| Metric | Count |
DefinitionsmapMon, mapMon, mapMon, monObj, mon_Class, instBraidedMonMapMon, instLaxBraidedMonMapMon, instLaxMonoidalMonMapMon, instMonoidalMonMapMon, mapMon, mapMonCompIso, mapMonFunctor, mapMonIdIso, mapMonNatIso, mapMonNatTrans, monObjObj, mon_ClassObj, IsCommMon, IsCommMonObj, IsMonHom, IsMon_Hom, Mon, counitIso, counitIsoAux, instLaxMonoidalDiscretePUnitMonToLaxMonoidalObj, laxMonoidalToMon, monToLaxMonoidal, monToLaxMonoidalObj, unitIso, hom, mk', X, comp, equivLaxMonoidalFunctorPUnit, forget, homInhabited, id, instCategory, instInhabited, instMonObjTensorObj, instMonoidalForget, instSymmetricCategory, mkIso, mkIso', mon, monMonoidal, monMonoidalStruct, trivial, uniqueHomFromTrivial, MonObj, instTensorUnit, mul, ofIso, one, instTensorObj, termη, termμ, «termη[_]», «termμ[_]», Mon_Class | 60 |
TheoremsmapMon_counit, mapMon_unit, mapMon_counitIso, mapMon_functor, mapMon_inverse, mapMon_unitIso, mapMon, mapMon, isMonHom_preimage, mapMon_preimage_hom, monObj_mul, monObj_one, comp_mapMon_mul, comp_mapMon_one, essImage_mapMon, id_mapMon_mul, id_mapMon_one, instIsMonHomε, instIsMonHomμ, instIsMonHom, mapMonCompIso_hom_app_hom, mapMonCompIso_inv_app_hom, mapMonFunctor_map_app_hom, mapMonFunctor_obj, mapMonIdIso_hom_app_hom, mapMonIdIso_inv_app_hom, mapMonNatIso_hom_app_hom, mapMonNatIso_inv_app_hom, mapMonNatTrans_app_hom, mapMon_map_hom, mapMon_obj_X, mapMon_obj_mon_mul, mapMon_obj_mon_one, η_def, η_def_assoc, μ_def, μ_def_assoc, instTensorUnit, mul_comm, mul_comm', mul_comm'_assoc, mul_comm_assoc, mul_hom, mul_hom_assoc, one_hom, one_hom_assoc, associator_hom_comp_tensorHom_tensorHom, associator_hom_comp_tensorHom_tensorHom_assoc, associator_hom_comp_tensorHom_tensorHom_comp, associator_hom_comp_tensorHom_tensorHom_comp_assoc, associator_inv_comp_tensorHom_tensorHom, associator_inv_comp_tensorHom_tensorHom_assoc, associator_inv_comp_tensorHom_tensorHom_comp, associator_inv_comp_tensorHom_tensorHom_comp_assoc, eq_mul_one, eq_one_mul, leftUnitor_inv_one_tensor_mul, leftUnitor_inv_one_tensor_mul_assoc, mul_assoc_hom, mul_assoc_hom_assoc, mul_assoc_inv, mul_assoc_inv_assoc, rightUnitor_inv_tensor_one_mul, rightUnitor_inv_tensor_one_mul_assoc, counitIsoAux_IsMon_Hom, counitIsoAux_hom, counitIsoAux_inv, counitIso_hom_app_hom, counitIso_inv_app_hom, isMonHom_counitIsoAux, laxMonoidalToMon_map, laxMonoidalToMon_obj, monToLaxMonoidalObj_map, monToLaxMonoidalObj_obj, monToLaxMonoidalObj_ε, monToLaxMonoidalObj_μ, monToLaxMonoidal_laxMonoidalToMon_obj_mul, monToLaxMonoidal_laxMonoidalToMon_obj_one, monToLaxMonoidal_map_hom_app, monToLaxMonoidal_obj, unitIso_hom_app_hom_app, unitIso_inv_app_hom_app, ext, ext', ext'_iff, ext_iff, isMonHom_hom, associator_hom_hom, associator_inv_hom, braiding_hom_hom, braiding_inv_hom, comp_hom, comp_hom', equivLaxMonoidalFunctorPUnit_counitIso, equivLaxMonoidalFunctorPUnit_functor, equivLaxMonoidalFunctorPUnit_inverse, equivLaxMonoidalFunctorPUnit_unitIso, forget_faithful, forget_map, forget_obj, forget_Γ, forget_ε, forget_η, forget_μ, hom_injective, id_hom, id_hom', instHasInitial, instIsIsoHom, instIsIsoHomOfMapForget, instIsMonHomHom, instReflectsIsomorphismsForget, leftUnitor_hom_hom, leftUnitor_inv_hom, mkIso'_hom_hom, mkIso'_inv_hom, mkIso_hom_hom, mkIso_inv_hom, monMonoidalStruct_tensorHom_hom, monMonoidalStruct_tensorObj_X, mul_def, one_def, rightUnitor_hom_hom, rightUnitor_inv_hom, tensorObj_mul, tensorObj_one, tensorUnit_X, tensorUnit_mul, tensorUnit_one, tensor_mul, tensor_one, trivial_X, trivial_mon_mul, trivial_mon_one, uniqueHomFromTrivial_default_hom, whiskerLeft_hom, whiskerRight_hom, Mon_tensor_mul_assoc, Mon_tensor_mul_one, Mon_tensor_one_mul, ext, ext_iff, instIsMonHomHomAssociator, instIsMonHomHomBraiding, instIsMonHomHomLeftUnitor, instIsMonHomHomRightUnitor, instIsMonHomId, instIsMonHomTensorHom, instIsMonHomWhiskerLeft, instIsMonHomWhiskerRight, mul_assoc, mul_assoc_assoc, mul_assoc_flip, mul_assoc_flip_assoc, mul_associator, mul_braiding, mul_def, mul_leftUnitor, mul_mul_mul_comm, mul_mul_mul_comm', mul_mul_mul_comm'_assoc, mul_mul_mul_comm_assoc, mul_one, mul_one_assoc, mul_one_hom, mul_rightUnitor, ofIso_mul, ofIso_one, one_associator, one_braiding, one_def, one_leftUnitor, one_mul, one_mul_assoc, one_mul_hom, one_rightUnitor, mul_def, one_def, mul_mul_mul_comm, mul_mul_mul_comm', instIsCommMonObjTensorObj, instIsMonHomComp, instIsMonHomHomAsIso, instIsMonHomId, instIsMonHomInvOfHom, isMonHom_ofIso | 186 |
| Total | 246 |
| Name | Category | Theorems |
IsCommMon š | MathDef | ā |
IsCommMonObj š | CompData | 19 mathmath: AlgebraicGeometry.isCommMonObj_of_isProper_of_geometricallyIntegral, CommGrp.comm, IsCommMonObj.instTensorUnit, Over.isCommMonObj_mk_pullbackSnd, Preadditive.instIsCommMonObj, IsCommMonObj.ofRepresentableBy, isCommMonObj_iff_commutator_eq_toUnit_Ī·, IsCommMon.ofRepresentableBy, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, Functor.isCommMonObj_obj, isCommMonObj_iff_isMulCommutative, Mon.instIsCommMonObj, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CommGrpObj.toIsCommMonObj, Grp.instIsCommMonObj, instIsCommMonObjTensorObj, CommMon.comm, instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm, AlgebraicGeometry.isCommMonObj_of_isProper_of_isIntegral_tensorObj_of_isAlgClosed
|
IsMonHom š | CompData | 38 mathmath: MonObj.instIsMonHomHomAssociator, Mon.EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, MonObj.instIsMonHomHomBraiding, instIsMonHomHomAsIso, Mon.instIsMonHomHom, MonObj.instIsMonHomOne, MonObj.instIsMonHomToUnit, MonObj.instIsMonHomTensorHom, Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, MonObj.instIsMonHomId, MonObj.mop_isMonHom, Functor.instIsMonHomμ, instIsMonHomComp, MonObj.instIsMonHomSnd, Grp.instIsMonHom, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, Functor.map.instIsMonHom, MonObj.instIsMonHomHomLeftUnitor, MonObj.instIsMonHomLift, MonObj.instIsMonHomFst, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, isMonHom_ofIso, instIsMonHomInvOfIsCommMonObj, Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, instIsMonHomInvHomOfIsCommMonObj, IsBimonHom.toIsMonHom, MonObj.instIsMonHomHomRightUnitor, Functor.instIsMonHomε, instIsMonHomId, Functor.FullyFaithful.isMonHom_preimage, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, MonObj.instIsMonHomWhiskerLeft, instIsMonHomInvOfHom, MonObj.instIsMonHomWhiskerRight, Mon.Hom.isMonHom_hom, Over.isMonHom_pullbackFst_id_right, MonObj.instIsMonHomMulOfIsCommMonObj, MonObj.unmop_isMonHom
|
IsMon_Hom š | MathDef | ā |
