctor_map_app_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map
mapMonIdIso šŸ“–CompOp
6 mathmath: CategoryTheory.Adjunction.mapMon_unit, CategoryTheory.Equivalence.mapMon_unitIso, CategoryTheory.Adjunction.mapMon_counit, mapMonIdIso_hom_app_hom, mapMonIdIso_inv_app_hom, CategoryTheory.Equivalence.mapMon_counitIso
mapMonNatIso šŸ“–CompOp
4 mathmath: CategoryTheory.Equivalence.mapMon_unitIso, mapMonNatIso_hom_app_hom, mapMonNatIso_inv_app_hom, CategoryTheory.Equivalence.mapMon_counitIso
mapMonNatTrans šŸ“–CompOp
3 mathmath: mapMonNatTrans_app_hom, CategoryTheory.Adjunction.mapMon_unit, CategoryTheory.Adjunction.mapMon_counit
monObjObj šŸ“–CompOp
14 mathmath: map_mul, FullyFaithful.homMulEquiv_apply, instIsMonHomμ, map.instIsMonHom, obj.η_def_assoc, obj.η_def, isCommMonObj_obj, FullyFaithful.homMulEquiv_symm_apply, obj.μ_def, instIsMonHomε, mapMon_map_hom, obj.μ_def_assoc, homMonoidHom_apply, map_one
mon_ClassObj šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mapMon_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
CategoryTheory.Mon.X
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
comp
LaxMonoidal.comp
CategoryTheory.Mon.mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.μ
map
——
comp_mapMon_one šŸ“–mathematical—CategoryTheory.MonObj.one
CategoryTheory.Mon.X
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
comp
LaxMonoidal.comp
CategoryTheory.Mon.mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.ε
map
——
essImage_mapMon šŸ“–mathematical—essImage
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
Monoidal.toLaxMonoidal
CategoryTheory.Mon.X
—FullyFaithful.map_preimage
Monoidal.ε_η_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
Monoidal.μ_Γ_assoc
id_mapMon_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
CategoryTheory.Mon.X
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
id
LaxMonoidal.id
CategoryTheory.Mon.mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
——
id_mapMon_one šŸ“–mathematical—CategoryTheory.MonObj.one
CategoryTheory.Mon.X
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
id
LaxMonoidal.id
CategoryTheory.Mon.mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
——
instIsMonHomε šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
obj
CategoryTheory.MonObj.instTensorUnit
monObjObj
LaxMonoidal.ε
—CategoryTheory.Category.id_comp
map_id
CategoryTheory.Category.comp_id
LaxMonoidal.ε_tensorHom_comp_μ_assoc
CategoryTheory.MonoidalCategory.id_whiskerLeft
LaxMonoidal.left_unitality
CategoryTheory.Iso.map_inv_hom_id
CategoryTheory.Category.assoc
LaxMonoidal.left_unitality_inv_assoc
instIsMonHomμ šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
obj
CategoryTheory.Mon.instMonObjTensorObj
monObjObj
LaxBraided.toLaxMonoidal
LaxMonoidal.μ
—CategoryTheory.MonoidalCategory.leftUnitor_inv_comp_tensorHom_assoc
CategoryTheory.Category.assoc
LaxMonoidal.μ_natural
LaxMonoidal.left_unitality_inv_assoc
CategoryTheory.MonoidalCategory.tensorμ_comp_μ_tensorHom_μ_comp_μ_assoc
map_comp
mapMonCompIso_hom_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
comp
LaxMonoidal.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapMonCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.X
——
mapMonCompIso_inv_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
comp
mapMon
LaxMonoidal.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapMonCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.X
——
mapMonFunctor_map_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.LaxMonoidalFunctor.toFunctor
CategoryTheory.LaxMonoidalFunctor.laxMonoidal
CategoryTheory.NatTrans.app
map
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.LaxMonoidalFunctor.instCategory
CategoryTheory.Functor
category
mapMonFunctor
CategoryTheory.LaxMonoidalFunctor.Hom.hom
CategoryTheory.Mon.X
——
mapMonFunctor_obj šŸ“–mathematical—obj
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.LaxMonoidalFunctor.instCategory
CategoryTheory.Functor
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
category
mapMonFunctor
mapMon
CategoryTheory.LaxMonoidalFunctor.toFunctor
CategoryTheory.LaxMonoidalFunctor.laxMonoidal
——
mapMonIdIso_hom_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
id
LaxMonoidal.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapMonIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.X
——
mapMonIdIso_inv_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
id
mapMon
LaxMonoidal.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapMonIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.X
——
mapMonNatIso_hom_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapMonNatIso
CategoryTheory.Mon.X
——
mapMonNatIso_inv_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
mapMonNatIso
CategoryTheory.Mon.X
——
mapMonNatTrans_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.NatTrans.app
mapMonNatTrans
CategoryTheory.Mon.X
——
mapMon_map_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
obj
CategoryTheory.Mon.X
monObjObj
CategoryTheory.Mon.mon
map
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
——
mapMon_obj_X šŸ“–mathematical—CategoryTheory.Mon.X
obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
——
mapMon_obj_mon_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
obj
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.μ
map
——
mapMon_obj_mon_one šŸ“–mathematical—CategoryTheory.MonObj.one
obj
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
mapMon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
LaxMonoidal.ε
map
——

CategoryTheory.Functor.Faithful

Theorems

NameKindAssumesProvesValidatesDepends On
mapMon šŸ“–mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.mapMon
—CategoryTheory.Mon.Hom.ext
map_injective

CategoryTheory.Functor.Full

Theorems

NameKindAssumesProvesValidatesDepends On
mapMon šŸ“–mathematical—CategoryTheory.Functor.Full
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
—CategoryTheory.Functor.map_surjective
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Functor.Monoidal.instIsIsoε
CategoryTheory.IsMonHom.one_hom
CategoryTheory.Mon.instIsMonHomHom
CategoryTheory.Functor.LaxMonoidal.μ_natural_assoc
CategoryTheory.Functor.Monoidal.instIsIsoμ
CategoryTheory.IsMonHom.mul_hom
CategoryTheory.Mon.Hom.ext

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
mapMon šŸ“–CompOp
4 mathmath: mapMon_preimage_hom, mapGrp_preimage, mapCommMon_preimage, mapCommGrp_preimage
monObj šŸ“–CompOp
2 mathmath: monObj_mul, monObj_one
mon_Class šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
isMonHom_preimage šŸ“–mathematical—CategoryTheory.IsMonHom
preimage
—map_injective
CategoryTheory.Functor.map_comp
map_preimage
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Functor.Monoidal.instIsIsoε
CategoryTheory.IsMonHom.one_hom
CategoryTheory.Functor.Monoidal.instIsIsoμ
CategoryTheory.IsMonHom.mul_hom
mapMon_preimage_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
preimage
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.mapMon
CategoryTheory.Functor.Monoidal.toLaxMonoidal
mapMon
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
——
monObj_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
monObj
preimage
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.Ī“
——
monObj_one šŸ“–mathematical—CategoryTheory.MonObj.one
monObj
preimage
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.OplaxMonoidal.Ī·
——

CategoryTheory.Functor.map

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonHom šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.Functor.obj
CategoryTheory.Functor.monObjObj
CategoryTheory.Functor.map
—CategoryTheory.Category.assoc
CategoryTheory.IsMonHom.one_hom
CategoryTheory.IsMonHom.mul_hom
CategoryTheory.Functor.LaxMonoidal.μ_natural_assoc

CategoryTheory.Functor.obj

Theorems

NameKindAssumesProvesValidatesDepends On
Ī·_def šŸ“–mathematical—CategoryTheory.MonObj.one
CategoryTheory.Functor.obj
CategoryTheory.Functor.monObjObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.map
——
Ī·_def_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonObj.one
CategoryTheory.Functor.monObjObj
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Functor.map
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Ī·_def
μ_def šŸ“–mathematical—CategoryTheory.MonObj.mul
CategoryTheory.Functor.obj
CategoryTheory.Functor.monObjObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.map
——
μ_def_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonObj.mul
CategoryTheory.Functor.monObjObj
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Functor.map
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
μ_def

CategoryTheory.IsCommMonObj

Theorems

NameKindAssumesProvesValidatesDepends On
instTensorUnit šŸ“–mathematical—CategoryTheory.IsCommMonObj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonObj.instTensorUnit
—CategoryTheory.braiding_leftUnitor
CategoryTheory.MonoidalCategory.unitors_equal
mul_comm šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonObj.mul
——
mul_comm' šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonObj.mul
—CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
mul_comm
mul_comm'_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonObj.mul
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_comm'
mul_comm_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonObj.mul
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_comm

CategoryTheory.IsMonHom

Theorems

NameKindAssumesProvesValidatesDepends On
mul_hom šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
——
mul_hom_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_hom
one_hom šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonObj.one
——
one_hom_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonObj.one
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
one_hom

CategoryTheory.Mathlib.Tactic.MonTauto

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_comp_tensorHom_tensorHom šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
—CategoryTheory.MonoidalCategory.associator_conjugation
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
associator_hom_comp_tensorHom_tensorHom_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_hom_comp_tensorHom_tensorHom
associator_hom_comp_tensorHom_tensorHom_comp šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.CategoryStruct.id
—CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id
associator_hom_comp_tensorHom_tensorHom_comp_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.CategoryStruct.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_hom_comp_tensorHom_tensorHom_comp
associator_inv_comp_tensorHom_tensorHom šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
—CategoryTheory.MonoidalCategory.associator_conjugation
CategoryTheory.Iso.inv_hom_id_assoc
associator_inv_comp_tensorHom_tensorHom_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_comp_tensorHom_tensorHom
associator_inv_comp_tensorHom_tensorHom_comp šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.CategoryStruct.id
—CategoryTheory.MonoidalCategory.tensorHom_def'
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id_assoc
associator_inv_comp_tensorHom_tensorHom_comp_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.CategoryStruct.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_comp_tensorHom_tensorHom_comp
eq_mul_one šŸ“–mathematical—CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.CategoryStruct.id
CategoryTheory.MonObj.one
CategoryTheory.MonObj.mul
—CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.MonObj.mul_one
eq_one_mul šŸ“–mathematical—CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.one
CategoryTheory.CategoryStruct.id
CategoryTheory.MonObj.mul
—CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonObj.one_mul
leftUnitor_inv_one_tensor_mul šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.one
CategoryTheory.MonObj.mul
—CategoryTheory.MonoidalCategory.tensorHom_def'
CategoryTheory.MonoidalCategory.id_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.MonObj.one_mul
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
leftUnitor_inv_one_tensor_mul_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.one
CategoryTheory.MonObj.mul
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_inv_one_tensor_mul
mul_assoc_hom šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.mul
CategoryTheory.CategoryStruct.id
—CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonObj.mul_assoc
mul_assoc_hom_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.mul
CategoryTheory.CategoryStruct.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_assoc_hom
mul_assoc_inv šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.mul
CategoryTheory.CategoryStruct.id
—CategoryTheory.MonoidalCategory.tensorHom_def'
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.MonObj.mul_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.whiskerLeft_comp
mul_assoc_inv_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.mul
CategoryTheory.CategoryStruct.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_assoc_inv
rightUnitor_inv_tensor_one_mul šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.one
CategoryTheory.MonObj.mul
—CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.assoc
CategoryTheory.MonObj.mul_one
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
rightUnitor_inv_tensor_one_mul_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.one
CategoryTheory.MonObj.mul
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_inv_tensor_one_mul

CategoryTheory.Mon

Definitions

NameCategoryTheorems
X šŸ“–CompOp
229 mathmath: CategoryTheory.Grp.Hom.hom_div, id_hom, CategoryTheory.Grp.instIsIsoHomHomMon, CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Functor.mapMonNatTrans_app_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, Bimod.TensorBimod.Ļ€_tensor_id_actRight, Bimod.AssociatorBimod.hom_left_act_hom', CategoryTheory.Functor.FullyFaithful.mapMon_preimage_hom, CategoryTheory.CommMon.comp_hom, Bimod.RightUnitorBimod.hom_right_act_hom', Bimod.LeftUnitorBimod.hom_right_act_hom', CategoryTheory.Grp.Hom.hom_hom_zpow, CategoryTheory.Monad.ofMon_Ī·, EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, forget_obj, leftUnitor_inv_hom, CategoryTheory.Functor.mapCommMon_obj_mon_mul, forget_μ, CategoryTheory.Bimon.ofMonComonObjX_mul, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, hom_injective, Bimod.whiskerLeft_hom, CategoryTheory.Functor.mapMon_obj_mon_mul, Bimod.TensorBimod.right_assoc', instIsMonHomHom, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CategoryTheory.Grp.whiskerLeft_hom_hom, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_hom, Bimod.TensorBimod.whiskerLeft_Ļ€_actLeft, CategoryTheory.Monad.monadMonEquiv_counitIso_hom_app_hom, Bimod.actRight_one, CategoryTheory.Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, CategoryTheory.Bimon.instIsComonHomHomEquivMonComonCounitIsoAppXAux, CategoryTheory.Bimon.equivMonComonUnitIsoApp_hom_hom_hom, rightUnitor_inv_hom, Bimod.left_assoc_assoc, CategoryTheory.Bimon.mk'X_X, Bimod.right_assoc, CategoryTheory.Bimon.trivial_X_X, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Bimon.ofMonComonObj_comon_comul_hom, Bimod.TensorBimod.actRight_one', CategoryTheory.Functor.mapMonCompIso_hom_app_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CategoryTheory.Grp.Hom.hom_zpow, CategoryTheory.Bimon.toComon_obj_X, CategoryTheory.Comon.MonOpOpToComon_map_hom, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.Grp.Hom.hom_hom_div, tensorObj_one, lift_hom, whiskerRight_hom, CategoryTheory.CommMon.instIsIsoHomHomMon, CategoryTheory.Bimon.equivMonComonCounitIsoAppXAux_inv, Bimod.TensorBimod.middle_assoc', CategoryTheory.Bimon.ofMon_Comon_ObjX_one, tensorUnit_X, limit_mon_mul, CategoryTheory.Functor.mapMon_obj_X, CategoryTheory.Grp.whiskerRight_hom_hom, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CategoryTheory.Functor.mapMonNatIso_hom_app_hom, CategoryTheory.Grp.Hom.hom_hom_inv, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, Bimod.right_assoc_assoc, fst_hom, CategoryTheory.Functor.mapMonNatIso_inv_app_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_obj, Bimod.Hom.left_act_hom, CategoryTheory.Bimon.ofMon_Comon_ObjX_mul, CategoryTheory.Grp.whiskerLeft_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.yonedaMon_map_app, associator_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, MonObj.mopEquiv_inverse_map_hom, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, Bimod.middle_assoc_assoc, CategoryTheory.Comon.MonOpOpToComonObj_comon_comul, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_obj, CategoryTheory.Functor.mapMonFunctor_map_app_hom, CategoryTheory.CommMon.toMon_X, CategoryTheory.Functor.mapMon_obj_mon_one, CategoryTheory.Functor.mapMonIdIso_hom_app_hom, Bimod.one_actLeft_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.Grp.forgetā‚‚Mon_obj_mul, MonObj.mopEquiv_inverse_obj_X, tensorObj_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverse_map_hom_app, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_counit, whiskerLeft_hom, CategoryTheory.Grp.toMon_X, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_comul, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_inv, EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, Hom.hom_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_X, CategoryTheory.Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_map, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_μ, associator_inv_hom, CategoryTheory.CommMon.forgetā‚‚Mon_obj_mul, CategoryTheory.Bimon.equivMonComonCounitIsoAppX_hom_hom, Bimod.regular_X, uniqueHomFromTrivial_default_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_inv, MonObj.mopEquiv_functor_map_hom_unmop, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.Bimon.equivMonComonUnitIsoApp_inv_hom_hom, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_counit, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.Grp.comp_hom_hom, CategoryTheory.Functor.mapMonIdIso_inv_app_hom, Bimod.one_actLeft, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CategoryTheory.Bimon.ofMonComonObj_comon_counit_hom, Bimod.TensorBimod.left_assoc', MonObj.mopEquiv_unitIso_hom_app_hom, CategoryTheory.Functor.mapCommMon_obj_mon_one, tensorUnit_one, MonObj.mopEquiv_functor_obj_X_unmop, Hom.hom_pow, CategoryTheory.Grp.forgetā‚‚Mon_obj_X, Bimod.left_assoc, Bimod.regular_actRight, Bimod.Hom.left_act_hom_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_X, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.Bimon.ofMonComonObjX_one, CategoryTheory.Functor.mapMon_map_hom, leftUnitor_hom_hom, CategoryTheory.Bimon.equivMonComonCounitIsoAppX_inv_hom, EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, CategoryTheory.Functor.id_mapMon_mul, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, Bimod.RightUnitorBimod.hom_left_act_hom', MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Monad.ofMon_μ, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, CategoryTheory.Functor.mapMonCompIso_inv_app_hom, limit_X, CategoryTheory.Bimon.equivMonComonCounitIsoApp_hom_hom_hom, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_comul, CategoryTheory.Grp.forgetā‚‚Mon_obj_one, CategoryTheory.Mod_.trivialAction_X, Bimod.actRight_one_assoc, CategoryTheory.Bimon.ofMonComonObjX_X, Bimod.middle_assoc, CategoryTheory.Comon.MonOpOpToComonObj_X, comp_hom', CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, braiding_inv_hom, CategoryTheory.Functor.essImage_mapMon, CategoryTheory.Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, commBialgCatEquivComonCommAlgCat_inverse_obj, hom_mul, CategoryTheory.Monad.ofMon_obj, Bimod.TensorBimod.one_act_left', comp_hom, trivial_X, CategoryTheory.Grp.Hom.hom_inv, limit_mon_one, MonObj.mopEquiv_inverse_obj_mon_one, Bimod.whiskerRight_hom, forget_Ī“, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, rightUnitor_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, Bimod.Hom.right_act_hom, instIsIsoHom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.Monad.toMon_X, Hom.isMonHom_hom, Bimod.regular_actLeft, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, MonObj.mopEquiv_unitIso_inv_app_hom, Bimod.Hom.right_act_hom_assoc, CategoryTheory.CommMon.forgetā‚‚Mon_obj_X, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, CategoryTheory.Bimon.equivMonComonCounitIsoAppXAux_hom, monMonoidalStruct_tensorHom_hom, CategoryTheory.Grp.whiskerRight_hom, instIsIsoHomOfMapForget, braiding_hom_hom, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, Bimod.AssociatorBimod.hom_right_act_hom', CategoryTheory.Mod_.trivialAction_mod_smul, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Comon.MonOpOpToComonObj_comon_counit, CategoryTheory.Bimon.toMonComonObj_X, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, tensorUnit_mul, CategoryTheory.Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, tensor_one, hom_one, CategoryTheory.yonedaMon_obj, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, monMonoidalStruct_tensorObj_X, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CategoryTheory.CommMon.forgetā‚‚Mon_obj_one, CategoryTheory.Grp.comp_hom, id_hom', CategoryTheory.Comon.ComonToMonOpOpObj_X, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_ε, snd_hom, Hom.hom_one, Bimod.LeftUnitorBimod.hom_left_act_hom', CategoryTheory.Comon.monoidal_tensorObj_comon_comul, tensor_mul, MonObj.mopEquiv_inverse_obj_mon_mul
comp šŸ“–CompOp
1 mathmath: comp_hom
equivLaxMonoidalFunctorPUnit šŸ“–CompOp
4 mathmath: equivLaxMonoidalFunctorPUnit_inverse, equivLaxMonoidalFunctorPUnit_counitIso, equivLaxMonoidalFunctorPUnit_unitIso, equivLaxMonoidalFunctorPUnit_functor
forget šŸ“–CompOp
27 mathmath: forget_obj, forget_μ, forget_ε, CategoryTheory.Bimon.toMon_forget, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.Bimon.toComon_obj_comon_counit, CategoryTheory.Bimon.toComon_map_hom, limitConeIsLimit_lift_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, forget_faithful, limit_mon_mul, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, instReflectsIsomorphismsForget, limitCone_Ļ€_app_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_X, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.Grp.forgetā‚‚Mon_comp_forget, limit_X, forget_preservesLimitsOfShape, forget_Ī·, CategoryTheory.CommMon.forgetā‚‚Mon_comp_forget, limit_mon_one, forget_Ī“, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, forget_map, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.Bimon.toComon_obj_comon_comul
homInhabited šŸ“–CompOp—
id šŸ“–CompOp
1 mathmath: id_hom
instCategory šŸ“–CompOp
378 mathmath: CategoryTheory.Grp.mkIso_inv_hom, CategoryTheory.Grp.Hom.hom_div, CategoryTheory.Grp.comp', CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverse_obj, CategoryTheory.Grp.mkIso_hom_hom, CategoryTheory.Monad.monadMonEquiv_unitIso_inv_app_toNatTrans_app, CategoryTheory.Grp.instIsIsoHomHomMon, CategoryTheory.Grp.homMk'_hom, CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Bimon.Bimon_ClassAux_comul, CategoryTheory.Functor.mapMonNatTrans_app_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, CategoryTheory.Functor.FullyFaithful.mapMon_preimage_hom, CategoryTheory.CommMon.comp_hom, CategoryTheory.Grp.Hom.hom_hom_zpow, CategoryTheory.Equivalence.mapMon_inverse, EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommMonNatIso_inv_app_hom_hom, forget_obj, CategoryTheory.instFullMonFunctorOppositeMonCatYonedaMon, leftUnitor_inv_hom, CategoryTheory.Functor.mapCommMon_obj_mon_mul, forget_μ, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, CategoryTheory.Adjunction.mapMon_unit, CategoryTheory.Grp.id', CategoryTheory.Bimon.ext_iff, equivLaxMonoidalFunctorPUnit_inverse, CategoryTheory.Comon.MonOpOpToComon_obj, CategoryTheory.CommMon.forget_map, CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.Comon.ComonToMonOpOp_obj, CategoryTheory.Functor.mapMon_obj_mon_mul, CategoryTheory.CommGrp.mkIso_inv_hom, forget_ε, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CategoryTheory.Grp.whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.Bimon.toMon_forget, CategoryTheory.Comon.Comon_EquivMon_OpOp_counitIso, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.counitIso_inv_app_app_hom_hom, CategoryTheory.Grp.leftUnitor_hom_hom, CategoryTheory.Functor.mapCommMonNatTrans_app_hom_hom, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.Monad.monadMonEquiv_counitIso_hom_app_hom, CategoryTheory.Bimon.trivial_comon_counit_hom, CategoryTheory.Bimon.toTrivial_hom, CategoryTheory.Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, CategoryTheory.Bimon.instIsComonHomHomEquivMonComonCounitIsoAppXAux, CategoryTheory.Bimon.equivMonComonUnitIsoApp_hom_hom_hom, rightUnitor_inv_hom, CategoryTheory.CommMon.mkIso'_inv_hom_hom, CategoryTheory.Grp.ε_def, CategoryTheory.Grp.rightUnitor_hom_hom_hom, CategoryTheory.Bimon.toComon_obj_comon_counit, mkIso_hom_hom, CategoryTheory.Bimon.toComon_map_hom, CategoryTheory.Grp.lift_hom, CategoryTheory.Grp.hom_mul, CategoryTheory.Bimon.trivial_X_X, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Bimon.ofMonComonObj_comon_comul_hom, CategoryTheory.Monad.monadToMon_obj, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, CategoryTheory.Functor.mapMonCompIso_hom_app_hom, limitConeIsLimit_lift_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CategoryTheory.Grp.Hom.hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_functor, CategoryTheory.Bimon.toComon_obj_X, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.unitIso_inv_app_hom_hom_app, CategoryTheory.Bimon.trivial_comon_comul_hom, CategoryTheory.Comon.MonOpOpToComon_map_hom, CategoryTheory.Grp.associator_inv_hom_hom, CategoryTheory.Monad.monToMonad_obj, CategoryTheory.Functor.mapCommMonNatIso_hom_app_hom_hom, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.Grp.Hom.hom_hom_div, CategoryTheory.Grp.leftUnitor_hom_hom_hom, CategoryTheory.CommGrp.instIsIsoMonHomGrp, CategoryTheory.Grp.forget_map, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_unitIso, tensorObj_one, lift_hom, whiskerRight_hom, CategoryTheory.Grp.mkIso_hom_hom_hom, CategoryTheory.CommMon.instIsIsoHomHomMon, CategoryTheory.Bimon.equivMonComonCounitIsoAppXAux_inv, CategoryTheory.CommGrp.forgetā‚‚CommMon_map_hom, CategoryTheory.essImage_yonedaMon, CategoryTheory.Comon.ComonToMonOpOp_map, forget_faithful, CategoryTheory.Grp.rightUnitor_inv_hom_hom, CategoryTheory.Grp.forgetā‚‚Mon_map_hom, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.Equivalence.mapMon_unitIso, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_functor, tensorUnit_X, CategoryTheory.instFaithfulMonFunctorOppositeMonCatYonedaMon, limit_mon_mul, CategoryTheory.Functor.mapMon_obj_X, CategoryTheory.Grp.whiskerRight_hom_hom, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CategoryTheory.Functor.mapMonNatIso_hom_app_hom, CategoryTheory.Grp.Hom.hom_hom_inv, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, fst_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, CategoryTheory.Grp.μ_def, CategoryTheory.Functor.mapMonNatIso_inv_app_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.unitIso_hom_app_hom_hom_app, CategoryTheory.Grp.snd_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_obj, CategoryTheory.Monad.monadToMon_map_hom, mkIso_inv_hom, CategoryTheory.Bimon.Bimon_ClassAux_counit, CategoryTheory.Grp.whiskerLeft_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Adjunction.mapMon_counit, CategoryTheory.Functor.mapMonFunctor_obj, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Bimon.instIsComonHomMonHomEquivMonComonUnitIsoAppX, CategoryTheory.Functor.mapCommMonCompIso_inv_app_hom_hom, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.Functor.mapCommMonIdIso_hom_app_hom_hom, CategoryTheory.Grp.leftUnitor_inv_hom_hom, CategoryTheory.yonedaMon_map_app, instReflectsIsomorphismsForget, associator_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, MonObj.mopEquiv_inverse_map_hom, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, CategoryTheory.Bimon.BimonObjAux_counit, CategoryTheory.Grp.rightUnitor_inv_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, CategoryTheory.Functor.mapMonFunctor_map_app_hom, CategoryTheory.Functor.mapMon_obj_mon_one, CategoryTheory.Functor.mapMonIdIso_hom_app_hom, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.CommGrp.hom_ext_iff, CategoryTheory.Grp.forgetā‚‚Mon_obj_mul, MonObj.mopEquiv_inverse_obj_X, tensorObj_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverse_map_hom_app, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.counitIso_hom_app_app_hom_hom, CategoryTheory.Grp.Hom.hom_pow, CategoryTheory.Grp.