Mon š | CompData | 378 mathmath: Grp.mkIso_inv_hom, Grp.Hom.hom_div, Grp.comp', Monoidal.MonFunctorCategoryEquivalence.inverse_obj, Grp.mkIso_hom_hom, Monad.monadMonEquiv_unitIso_inv_app_toNatTrans_app, Grp.instIsIsoHomHomMon, Grp.homMk'_hom, Bimon.toMonComonObj_mon_mul_hom, Bimon.Bimon_ClassAux_comul, Functor.mapMonNatTrans_app_hom, Bimon.equivMonComonUnitIsoAppX_hom_hom, Functor.FullyFaithful.mapMon_preimage_hom, CommMon.comp_hom, Grp.Hom.hom_hom_zpow, Equivalence.mapMon_inverse, Mon.EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, Functor.mapCommMonNatIso_inv_app_hom_hom, Mon.forget_obj, instFullMonFunctorOppositeMonCatYonedaMon, Mon.leftUnitor_inv_hom, Functor.mapCommMon_obj_mon_mul, Mon.forget_μ, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, Adjunction.mapMon_unit, Grp.id', Bimon.ext_iff, Mon.equivLaxMonoidalFunctorPUnit_inverse, Comon.MonOpOpToComon_obj, CommMon.forget_map, Functor.FullyFaithful.mapGrp_preimage, Comon.ComonToMonOpOp_obj, Functor.mapMon_obj_mon_mul, CommGrp.mkIso_inv_hom, Mon.forget_ε, Bimon.toMonComon_ofMonComon_obj_one, Grp.whiskerLeft_hom_hom, Functor.mapGrpIdIso_hom_app_hom_hom, Bimon.toMon_forget, Comon.Comon_EquivMon_OpOp_counitIso, MonObj.mopEquivCompForgetIso_hom_app_unmop, Bimon.equivMonComonUnitIsoAppXAux_hom, Monoidal.CommMonFunctorCategoryEquivalence.counitIso_inv_app_app_hom_hom, Grp.leftUnitor_hom_hom, Functor.mapCommMonNatTrans_app_hom_hom, Comon.monoidal_rightUnitor_inv_hom, Monad.monadMonEquiv_counitIso_hom_app_hom, Bimon.trivial_comon_counit_hom, Bimon.toTrivial_hom, Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, Bimon.instIsComonHomHomEquivMonComonCounitIsoAppXAux, Bimon.equivMonComonUnitIsoApp_hom_hom_hom, Mon.rightUnitor_inv_hom, CommMon.mkIso'_inv_hom_hom, Grp.ε_def, Grp.rightUnitor_hom_hom_hom, Bimon.toComon_obj_comon_counit, Mon.mkIso_hom_hom, Bimon.toComon_map_hom, Grp.lift_hom, Grp.hom_mul, Bimon.trivial_X_X, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, Bimon.ofMonComonObj_comon_comul_hom, Monad.monadToMon_obj, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, Functor.mapMonCompIso_hom_app_hom, Mon.limitConeIsLimit_lift_hom, Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, Grp.Hom.hom_zpow, Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, Comon.Comon_EquivMon_OpOp_functor, Bimon.toComon_obj_X, Monoidal.CommMonFunctorCategoryEquivalence.unitIso_inv_app_hom_hom_app, Bimon.trivial_comon_comul_hom, Comon.MonOpOpToComon_map_hom, Grp.associator_inv_hom_hom, Monad.monToMonad_obj, Functor.mapCommMonNatIso_hom_app_hom_hom, MonObj.mopEquiv_functor_obj_mon_one_unmop, Grp.Hom.hom_hom_div, Grp.leftUnitor_hom_hom_hom, CommGrp.instIsIsoMonHomGrp, Grp.forget_map, Monoidal.monFunctorCategoryEquivalence_unitIso, Mon.tensorObj_one, Mon.lift_hom, Mon.whiskerRight_hom, Grp.mkIso_hom_hom_hom, CommMon.instIsIsoHomHomMon, Bimon.equivMonComonCounitIsoAppXAux_inv, CommGrp.forgetāCommMon_map_hom, essImage_yonedaMon, Comon.ComonToMonOpOp_map, Mon.forget_faithful, Grp.rightUnitor_inv_hom_hom, Grp.forgetāMon_map_hom, Comon.monoidal_whiskerLeft_hom, Equivalence.mapMon_unitIso, Monoidal.monFunctorCategoryEquivalence_functor, Mon.tensorUnit_X, instFaithfulMonFunctorOppositeMonCatYonedaMon, Mon.limit_mon_mul, Functor.mapMon_obj_X, Grp.whiskerRight_hom_hom, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, Functor.mapMonNatIso_hom_app_hom, Grp.Hom.hom_hom_inv, Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, Comon.monoidal_leftUnitor_hom_hom, Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, Mon.fst_hom, CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, Grp.