Ī“_def, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_counit, whiskerLeft_hom, CategoryTheory.Grp.associator_hom_hom_hom, CategoryTheory.CommMon.mkIso_inv_hom_hom, limitCone_Ļ€_app_hom, CategoryTheory.Grp.braiding_inv_hom, CategoryTheory.Grp.mkIso'_hom_hom_hom, CategoryTheory.Grp.id_hom, CategoryTheory.Comon.monoidal_associator_hom_hom, equivLaxMonoidalFunctorPUnit_counitIso, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, equivLaxMonoidalFunctorPUnit_unitIso, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_obj, EquivLaxMonoidalFunctorPUnit.unitIso_hom_app_hom_app, CategoryTheory.Grp.fst_hom, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_comul, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_inv, CategoryTheory.CommGrp.mkIso_inv_hom_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, instIsCommMonObj, Hom.hom_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_X, CategoryTheory.Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, associator_inv_hom, CategoryTheory.CommMon.forgetā‚‚Mon_obj_mul, CategoryTheory.Bimon.equivMonComonCounitIsoAppX_hom_hom, CategoryTheory.Monad.monToMonad_map_toNatTrans, mkIso'_inv_hom, uniqueHomFromTrivial_default_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_unitIso, EquivLaxMonoidalFunctorPUnit.counitIsoAux_inv, MonObj.mopEquiv_functor_map_hom_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObj_map_hom, MonObj.mopEquivCompForgetIso_inv_app_unmop, equivLaxMonoidalFunctorPUnit_functor, CategoryTheory.Functor.mapCommMon_map_hom_hom, CategoryTheory.Functor.FullyFaithful.mapCommMon_preimage, CategoryTheory.Bimon.equivMonComonUnitIsoApp_inv_hom_hom, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_counit, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.CommGrp.forgetā‚‚Grp_map_hom, CategoryTheory.Grp.comp_hom_hom, CategoryTheory.Bimon.id_hom', CategoryTheory.Functor.mapMonIdIso_inv_app_hom, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CategoryTheory.Bimon.trivialTo_hom, CategoryTheory.Equivalence.mapMon_counitIso, CategoryTheory.Bimon.ofMonComonObj_comon_counit_hom, MonObj.mopEquiv_unitIso_hom_app_hom, CategoryTheory.Grp.braiding_inv_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom, CategoryTheory.Functor.mapCommMon_obj_mon_one, CategoryTheory.Bimon.ofMonComon_map_hom, CategoryTheory.Functor.Full.mapMon, tensorUnit_one, MonObj.mopEquiv_functor_obj_X_unmop, CategoryTheory.Grp.Hom.hom_mul, Hom.hom_pow, CategoryTheory.Grp.rightUnitor_hom_hom, CategoryTheory.Monad.monadMonEquiv_inverse, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Bimon.ofMonComon_obj, CategoryTheory.Grp.forgetā‚‚Mon_obj_X, CategoryTheory.Grp.hom_ext_iff, CategoryTheory.Grp.homMk''_hom_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.CommMon.id_hom, CategoryTheory.Grp.forgetā‚‚Mon_comp_forget, CategoryTheory.Bimon.toMonComon_obj, CategoryTheory.Functor.mapMon_map_hom, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_X_map, leftUnitor_hom_hom, hasLimitsOfShape, CategoryTheory.Bimon.equivMonComonCounitIsoAppX_inv_hom, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, CategoryTheory.CommGrp.mkIso_hom_hom_hom_hom, CategoryTheory.CommMon.homMk_hom, CategoryTheory.Grp.leftUnitor_inv_hom, CategoryTheory.Functor.id_mapMon_mul, CategoryTheory.CommMon.mkIso_hom_hom_hom, CategoryTheory.Equivalence.mapMon_functor, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Bimon.BimonObjAux_comul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, CategoryTheory.Functor.mapMonCompIso_inv_app_hom, limit_X, CategoryTheory.CommMon.hom_ext_iff, CategoryTheory.Grp.mkIso_inv_hom_hom, CategoryTheory.Bimon.equivMonComonCounitIsoApp_hom_hom_hom, CategoryTheory.Grp.snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_comul, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_counitIso, CategoryTheory.CommMon.instFullMonForgetā‚‚Mon, CategoryTheory.Grp.hom_one, CategoryTheory.Grp.forgetā‚‚Mon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, forget_preservesLimitsOfShape, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, comp_hom', CategoryTheory.Grp.associator_inv_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, braiding_inv_hom, CategoryTheory.Grp.homMk_hom_hom, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, CategoryTheory.Functor.essImage_mapMon, forget_Ī·, CategoryTheory.Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, CategoryTheory.Bimon.mk'_X, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, commBialgCatEquivComonCommAlgCat_inverse_obj, hom_mul, limitCone_pt, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.Grp.Hom.hom_inv, CategoryTheory.CommMon.forgetā‚‚Mon_comp_forget, limit_mon_one, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, MonObj.mopEquiv_inverse_obj_mon_one, CategoryTheory.Grp.instFaithfulMonForgetā‚‚Mon, CategoryTheory.Monad.monadMonEquiv_functor, forget_Ī“, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, rightUnitor_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, CategoryTheory.Bimon.ofMonComonObj_X, CategoryTheory.Grp.braiding_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Grp.Ī·_def, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_inverse, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, CategoryTheory.Bimon.toMonComon_map_hom, CategoryTheory.Grp.associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, forget_map, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Functor.mapCommMonIdIso_inv_app_hom_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, MonObj.mopEquiv_unitIso_inv_app_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_inv_app_hom_hom, CategoryTheory.CommMon.forgetā‚‚Mon_obj_X, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, CategoryTheory.Monad.monadMonEquiv_unitIso_hom_app_toNatTrans_app, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj, CategoryTheory.yonedaGrp_map_app, CategoryTheory.Bimon.equivMonComonCounitIsoAppXAux_hom, monMonoidalStruct_tensorHom_hom, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, CategoryTheory.Grp.whiskerRight_hom, braiding_hom_hom, CategoryTheory.Grp.tensorHom_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObj_obj, CategoryTheory.CommMon.mkIso'_hom_hom_hom, CategoryTheory.Grp.Hom.hom_one, CategoryTheory.CommMon.instFaithfulMonForgetā‚‚Mon, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CategoryTheory.Grp.fst_hom_hom, CategoryTheory.Grp.mkIso'_inv_hom_hom, CategoryTheory.Comon.monoidal_tensorHom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_hom_app_hom_hom, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.Bimon.comp_hom', CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, CategoryTheory.Grp.braiding_hom_hom_hom, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, tensorUnit_mul, CategoryTheory.Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CategoryTheory.CommMon.forgetā‚‚Mon_map_hom, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, tensor_one, hom_one, CategoryTheory.yonedaMon_obj, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, mkIso'_hom_hom, monMonoidalStruct_tensorObj_X, EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_inverse, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, CategoryTheory.CommMon.forgetā‚‚Mon_obj_one, CategoryTheory.Grp.comp_hom, id_hom', CategoryTheory.Grp.instFullMonForgetā‚‚Mon, CategoryTheory.Grp.id_hom_hom, CategoryTheory.Functor.Faithful.mapMon, CategoryTheory.Bimon.toComon_obj_comon_comul, snd_hom, Hom.hom_one, CategoryTheory.CommGrp.forget_map, instHasInitial, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Bimon.trivial_X_mon_one, tensor_mul, CategoryTheory.Functor.mapCommMonCompIso_hom_app_hom_hom, MonObj.mopEquiv_inverse_obj_mon_mul
instInhabited šŸ“–CompOp—
instMonObjTensorObj šŸ“–CompOp
14 mathmath: CategoryTheory.MonObj.instIsMonHomHomBraiding, CategoryTheory.BimonObj.one_comul, CategoryTheory.Functor.instIsMonHomμ, CategoryTheory.MonObj.instIsMonHomSnd, CategoryTheory.MonObj.instIsMonHomLift, CategoryTheory.MonObj.instIsMonHomFst, CategoryTheory.BimonObj.one_comul_assoc, CategoryTheory.Grp.tensorObj_mul, CategoryTheory.Grp.tensorObj_one, mul_def, CategoryTheory.MonObj.mul_braiding, CategoryTheory.instIsCommMonObjTensorObj, one_def, CategoryTheory.MonObj.instIsMonHomMulOfIsCommMonObj
instMonoidalForget šŸ“–CompOp
5 mathmath: forget_μ, forget_ε, CategoryTheory.Bimon.toComon_map_hom, forget_η, forget_Γ
instSymmetricCategory šŸ“–CompOp
3 mathmath: instIsCommMonObj, braiding_inv_hom, braiding_hom_hom
mkIso šŸ“–CompOp
2 mathmath: mkIso_hom_hom, mkIso_inv_hom
mkIso' šŸ“–CompOp
2 mathmath: mkIso'_inv_hom, mkIso'_hom_hom
mon šŸ“–CompOp
103 mathmath: CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, CategoryTheory.Monad.ofMon_Ī·, EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, CategoryTheory.Bimon.ofMonComonObjX_mul, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, CategoryTheory.Functor.mapMon_obj_mon_mul, Bimod.TensorBimod.right_assoc', instIsMonHomHom, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, Bimod.actRight_one, CategoryTheory.Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, Bimod.left_assoc_assoc, Bimod.right_assoc, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, Bimod.TensorBimod.actRight_one', trivial_mon_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_one, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_mul, tensorObj_one, CategoryTheory.Bimon.ofMon_Comon_ObjX_one, limit_mon_mul, Bimod.right_assoc_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_obj, CategoryTheory.Bimon.ofMon_Comon_ObjX_mul, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.yonedaMon_map_app, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, MonObj.mopEquiv_inverse_map_hom, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, CategoryTheory.Monad.toMon_mon, CategoryTheory.Comon.MonOpOpToComonObj_comon_comul, CategoryTheory.Functor.mapMon_obj_mon_one, Bimod.one_actLeft_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.Grp.forgetā‚‚Mon_obj_mul, tensorObj_mul, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, Hom.hom_mul, CategoryTheory.Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_μ, CategoryTheory.CommMon.forgetā‚‚Mon_obj_mul, uniqueHomFromTrivial_default_hom, MonObj.mopEquiv_functor_map_hom_unmop, Bimod.one_actLeft, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, Bimod.TensorBimod.left_assoc', trivial_mon_one, tensorUnit_one, Hom.hom_pow, Bimod.left_assoc, Bimod.regular_actRight, CategoryTheory.Bimon.ofMonComonObjX_one, CategoryTheory.Functor.mapMon_map_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.Functor.id_mapMon_mul, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Monad.ofMon_μ, CategoryTheory.Bimon.equivMonComonCounitIsoApp_hom_hom_hom, CategoryTheory.Grp.forgetā‚‚Mon_obj_one, CategoryTheory.Mod_.trivialAction_X, Bimod.actRight_one_assoc, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.Comon.ComonToMonOpOpObj_mon_mul, commBialgCatEquivComonCommAlgCat_inverse_obj, hom_mul, Bimod.TensorBimod.one_act_left', limit_mon_one, MonObj.mopEquiv_inverse_obj_mon_one, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, Hom.isMonHom_hom, Bimod.regular_actLeft, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, monMonoidalStruct_tensorHom_hom, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CategoryTheory.Mod_.trivialAction_mod_smul, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Comon.MonOpOpToComonObj_comon_counit, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, tensorUnit_mul, CategoryTheory.Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, tensor_one, hom_one, CategoryTheory.yonedaMon_obj, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.CommMon.forgetā‚‚Mon_obj_one, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_ε, Hom.hom_one, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Bimon.trivial_X_mon_one, tensor_mul, MonObj.mopEquiv_inverse_obj_mon_mul, CategoryTheory.Comon.ComonToMonOpOpObj_mon_one
monMonoidal šŸ“–CompOp
63 mathmath: CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Bimon.Bimon_ClassAux_comul, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, forget_μ, CategoryTheory.Bimon.ext_iff, forget_ε, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_hom, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.Bimon.trivial_comon_counit_hom, CategoryTheory.Bimon.toTrivial_hom, CategoryTheory.Bimon.equivMonComonUnitIsoApp_hom_hom_hom, CategoryTheory.Grp.ε_def, CategoryTheory.Bimon.toComon_obj_comon_counit, CategoryTheory.Bimon.toComon_map_hom, CategoryTheory.Bimon.trivial_X_X, CategoryTheory.Bimon.ofMonComonObj_comon_comul_hom, CategoryTheory.Bimon.toComon_obj_X, CategoryTheory.Bimon.trivial_comon_comul_hom, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.Grp.μ_def, CategoryTheory.Bimon.Bimon_ClassAux_counit, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Bimon.instIsComonHomMonHomEquivMonComonUnitIsoAppX, CategoryTheory.Bimon.BimonObjAux_counit, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Grp.Γ_def, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_inv, instIsCommMonObj, CategoryTheory.Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, CategoryTheory.Bimon.equivMonComonUnitIsoApp_inv_hom_hom, CategoryTheory.Bimon.id_hom', CategoryTheory.Bimon.trivialTo_hom, CategoryTheory.Bimon.ofMonComonObj_comon_counit_hom, CategoryTheory.Bimon.ofMonComon_map_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Bimon.BimonObjAux_comul, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, braiding_inv_hom, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, forget_η, CategoryTheory.Bimon.mk'_X, hom_mul, forget_Γ, CategoryTheory.Bimon.ofMonComonObj_X, CategoryTheory.Grp.η_def, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, braiding_hom_hom, CategoryTheory.Comon.monoidal_tensorHom_hom, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Bimon.comp_hom', CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, hom_one, CategoryTheory.Bimon.toComon_obj_comon_comul, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Bimon.trivial_X_mon_one
monMonoidalStruct šŸ“–CompOp
18 mathmath: leftUnitor_inv_hom, rightUnitor_inv_hom, tensorObj_one, whiskerRight_hom, tensorUnit_X, associator_hom_hom, tensorObj_mul, whiskerLeft_hom, associator_inv_hom, tensorUnit_one, leftUnitor_hom_hom, rightUnitor_hom_hom, monMonoidalStruct_tensorHom_hom, CategoryTheory.Grp.tensorHom_hom, tensorUnit_mul, tensor_one, monMonoidalStruct_tensorObj_X, tensor_mul
trivial šŸ“–CompOp
7 mathmath: trivial_mon_mul, uniqueHomFromTrivial_default_hom, CategoryTheory.Bimon.trivialTo_hom, trivial_mon_one, EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map, trivial_X, EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj
uniqueHomFromTrivial šŸ“–CompOp
2 mathmath: uniqueHomFromTrivial_default_hom, CategoryTheory.Bimon.trivialTo_hom

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
associator_inv_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
braiding_hom_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
monMonoidal
CategoryTheory.SymmetricCategory.toBraidedCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
instSymmetricCategory
X
——
braiding_inv_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
monMonoidal
CategoryTheory.SymmetricCategory.toBraidedCategory
CategoryTheory.Iso.inv
CategoryTheory.BraidedCategory.braiding
instSymmetricCategory
X
——
comp_hom šŸ“–mathematical—Hom.hom
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
——
comp_hom' šŸ“–mathematical—Hom.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Mon
CategoryTheory.Category.toCategoryStruct
instCategory
X
——
equivLaxMonoidalFunctorPUnit_counitIso šŸ“–mathematical—CategoryTheory.Equivalence.counitIso
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.Mon
CategoryTheory.LaxMonoidalFunctor.instCategory
instCategory
equivLaxMonoidalFunctorPUnit
EquivLaxMonoidalFunctorPUnit.counitIso
——
equivLaxMonoidalFunctorPUnit_functor šŸ“–mathematical—CategoryTheory.Equivalence.functor
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.Mon
CategoryTheory.LaxMonoidalFunctor.instCategory
instCategory
equivLaxMonoidalFunctorPUnit
EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon
——
equivLaxMonoidalFunctorPUnit_inverse šŸ“–mathematical—CategoryTheory.Equivalence.inverse
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.Mon
CategoryTheory.LaxMonoidalFunctor.instCategory
instCategory
equivLaxMonoidalFunctorPUnit
EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal
——
equivLaxMonoidalFunctorPUnit_unitIso šŸ“–mathematical—CategoryTheory.Equivalence.unitIso
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.Mon
CategoryTheory.LaxMonoidalFunctor.instCategory
instCategory
equivLaxMonoidalFunctorPUnit
EquivLaxMonoidalFunctorPUnit.unitIso
——
forget_faithful šŸ“–mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.Mon
instCategory
forget
—Hom.ext'
forget_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.Mon
instCategory
forget
Hom.hom
——
forget_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.Mon
instCategory
forget
X
——
forget_Ī“ šŸ“–mathematical—CategoryTheory.Functor.OplaxMonoidal.Ī“
CategoryTheory.Mon
instCategory
monMonoidal
forget
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
forget_ε šŸ“–mathematical—CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Mon
instCategory
monMonoidal
forget
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
——
forget_Ī· šŸ“–mathematical—CategoryTheory.Functor.OplaxMonoidal.Ī·
CategoryTheory.Mon
instCategory
monMonoidal
forget
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
——
forget_μ šŸ“–mathematical—CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Mon
instCategory
monMonoidal
forget
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalForget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
hom_injective šŸ“–mathematical—Hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
Hom.hom
—Hom.ext
id_hom šŸ“–mathematical—Hom.hom
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
——
id_hom' šŸ“–mathematical—Hom.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Mon
CategoryTheory.Category.toCategoryStruct
instCategory
X
——
instHasInitial šŸ“–mathematical—CategoryTheory.Limits.HasInitial
CategoryTheory.Mon
instCategory
—CategoryTheory.Limits.hasInitial_of_unique
Unique.instSubsingleton
instIsIsoHom šŸ“–mathematical—CategoryTheory.IsIso
X
Hom.hom
—CategoryTheory.Functor.map_isIso
instIsIsoHomOfMapForget šŸ“–mathematical—CategoryTheory.IsIso
X
Hom.hom
——
instIsMonHomHom šŸ“–mathematical—CategoryTheory.IsMonHom
X
mon
Hom.hom
—Hom.isMonHom_hom
instReflectsIsomorphismsForget šŸ“–mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Mon
instCategory
forget
—instIsIsoHomOfMapForget
CategoryTheory.IsMonHom.one_hom
instIsMonHomHom
CategoryTheory.Category.assoc
CategoryTheory.IsMonHom.mul_hom
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
Hom.ext'
CategoryTheory.IsIso.hom_inv_id
leftUnitor_hom_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
leftUnitor_inv_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
mkIso'_hom_hom šŸ“–mathematical—Hom.hom
CategoryTheory.Iso.hom
CategoryTheory.Mon
instCategory
mkIso'
——
mkIso'_inv_hom šŸ“–mathematical—Hom.hom
CategoryTheory.Iso.inv
CategoryTheory.Mon
instCategory
mkIso'
——
mkIso_hom_hom šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
mon
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
Hom.hom
CategoryTheory.Mon
instCategory
mkIso
——
mkIso_inv_hom šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonObj.one
mon
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorHom
Hom.hom
CategoryTheory.Iso.inv
CategoryTheory.Mon
instCategory
mkIso
——
monMonoidalStruct_tensorHom_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.MonObj.tensorObj.instTensorObj
mon
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Mon
instCategory
monMonoidalStruct
——
monMonoidalStruct_tensorObj_X šŸ“–mathematical—X
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
——
mul_def šŸ“–mathematical—CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonObjTensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
——
one_def šŸ“–mathematical—CategoryTheory.MonObj.one
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instMonObjTensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
——
rightUnitor_hom_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
rightUnitor_inv_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
tensorObj_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
X
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
——
tensorObj_one šŸ“–mathematical—CategoryTheory.MonObj.one
X
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
——
tensorUnit_X šŸ“–mathematical—X
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
——
tensorUnit_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
X
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Mon
instCategory
monMonoidalStruct
mon
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.leftUnitor
——
tensorUnit_one šŸ“–mathematical—CategoryTheory.MonObj.one
X
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Mon
instCategory
monMonoidalStruct
mon
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
——
tensor_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
X
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
——
tensor_one šŸ“–mathematical—CategoryTheory.MonObj.one
X
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
——
trivial_X šŸ“–mathematical—X
trivial
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
——
trivial_mon_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
mon
trivial
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
——
trivial_mon_one šŸ“–mathematical—CategoryTheory.MonObj.one
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
mon
trivial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
uniqueHomFromTrivial_default_hom šŸ“–mathematical—Hom.hom
trivial
Quiver.Hom
CategoryTheory.Mon
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
Unique.toInhabited
uniqueHomFromTrivial
CategoryTheory.MonObj.one
X
mon
——
whiskerLeft_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——
whiskerRight_hom šŸ“–mathematical—Hom.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Mon
instCategory
monMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
——

CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit

Definitions

NameCategoryTheorems
counitIso šŸ“–CompOp
3 mathmath: CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_counitIso, counitIso_inv_app_hom, counitIso_hom_app_hom
counitIsoAux šŸ“–CompOp
4 mathmath: isMonHom_counitIsoAux, counitIsoAux_inv, counitIsoAux_hom, counitIsoAux_IsMon_Hom
instLaxMonoidalDiscretePUnitMonToLaxMonoidalObj šŸ“–CompOp
4 mathmath: monToLaxMonoidal_map_hom_app, monToLaxMonoidal_obj, monToLaxMonoidalObj_μ, monToLaxMonoidalObj_ε
laxMonoidalToMon šŸ“–CompOp
13 mathmath: isMonHom_counitIsoAux, monToLaxMonoidal_laxMonoidalToMon_obj_one, unitIso_hom_app_hom_app, counitIso_inv_app_hom, counitIsoAux_inv, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_functor, counitIso_hom_app_hom, counitIsoAux_hom, counitIsoAux_IsMon_Hom, laxMonoidalToMon_map, monToLaxMonoidal_laxMonoidalToMon_obj_mul, laxMonoidalToMon_obj, unitIso_inv_app_hom_app
monToLaxMonoidal šŸ“–CompOp
13 mathmath: isMonHom_counitIsoAux, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_inverse, monToLaxMonoidal_map_hom_app, monToLaxMonoidal_laxMonoidalToMon_obj_one, monToLaxMonoidal_obj, unitIso_hom_app_hom_app, counitIso_inv_app_hom, counitIsoAux_inv, counitIso_hom_app_hom, counitIsoAux_hom, counitIsoAux_IsMon_Hom, monToLaxMonoidal_laxMonoidalToMon_obj_mul, unitIso_inv_app_hom_app
monToLaxMonoidalObj šŸ“–CompOp
6 mathmath: monToLaxMonoidal_map_hom_app, monToLaxMonoidalObj_obj, monToLaxMonoidal_obj, monToLaxMonoidalObj_map, monToLaxMonoidalObj_μ, monToLaxMonoidalObj_ε
unitIso šŸ“–CompOp
3 mathmath: CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_unitIso, unitIso_hom_app_hom_app, unitIso_inv_app_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
counitIsoAux_IsMon_Hom šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
laxMonoidalToMon
CategoryTheory.Functor.id
CategoryTheory.Mon.mon
CategoryTheory.Iso.hom
counitIsoAux
—isMonHom_counitIsoAux
counitIsoAux_hom šŸ“–mathematical—CategoryTheory.Iso.hom
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
laxMonoidalToMon
CategoryTheory.Functor.id
counitIsoAux
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
counitIsoAux_inv šŸ“–mathematical—CategoryTheory.Iso.inv
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
laxMonoidalToMon
CategoryTheory.Functor.id
counitIsoAux
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
counitIso_hom_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
laxMonoidalToMon
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.X
——
counitIso_inv_app_hom šŸ“–mathematical—CategoryTheory.Mon.Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
laxMonoidalToMon
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.X
——
isMonHom_counitIsoAux šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
laxMonoidalToMon
CategoryTheory.Functor.id
CategoryTheory.Mon.mon
CategoryTheory.Iso.hom
counitIsoAux
—CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
laxMonoidalToMon_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
laxMonoidalToMon
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapMonFunctor
CategoryTheory.Mon.trivial
——
laxMonoidalToMon_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
laxMonoidalToMon
CategoryTheory.Functor.mapMon
CategoryTheory.LaxMonoidalFunctor.toFunctor
CategoryTheory.LaxMonoidalFunctor.laxMonoidal
CategoryTheory.Mon.trivial
——
monToLaxMonoidalObj_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.Discrete
CategoryTheory.discreteCategory
monToLaxMonoidalObj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mon.X
——
monToLaxMonoidalObj_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
monToLaxMonoidalObj
CategoryTheory.Mon.X
——
monToLaxMonoidalObj_ε šŸ“–mathematical—CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
monToLaxMonoidalObj
instLaxMonoidalDiscretePUnitMonToLaxMonoidalObj
CategoryTheory.MonObj.one
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
——
monToLaxMonoidalObj_μ šŸ“–mathematical—CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
monToLaxMonoidalObj
instLaxMonoidalDiscretePUnitMonToLaxMonoidalObj
CategoryTheory.MonObj.mul
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
——
monToLaxMonoidal_laxMonoidalToMon_obj_mul šŸ“–mathematical—CategoryTheory.MonObj.mul
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
laxMonoidalToMon
CategoryTheory.Mon.mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
——
monToLaxMonoidal_laxMonoidalToMon_obj_one šŸ“–mathematical—CategoryTheory.MonObj.one
CategoryTheory.Mon.X
CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.Functor.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
laxMonoidalToMon
CategoryTheory.Mon.mon
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.CategoryStruct.id
——
monToLaxMonoidal_map_hom_app šŸ“–mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.LaxMonoidalFunctor.toFunctor
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.of
monToLaxMonoidalObj
instLaxMonoidalDiscretePUnitMonToLaxMonoidalObj
CategoryTheory.LaxMonoidalFunctor.Hom.hom
CategoryTheory.Functor.map
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
CategoryTheory.Mon.Hom.hom
——
monToLaxMonoidal_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.LaxMonoidalFunctor.instCategory
monToLaxMonoidal
CategoryTheory.LaxMonoidalFunctor.of
monToLaxMonoidalObj
instLaxMonoidalDiscretePUnitMonToLaxMonoidalObj
——
unitIso_hom_app_hom_app šŸ“–mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.LaxMonoidalFunctor.toFunctor
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.Functor.obj
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.LaxMonoidalFunctor.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
laxMonoidalToMon
monToLaxMonoidal
CategoryTheory.LaxMonoidalFunctor.Hom.hom
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.Discrete.functor_map_id
unitIso_inv_app_hom_app šŸ“–mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.LaxMonoidalFunctor.toFunctor
CategoryTheory.Discrete.addMonoidal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
PUnit.addCommGroup
CategoryTheory.Functor.obj
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.LaxMonoidalFunctor.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Mon
CategoryTheory.Mon.instCategory
laxMonoidalToMon
monToLaxMonoidal
CategoryTheory.Functor.id
CategoryTheory.LaxMonoidalFunctor.Hom.hom
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
—CategoryTheory.Discrete.functor_map_id

CategoryTheory.Mon.Hom

Definitions

NameCategoryTheorems
hom šŸ“–CompOp
204 mathmath: CategoryTheory.Grp.mkIso_inv_hom, CategoryTheory.Grp.Hom.hom_div, CategoryTheory.Grp.mkIso_hom_hom, CategoryTheory.Mon.id_hom, CategoryTheory.Grp.instIsIsoHomHomMon, CategoryTheory.Bimon.Bimon_ClassAux_comul, CategoryTheory.Functor.mapMonNatTrans_app_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, CategoryTheory.Functor.FullyFaithful.mapMon_preimage_hom, CategoryTheory.CommMon.comp_hom, CategoryTheory.Grp.Hom.hom_hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommMonNatIso_inv_app_hom_hom, CategoryTheory.Mon.leftUnitor_inv_hom, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, CategoryTheory.Bimon.ext_iff, CategoryTheory.CommMon.forget_map, CategoryTheory.Mon.hom_injective, CategoryTheory.CommGrp.mkIso_inv_hom, CategoryTheory.Mon.instIsMonHomHom, CategoryTheory.Grp.whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.counitIso_inv_app_app_hom_hom, CategoryTheory.Grp.leftUnitor_hom_hom, CategoryTheory.Functor.mapCommMonNatTrans_app_hom_hom, CategoryTheory.Monad.monadMonEquiv_counitIso_hom_app_hom, CategoryTheory.Bimon.trivial_comon_counit_hom, CategoryTheory.Bimon.equivMonComonUnitIsoApp_hom_hom_hom, CategoryTheory.Mon.rightUnitor_inv_hom, CategoryTheory.CommMon.mkIso'_inv_hom_hom, CategoryTheory.Grp.rightUnitor_hom_hom_hom, CategoryTheory.Bimon.toComon_obj_comon_counit, CategoryTheory.Mon.mkIso_hom_hom, CategoryTheory.Bimon.toComon_map_hom, CategoryTheory.Grp.hom_mul, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Bimon.ofMonComonObj_comon_comul_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, CategoryTheory.Functor.mapMonCompIso_hom_app_hom, CategoryTheory.Mon.limitConeIsLimit_lift_hom, CategoryTheory.Grp.Hom.hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.unitIso_inv_app_hom_hom_app, CategoryTheory.Bimon.trivial_comon_comul_hom, CategoryTheory.Comon.MonOpOpToComon_map_hom, CategoryTheory.Grp.associator_inv_hom_hom, CategoryTheory.Functor.mapCommMonNatIso_hom_app_hom_hom, CategoryTheory.Grp.Hom.hom_hom_div, CategoryTheory.Grp.leftUnitor_hom_hom_hom, CategoryTheory.Grp.forget_map, CategoryTheory.Mon.lift_hom, CategoryTheory.Mon.whiskerRight_hom, CategoryTheory.Grp.mkIso_hom_hom_hom, CategoryTheory.CommMon.instIsIsoHomHomMon, CategoryTheory.Grp.rightUnitor_inv_hom_hom, CategoryTheory.Grp.forgetā‚‚Mon_map_hom, CategoryTheory.Grp.whiskerRight_hom_hom, CategoryTheory.Functor.mapMonNatIso_hom_app_hom, CategoryTheory.Grp.Hom.hom_hom_inv, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, ext'_iff, CategoryTheory.Mon.fst_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, CategoryTheory.Functor.mapMonNatIso_inv_app_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.unitIso_hom_app_hom_hom_app, CategoryTheory.Grp.snd_hom, CategoryTheory.Monad.monadToMon_map_hom, CategoryTheory.Mon.mkIso_inv_hom, CategoryTheory.Bimon.Bimon_ClassAux_counit, CategoryTheory.Grp.whiskerLeft_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Functor.mapCommMonCompIso_inv_app_hom_hom, CategoryTheory.Functor.mapCommMonIdIso_hom_app_hom_hom, CategoryTheory.Grp.leftUnitor_inv_hom_hom, CategoryTheory.yonedaMon_map_app, CategoryTheory.Mon.associator_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, MonObj.mopEquiv_inverse_map_hom, CategoryTheory.Bimon.BimonObjAux_counit, CategoryTheory.Grp.rightUnitor_inv_hom, CategoryTheory.Functor.mapMonFunctor_map_app_hom, CategoryTheory.Functor.mapMonIdIso_hom_app_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.CommGrp.hom_ext_iff, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverse_map_hom_app, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.counitIso_hom_app_app_hom_hom, CategoryTheory.Mon.whiskerLeft_hom, CategoryTheory.Grp.associator_hom_hom_hom, CategoryTheory.CommMon.mkIso_inv_hom_hom, CategoryTheory.Mon.limitCone_Ļ€_app_hom, CategoryTheory.Grp.braiding_inv_hom, CategoryTheory.Grp.mkIso'_hom_hom_hom, CategoryTheory.Grp.id_hom, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, CategoryTheory.Grp.fst_hom, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.CommGrp.mkIso_inv_hom_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, hom_mul, CategoryTheory.Mon.associator_inv_hom, CategoryTheory.Monad.monToMonad_map_toNatTrans, CategoryTheory.Mon.mkIso'_inv_hom, CategoryTheory.Mon.uniqueHomFromTrivial_default_hom, MonObj.mopEquiv_functor_map_hom_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObj_map_hom, ext_iff, CategoryTheory.Functor.mapCommMon_map_hom_hom, CategoryTheory.Bimon.equivMonComonUnitIsoApp_inv_hom_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.Grp.comp_hom_hom, CategoryTheory.Functor.mapMonIdIso_inv_app_hom, CategoryTheory.Bimon.ofMonComonObj_comon_counit_hom, MonObj.mopEquiv_unitIso_hom_app_hom, CategoryTheory.Grp.braiding_inv_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom, hom_pow, CategoryTheory.Grp.rightUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Grp.hom_ext_iff, CategoryTheory.Grp.homMk''_hom_hom, CategoryTheory.CommMon.id_hom, CategoryTheory.Functor.mapMon_map_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_X_map, CategoryTheory.Mon.leftUnitor_hom_hom, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, CategoryTheory.CommGrp.mkIso_hom_hom_hom_hom, CategoryTheory.Grp.leftUnitor_inv_hom, CategoryTheory.CommMon.mkIso_hom_hom_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, CategoryTheory.Bimon.BimonObjAux_comul, CategoryTheory.Functor.mapMonCompIso_inv_app_hom, CategoryTheory.CommMon.hom_ext_iff, CategoryTheory.Grp.mkIso_inv_hom_hom, CategoryTheory.Bimon.equivMonComonCounitIsoApp_hom_hom_hom, CategoryTheory.Grp.snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, CategoryTheory.Grp.hom_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, CategoryTheory.Mon.comp_hom', CategoryTheory.Grp.associator_inv_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, CategoryTheory.Mon.braiding_inv_hom, CategoryTheory.Grp.homMk_hom_hom, CategoryTheory.Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, CategoryTheory.Mon.hom_mul, CategoryTheory.Mon.comp_hom, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.Grp.Hom.hom_inv, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, CategoryTheory.Mon.rightUnitor_hom_hom, CategoryTheory.Grp.braiding_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Bimon.toMonComon_map_hom, CategoryTheory.Grp.associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, CategoryTheory.Mon.forget_map, CategoryTheory.Mon.instIsIsoHom, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Functor.mapCommMonIdIso_inv_app_hom_hom, isMonHom_hom, MonObj.mopEquiv_unitIso_inv_app_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_inv_app_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, CategoryTheory.Mon.monMonoidalStruct_tensorHom_hom, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, CategoryTheory.Grp.whiskerRight_hom, CategoryTheory.Mon.instIsIsoHomOfMapForget, CategoryTheory.Mon.braiding_hom_hom, CategoryTheory.CommMon.mkIso'_hom_hom_hom, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CategoryTheory.Grp.fst_hom_hom, CategoryTheory.Grp.mkIso'_inv_hom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_hom_app_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, CategoryTheory.Grp.braiding_hom_hom_hom, CategoryTheory.Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CategoryTheory.CommMon.forgetā‚‚Mon_map_hom, CategoryTheory.Mon.hom_one, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, CategoryTheory.Mon.mkIso'_hom_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, CategoryTheory.Grp.comp_hom, CategoryTheory.Mon.id_hom', CategoryTheory.Grp.id_hom_hom, CategoryTheory.Bimon.toComon_obj_comon_comul, CategoryTheory.Mon.snd_hom, hom_one, CategoryTheory.CommGrp.forget_map, CategoryTheory.Functor.mapCommMonCompIso_hom_app_hom_hom
mk' šŸ“–CompOp
5 mathmath: commBialgCatEquivComonCommAlgCat_unitIso_inv_app, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Functor.mapCommMonFunctor_map_app, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, commBialgCatEquivComonCommAlgCat_counitIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”hom———
ext' šŸ“–ā€”hom——ext
ext'_iff šŸ“–mathematical—hom—ext'
ext_iff šŸ“–mathematical—hom—ext
isMonHom_hom šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
hom
——

CategoryTheory.MonObj

Definitions

NameCategoryTheorems
instTensorUnit šŸ“–CompOp
11 mathmath: CategoryTheory.IsCommMonObj.instTensorUnit, instIsMonHomOne, instIsMonHomToUnit, mul_def, one_def, instIsMonHomHomLeftUnitor, CategoryTheory.Grp.tensorUnit_mul, CategoryTheory.Grp.tensorUnit_one, instIsMonHomHomRightUnitor, CategoryTheory.Functor.instIsMonHomε, CategoryTheory.ModObj.smul_def
mul šŸ“–CompOp
178 mathmath: CategoryTheory.GrpObj.lift_inv_comp_left, CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Functor.mapCommMon_obj_mon_mul, CategoryTheory.ModObj.mul_smul_assoc, CategoryTheory.Bimon.ofMonComonObjX_mul, CategoryTheory.Monad.mul_def, CategoryTheory.GrpObj.lift_inv_right_eq, mul_assoc, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, ofIso_mul, CategoryTheory.Functor.mapMon_obj_mon_mul, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Functor.comp_mapGrp_mul, Bimod.TensorBimod.right_assoc', CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul, CategoryTheory.GrpObj.left_inv_assoc, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.Functor.FullyFaithful.monObj_mul, lift_comp_one_right, Bimod.left_assoc_assoc, Bimod.right_assoc, CategoryTheory.GrpObj.lift_inv_comp_right, CategoryTheory.HopfObj.mul_antipode, CategoryTheory.Grp.hom_mul, lift_lift_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, mul_leftUnitor, lift_comp_one_right_assoc, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CategoryTheory.Bimon.compatibility_assoc, CategoryTheory.ModObj.mul_smul'_assoc, CategoryTheory.BimonObj.mul_counit_assoc, CategoryTheory.Mon.trivial_mon_mul, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_mul, CategoryTheory.CommGrp.forgetā‚‚Grp_obj_mul, mul_def, mul_mul_mul_comm'_assoc, one_mul_assoc, CategoryTheory.HopfObj.antipode_left, CategoryTheory.GrpObj.tensorHom_inv_inv_mul_assoc, CategoryTheory.Mon.limit_mon_mul, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_hom, ext_iff, CommAlgCat.mul_op_of_unop_hom, mul_mul_mul_comm, CategoryTheory.Hom.mul_def, Bimod.right_assoc_assoc, tensorObj.mul_def, lift_comp_one_left, CategoryTheory.Grp.tensorUnit_mul, CategoryTheory.Bimon.ofMon_Comon_ObjX_mul, CategoryTheory.Mon_Class.mul_eq_mul, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_inv, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.HopfObj.antipode_comulā‚‚, CategoryTheory.IsMonHom.mul_hom, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul_assoc, CategoryTheory.BimonObj.mul_comul_assoc, CategoryTheory.Functor.comp_mapCommMon_mul, CategoryTheory.Comon.MonOpOpToComonObj_comon_comul, CategoryTheory.HopfObj.antipode_left_assoc, CategoryTheory.ModObj.smul_eq_mul, mul_one, CategoryTheory.Grp.forgetā‚‚Mon_obj_mul, CategoryTheory.Mon.tensorObj_mul, CategoryTheory.GrpObj.lift_inv_left_eq, CategoryTheory.Functor.comp_mapCommGrp_mul, Mon_tensor_mul_one, CategoryTheory.BimonObj.mul_counit, Mon_tensor_one_mul, CategoryTheory.Functor.mapCommMon_id_mul, CategoryTheory.Mathlib.Tactic.MonTauto.eq_mul_one, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_μ, CategoryTheory.CommMon.forgetā‚‚Mon_obj_mul, CategoryTheory.Conv.mul_eq, CategoryTheory.GrpObj.isPullback, CategoryTheory.Functor.obj.μ_def, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, Mon_tensor_mul_assoc, CategoryTheory.IsCommMonObj.mul_comm'_assoc, mul_mul_mul_comm', CategoryTheory.HopfObj.mul_antipode₁, CategoryTheory.CommGrp.forgetā‚‚CommMon_obj_mul, Bimod.TensorBimod.left_assoc', CategoryTheory.GrpObj.eq_lift_inv_right, mul_mul_mul_comm_assoc, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, ofRepresentableBy_mul, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraidedObj_μ, CategoryTheory.GrpObj.left_inv, CategoryTheory.Bimon.mul_counit, CategoryTheory.ModObj.assoc_flip, CategoryTheory.HopfObj.antipode_right_assoc, CategoryTheory.GrpObj.mul_inv_rev_assoc, CategoryTheory.Grp.tensorObj_mul, Bimod.left_assoc, Bimod.regular_actRight, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul, CategoryTheory.GrpObj.tensorHom_inv_inv_mul, mul_associator, CategoryTheory.GrpObj.mul_inv, CategoryTheory.IsCommMonObj.mul_comm, CategoryTheory.Functor.obj.μ_def_assoc, CategoryTheory.Mon.mul_def, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, MonObj.unmopMonObj_mul, CategoryTheory.Functor.id_mapMon_mul, mul_braiding, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Functor.mapCommpGrp_id_mul, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_inv_assoc, CategoryTheory.Monad.ofMon_μ, CategoryTheory.GrpObj.mul_inv_rev, CategoryTheory.GrpObj.mulRight_hom, CategoryTheory.CommMon.trivial_mon_mul, CategoryTheory.Preadditive.mul_def, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Mod_.regular_mod_smul, CategoryTheory.HopfObj.antipode_comul₁, CategoryTheory.Functor.FullyFaithful.grpObj_mul, CategoryTheory.GrpObj.mulRight_inv, CategoryTheory.Comon.ComonToMonOpOpObj_mon_mul, CategoryTheory.GrpObj.mul_inv_assoc, CategoryTheory.IsCommMonObj.mul_comm_assoc, CategoryTheory.Mon.hom_mul, CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.GrpObj.eq_lift_inv_left, lift_comp_one_left_assoc, CategoryTheory.HopfObj.mul_antipodeā‚‚, mul_assoc_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_hom_assoc, CategoryTheory.IsCommMonObj.mul_comm', CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, mul_one_assoc, mul_assoc_flip_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, CategoryTheory.CommGrp.trivial_grp_mul, CategoryTheory.Mod_.assoc_flip, CategoryTheory.BimonObj.mul_comul, CategoryTheory.IsMonHom.mul_hom_assoc, Bimod.regular_actLeft, CategoryTheory.GrpObj.ofIso_mul, CategoryTheory.GrpObj.lift_comp_inv_right, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, CategoryTheory.Bimon.mul_counit_assoc, CategoryTheory.ModObj.mul_smul, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, MonObj.mopMonObj_mul_unmop, CategoryTheory.ModObj.mul_smul', CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_aux_mul, one_mul, mul_rightUnitor, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.HopfObj.antipode_right, mul_one_hom, CategoryTheory.Grp.trivial_grp_mul, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Bimon.compatibility, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.Mon.tensorUnit_mul, CategoryTheory.Bimon.Mon_Class.tensorObj.mul_def, instIsMonHomMulOfIsCommMonObj, one_mul_hom, mul_eq_mul, CategoryTheory.Mathlib.Tactic.MonTauto.eq_one_mul, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.Mon_Class.mul_mul_mul_comm', CategoryTheory.Mon_Class.mul_mul_mul_comm, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Mon.tensor_mul, mul_assoc_flip, MonObj.mopEquiv_inverse_obj_mon_mul
ofIso šŸ“–CompOp
3 mathmath: ofIso_mul, ofIso_one, CategoryTheory.isMonHom_ofIso
one šŸ“–CompOp
147 mathmath: CategoryTheory.GrpObj.lift_inv_comp_left, CategoryTheory.ModObj.one_smul_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Monad.ofMon_Ī·, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.BimonObj.one_comul, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CategoryTheory.GrpObj.left_inv_assoc, instIsMonHomOne, CategoryTheory.Over.grpObjMkPullbackSnd_one, ofIso_one, lift_comp_one_right, Bimod.actRight_one, ofRepresentableBy_one, CategoryTheory.GrpObj.lift_inv_comp_right, Bimod.TensorBimod.actRight_one', lift_comp_one_right_assoc, CategoryTheory.GrpObj.one_inv_assoc, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapGrp_id_one, CategoryTheory.GrpObj.Ī·_whiskerRight_commutator_assoc, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_one, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, MonObj.mopEquiv_functor_obj_mon_one_unmop, MonObj.unmopMonObj_one, CategoryTheory.HopfObj.one_antipode, CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_Ī·, CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul_assoc, CategoryTheory.Mon.tensorObj_one, one_def, one_mul_assoc, CategoryTheory.Bimon.ofMon_Comon_ObjX_one, CategoryTheory.HopfObj.antipode_left, CategoryTheory.IsMonHom.one_hom_assoc, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CategoryTheory.ModObj.one_smul'_assoc, CategoryTheory.Functor.obj.Ī·_def_assoc, lift_comp_one_left, CategoryTheory.Functor.obj.Ī·_def, CategoryTheory.CommGrp.trivial_grp_one, CategoryTheory.Bimon.one_comul, CategoryTheory.GrpObj.one_inv, CategoryTheory.GrpObj.mulRight_one, CategoryTheory.HopfObj.antipode_comulā‚‚, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul_assoc, tensorObj.one_def, CategoryTheory.HopfObj.antipode_left_assoc, CategoryTheory.Functor.mapMon_obj_mon_one, Bimod.one_actLeft_assoc, mul_one, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.GrpObj.whiskerLeft_Ī·_commutator, CategoryTheory.BimonObj.one_counit_assoc, Mon_tensor_mul_one, CategoryTheory.BimonObj.one_comul_assoc, Mon_tensor_one_mul, CategoryTheory.IsMonHom.one_hom, CategoryTheory.Conv.one_eq, CategoryTheory.Grp.tensorUnit_one, CategoryTheory.Functor.FullyFaithful.monObj_one, CategoryTheory.Mathlib.Tactic.MonTauto.eq_mul_one, CategoryTheory.Over.monObjMkPullbackSnd_one, CategoryTheory.CommGrp.forgetā‚‚Grp_obj_one, CategoryTheory.GrpObj.whiskerLeft_Ī·_commutator_assoc, CategoryTheory.ModObj.one_smul', one_leftUnitor, CategoryTheory.Mon.uniqueHomFromTrivial_default_hom, one_braiding, CategoryTheory.Functor.mapCommGrp_id_one, ModuleCat.MonModuleEquivalenceAlgebra.algebraMap, Bimod.one_actLeft, CategoryTheory.HopfObj.mul_antipode₁, CategoryTheory.Mon.trivial_mon_one, CategoryTheory.Functor.mapCommMon_obj_mon_one, CategoryTheory.GrpObj.left_inv, CategoryTheory.Mon.tensorUnit_one, CategoryTheory.HopfObj.antipode_right_assoc, CategoryTheory.CommMon.trivial_mon_one, CommAlgCat.one_op_of_unop_hom, CategoryTheory.BimonObj.one_counit, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_aux_one, CategoryTheory.Bimon.ofMonComonObjX_one, CategoryTheory.Grp.tensorObj_one, one_associator, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.ModObj.one_smul, CategoryTheory.CommGrp.forgetā‚‚CommMon_obj_one, CategoryTheory.Grp.trivial_grp_one, CategoryTheory.Bimon.one_comul_assoc, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Grp.hom_one, CategoryTheory.Grp.forgetā‚‚Mon_obj_one, Bimod.actRight_one_assoc, CategoryTheory.Hom.one_def, CategoryTheory.HopfObj.antipode_comul₁, CategoryTheory.GrpObj.Ī·_whiskerRight_commutator, MonObj.mopMonObj_one_unmop, Bimod.TensorBimod.one_act_left', CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.Mon.limit_mon_one, lift_comp_one_left_assoc, CategoryTheory.HopfObj.mul_antipodeā‚‚, MonObj.mopEquiv_inverse_obj_mon_one, mul_one_assoc, CategoryTheory.Functor.FullyFaithful.grpObj_one, one_rightUnitor, CategoryTheory.Mon.one_def, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraidedObj_ε, CategoryTheory.Preadditive.one_def, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.GrpObj.lift_comp_inv_right, one_eq_one, CategoryTheory.Functor.mapCommMon_id_one, CategoryTheory.Monad.one_def, CategoryTheory.GrpObj.ofIso_one, one_mul, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.HopfObj.antipode_right, mul_one_hom, CategoryTheory.Comon.MonOpOpToComonObj_comon_counit, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, CategoryTheory.Mon.tensor_one, CategoryTheory.Mon.hom_one, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one, CategoryTheory.HopfObj.one_antipode_assoc, CategoryTheory.Functor.comp_mapMon_one, one_mul_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CategoryTheory.CommMon.forgetā‚‚Mon_obj_one, CategoryTheory.Mathlib.Tactic.MonTauto.eq_one_mul, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.Functor.comp_mapCommMon_one, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_ε, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.Bimon.trivial_X_mon_one, CategoryTheory.Comon.ComonToMonOpOpObj_mon_one
termĪ· šŸ“–CompOp—
termμ šŸ“–CompOp—
Ā«termĪ·[_]Ā» šŸ“–CompOp—
Ā«termμ[_]Ā» šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
Mon_tensor_mul_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
—CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp_assoc
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.tensorμ_natural_left
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
mul_assoc
CategoryTheory.MonoidalCategory.tensor_associativity
CategoryTheory.MonoidalCategory.tensorμ_natural_right
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Iso.inv_hom_id_assoc
Mon_tensor_mul_one šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
one
CategoryTheory.MonoidalCategory.tensorμ
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
—CategoryTheory.MonoidalCategory.whiskerLeft_comp_assoc
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.tensorμ_natural_right
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
mul_one
CategoryTheory.MonoidalCategory.tensor_right_unitality
Mon_tensor_one_mul šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
one
CategoryTheory.MonoidalCategory.tensorμ
mul
CategoryTheory.Iso.hom
—CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.tensorμ_natural_left
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
one_mul
CategoryTheory.MonoidalCategory.tensor_left_unitality
ext šŸ“–ā€”mul——CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.assoc
mul_one
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.tensorHom_def'
CategoryTheory.MonoidalCategory.id_whiskerLeft
one_mul
ext_iff šŸ“–mathematical—mul—ext
instIsMonHomHomAssociator šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorObj.instTensorObj
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
—one_associator
mul_associator
instIsMonHomHomBraiding šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.instMonObjTensorObj
CategoryTheory.SymmetricCategory.toBraidedCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
—one_braiding
mul_braiding
instIsMonHomHomLeftUnitor šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
tensorObj.instTensorObj
instTensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
—one_leftUnitor
mul_leftUnitor
instIsMonHomHomRightUnitor šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
tensorObj.instTensorObj
instTensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
—one_rightUnitor
mul_rightUnitor
instIsMonHomId šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
instIsMonHomTensorHom šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorObj.instTensorObj
CategoryTheory.MonoidalCategoryStruct.tensorHom
—CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
CategoryTheory.IsMonHom.one_hom
CategoryTheory.MonoidalCategory.tensorμ_natural
CategoryTheory.IsMonHom.mul_hom
instIsMonHomWhiskerLeft šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorObj.instTensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
—CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.IsMonHom.one_hom
instIsMonHomTensorHom
instIsMonHomId
CategoryTheory.IsMonHom.mul_hom
instIsMonHomWhiskerRight šŸ“–mathematical—CategoryTheory.IsMonHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorObj.instTensorObj
CategoryTheory.MonoidalCategoryStruct.whiskerRight
—CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.IsMonHom.one_hom
instIsMonHomTensorHom
instIsMonHomId
CategoryTheory.IsMonHom.mul_hom
mul_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
——
mul_assoc_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_assoc
mul_assoc_flip šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
mul
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
—mul_assoc
CategoryTheory.Iso.inv_hom_id_assoc
mul_assoc_flip_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
mul
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_assoc_flip
mul_associator šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
CategoryTheory.MonoidalCategory.associator_naturality
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.MonoidalCategory.associator_monoidal
mul_braiding šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
mul
CategoryTheory.Mon.instMonObjTensorObj
CategoryTheory.SymmetricCategory.toBraidedCategory
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
CategoryTheory.MonoidalCategoryStruct.tensorHom
—CategoryTheory.Category.assoc
CategoryTheory.BraidedCategory.braiding_naturality
CategoryTheory.BraidedCategory.braiding_tensor_right_hom
CategoryTheory.BraidedCategory.braiding_tensor_left_hom
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonoidalCategory.pentagon_assoc
CategoryTheory.MonoidalCategory.pentagon_inv_hom_hom_hom_inv_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_hom_inv_assoc
CategoryTheory.SymmetricCategory.symmetry
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.pentagon_inv_assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.associator_inv_naturality_left
CategoryTheory.Iso.inv_hom_id
CategoryTheory.MonoidalCategory.associator_naturality_right
CategoryTheory.MonoidalCategory.tensorHom_def
mul_def šŸ“–mathematical—mul
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instTensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
——
mul_leftUnitor šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
mul
—CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.leftUnitor_naturality
CategoryTheory.MonoidalCategory.leftUnitor_monoidal
mul_mul_mul_comm šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
mul
—CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_inv
CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_hom
CategoryTheory.MonoidalCategory.id_tensorHom_id
CategoryTheory.Category.id_comp
CategoryTheory.IsCommMonObj.mul_comm
CategoryTheory.Mathlib.Tactic.MonTauto.associator_hom_comp_tensorHom_tensorHom_comp_assoc
mul_mul_mul_comm' šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorΓ
CategoryTheory.MonoidalCategoryStruct.tensorHom
mul
—CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_inv
CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_hom
CategoryTheory.MonoidalCategory.id_tensorHom_id
CategoryTheory.Category.id_comp
CategoryTheory.IsCommMonObj.mul_comm'
CategoryTheory.Mathlib.Tactic.MonTauto.associator_hom_comp_tensorHom_tensorHom_comp_assoc
mul_mul_mul_comm'_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorΓ
CategoryTheory.MonoidalCategoryStruct.tensorHom
mul
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_mul_mul_comm'
mul_mul_mul_comm_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
mul
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_mul_mul_comm
mul_one šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
one
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
——
mul_one_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
one
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mul_one
mul_one_hom šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.tensorHom
one
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
—CategoryTheory.MonoidalCategory.tensorHom_def_assoc
mul_one
CategoryTheory.MonoidalCategory.rightUnitor_naturality
mul_rightUnitor šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.rightUnitor
—CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.rightUnitor_naturality
CategoryTheory.MonoidalCategory.rightUnitor_monoidal
ofIso_mul šŸ“–mathematical—mul
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
——
ofIso_one šŸ“–mathematical—one
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Iso.hom
——
one_associator šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
one
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom
CategoryTheory.MonoidalCategory.associator_naturality
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.leftUnitor_tensor_inv
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.MonoidalCategory.leftUnitor_inv_naturality
CategoryTheory.MonoidalCategory.id_whiskerLeft
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.id_tensorHom
one_braiding šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
one
tensorObj.instTensorObj
CategoryTheory.Iso.hom
CategoryTheory.BraidedCategory.braiding
—CategoryTheory.Category.assoc
CategoryTheory.BraidedCategory.braiding_naturality
CategoryTheory.braiding_tensorUnit_right
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_tensorHom
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalHorizontalComp_cons_cons
Mathlib.Tactic.Monoidal.evalHorizontalCompAux_of
Mathlib.Tactic.Monoidal.evalHorizontalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_rightUnitor
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_leftUnitor
Mathlib.Tactic.Monoidal.naturality_tensorHom
Mathlib.Tactic.Monoidal.naturality_id
one_def šŸ“–mathematical—one
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instTensorUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
one_leftUnitor šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.CategoryStruct.id
one
CategoryTheory.Iso.hom
—CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.MonoidalCategory.id_whiskerLeft
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
one_mul šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
one
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
——
one_mul_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
one
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
one_mul
one_mul_hom šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.tensorHom
one
mul
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
—CategoryTheory.MonoidalCategory.tensorHom_def'_assoc
one_mul
CategoryTheory.MonoidalCategory.leftUnitor_naturality
one_rightUnitor šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
one
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
—CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id

CategoryTheory.MonObj.tensorObj

Definitions

NameCategoryTheorems
instTensorObj šŸ“–CompOp
11 mathmath: CategoryTheory.MonObj.instIsMonHomHomAssociator, CategoryTheory.MonObj.instIsMonHomTensorHom, mul_def, CategoryTheory.MonObj.instIsMonHomHomLeftUnitor, one_def, CategoryTheory.MonObj.instIsMonHomHomRightUnitor, CategoryTheory.MonObj.one_braiding, CategoryTheory.MonObj.instIsMonHomWhiskerLeft, CategoryTheory.MonObj.instIsMonHomWhiskerRight, CategoryTheory.Mon.monMonoidalStruct_tensorHom_hom, CategoryTheory.Bimon.Mon_Class.tensorObj.mul_def

Theorems

NameKindAssumesProvesValidatesDepends On
mul_def šŸ“–mathematical—CategoryTheory.MonObj.mul
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instTensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
——
one_def šŸ“–mathematical—CategoryTheory.MonObj.one
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
instTensorObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
——

CategoryTheory.Mon_Class

Theorems

NameKindAssumesProvesValidatesDepends On
mul_mul_mul_comm šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorμ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.mul
—CategoryTheory.MonObj.mul_mul_mul_comm
mul_mul_mul_comm' šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategory.tensorΓ
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.MonObj.mul
—CategoryTheory.MonObj.mul_mul_mul_comm'

---

← Back to Index