μ_def, Functor.mapMonNatIso_inv_app_hom, Monoidal.CommMonFunctorCategoryEquivalence.unitIso_hom_app_hom_hom_app, Grp.snd_hom, Monoidal.MonFunctorCategoryEquivalence.functor_obj, Monad.monadToMon_map_hom, Mon.mkIso_inv_hom, Bimon.Bimon_ClassAux_counit, Grp.whiskerLeft_hom, Bimon.equivMonComonUnitIsoAppX_inv_hom, Adjunction.mapMon_counit, Functor.mapMonFunctor_obj, Functor.mapGrpNatIso_hom_app_hom_hom, Bimon.instIsComonHomMonHomEquivMonComonUnitIsoAppX, Functor.mapCommMonCompIso_inv_app_hom_hom, Functor.comp_mapMon_mul, Functor.mapCommMonIdIso_hom_app_hom_hom, Grp.leftUnitor_inv_hom_hom, yonedaMon_map_app, Mon.instReflectsIsomorphismsForget, Mon.associator_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, MonObj.mopEquiv_inverse_map_hom, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, Bimon.BimonObjAux_counit, Grp.rightUnitor_inv_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, Functor.mapMonFunctor_map_app_hom, Functor.mapMon_obj_mon_one, Functor.mapMonIdIso_hom_app_hom, Comon.monoidal_whiskerRight_hom, Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CommGrp.hom_ext_iff, Grp.forgetāMon_obj_mul, MonObj.mopEquiv_inverse_obj_X, Mon.tensorObj_mul, Monoidal.MonFunctorCategoryEquivalence.inverse_map_hom_app, Monoidal.CommMonFunctorCategoryEquivalence.counitIso_hom_app_app_hom_hom, Grp.Hom.hom_pow, Grp.Ī“_def, Bimon.ofMonComon_toMonComon_obj_counit, Mon.whiskerLeft_hom, Grp.associator_hom_hom_hom, CommMon.mkIso_inv_hom_hom, Mon.limitCone_Ļ_app_hom, Grp.braiding_inv_hom, Grp.mkIso'_hom_hom_hom, Grp.id_hom, Comon.monoidal_associator_hom_hom, Mon.equivLaxMonoidalFunctorPUnit_counitIso, Functor.mapGrpCompIso_hom_app_hom_hom, Mon.equivLaxMonoidalFunctorPUnit_unitIso, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_obj, Mon.EquivLaxMonoidalFunctorPUnit.unitIso_hom_app_hom_app, Grp.fst_hom, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, Bimon.ofMon_Comon_toMon_Comon_obj_comul, Bimon.equivMonComonUnitIsoAppXAux_inv, CommGrp.mkIso_inv_hom_hom_hom, CommGrp.mkIso'_inv_hom_hom_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, Mon.instIsCommMonObj, Mon.Hom.hom_mul, Monoidal.MonFunctorCategoryEquivalence.inverseObj_X, Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, Mon.associator_inv_hom, CommMon.forgetāMon_obj_mul, Bimon.equivMonComonCounitIsoAppX_hom_hom, Monad.monToMonad_map_toNatTrans, Mon.mkIso'_inv_hom, Mon.uniqueHomFromTrivial_default_hom, Comon.Comon_EquivMon_OpOp_unitIso, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_inv, MonObj.mopEquiv_functor_map_hom_unmop, Monoidal.MonFunctorCategoryEquivalence.functorObj_map_hom, MonObj.mopEquivCompForgetIso_inv_app_unmop, Mon.equivLaxMonoidalFunctorPUnit_functor, Functor.mapCommMon_map_hom_hom, Functor.FullyFaithful.mapCommMon_preimage, Bimon.equivMonComonUnitIsoApp_inv_hom_hom, Bimon.ofMon_Comon_toMon_Comon_obj_counit, Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, Functor.mapGrp_map_hom_hom, CommGrp.forgetāGrp_map_hom, Grp.comp_hom_hom, Bimon.id_hom', Functor.mapMonIdIso_inv_app_hom, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, Bimon.trivialTo_hom, Equivalence.mapMon_counitIso, Bimon.ofMonComonObj_comon_counit_hom, MonObj.mopEquiv_unitIso_hom_app_hom, Grp.braiding_inv_hom_hom, Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CommGrp.mkIso_hom_hom, Functor.mapCommMon_obj_mon_one, Bimon.ofMonComon_map_hom, Functor.Full.mapMon, Mon.tensorUnit_one, MonObj.mopEquiv_functor_obj_X_unmop, Grp.Hom.hom_mul, Mon.Hom.hom_pow, Grp.rightUnitor_hom_hom, Monad.monadMonEquiv_inverse, Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, Bimon.ofMonComon_obj, Grp.forgetāMon_obj_X, Grp.hom_ext_iff, Grp.homMk''_hom_hom, Comon.monoidal_tensorUnit_comon_comul, CommMon.id_hom, Grp.forgetāMon_comp_forget, Bimon.toMonComon_obj, Functor.mapMon_map_hom, Functor.FullyFaithful.mapCommGrp_preimage, Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_X_map, Mon.leftUnitor_hom_hom, Mon.hasLimitsOfShape, Bimon.equivMonComonCounitIsoAppX_inv_hom, Functor.mapGrpIdIso_inv_app_hom_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_hom, Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, Bimon.toMonComonObj_mon_one_hom, Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map, Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, CommGrp.mkIso_hom_hom_hom_hom, CommMon.homMk_hom, Grp.leftUnitor_inv_hom, Functor.id_mapMon_mul, CommMon.mkIso_hom_hom_hom, Equivalence.mapMon_functor, Bimon.toMonComon_ofMonComon_obj_mul, Monoidal.MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, MonObj.mopEquiv_functor_obj_mon_mul_unmop, Bimon.BimonObjAux_comul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, Functor.mapMonCompIso_inv_app_hom, Mon.limit_X, CommMon.hom_ext_iff, Grp.mkIso_inv_hom_hom, Bimon.equivMonComonCounitIsoApp_hom_hom_hom, Grp.snd_hom_hom, Functor.mapGrpNatTrans_app_hom_hom, Bimon.ofMonComon_toMonComon_obj_comul, Comon.monoidal_leftUnitor_inv_hom, Monoidal.monFunctorCategoryEquivalence_counitIso, CommMon.instFullMonForgetāMon, Grp.hom_one, Grp.forgetāMon_obj_one, Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, Mon.forget_preservesLimitsOfShape, Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, Mon.comp_hom', Grp.associator_inv_hom, Monoidal.MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, Mon.braiding_inv_hom, Grp.homMk_hom_hom, Comon.monoidal_rightUnitor_hom_hom, Functor.essImage_mapMon, Mon.forget_Ī·, Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, Monoidal.MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, Bimon.mk'_X, Functor.mapGrpNatIso_inv_app_hom_hom, commBialgCatEquivComonCommAlgCat_inverse_obj, Mon.hom_mul, Mon.limitCone_pt, Functor.mapGrpCompIso_inv_app_hom_hom, Grp.Hom.hom_inv, CommMon.forgetāMon_comp_forget, Mon.limit_mon_one, Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, MonObj.mopEquiv_inverse_obj_mon_one, Grp.instFaithfulMonForgetāMon, Monad.monadMonEquiv_functor, Mon.forget_Ī“, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, Mon.rightUnitor_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, Bimon.ofMonComonObj_X, Grp.braiding_hom_hom, Functor.mapCommGrp_map_hom_hom_hom, Grp.Ī·_def, Comon.monoidal_associator_inv_hom, Comon.Comon_EquivMon_OpOp_inverse, Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, Bimon.toMonComon_map_hom, Grp.associator_hom_hom, Preadditive.commGrpEquivalence_inverse_map, Mon.forget_map, Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, Functor.mapCommGrpNatTrans_app_hom_hom_hom, Functor.mapCommMonIdIso_inv_app_hom_hom, Comon.monoidal_tensorUnit_comon_counit, MonObj.mopEquiv_unitIso_inv_app_hom, CommMon.EquivLaxBraidedFunctorPUnit.counitIso_inv_app_hom_hom, CommMon.forgetāMon_obj_X, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, Monad.monadMonEquiv_unitIso_hom_app_toNatTrans_app, Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj, yonedaGrp_map_app, Bimon.equivMonComonCounitIsoAppXAux_hom, Mon.monMonoidalStruct_tensorHom_hom, CommGrp.mkIso'_hom_hom_hom_hom, Grp.whiskerRight_hom, Mon.braiding_hom_hom, Grp.tensorHom_hom, Monoidal.MonFunctorCategoryEquivalence.functorObj_obj, CommMon.mkIso'_hom_hom_hom, Grp.Hom.hom_one, CommMon.instFaithfulMonForgetāMon, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, Grp.fst_hom_hom, Grp.mkIso'_inv_hom_hom, Comon.monoidal_tensorHom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, Functor.id_mapMon_one, Bimon.trivial_X_mon_mul, CommMon.EquivLaxBraidedFunctorPUnit.counitIso_hom_app_hom_hom, Bimon.toMon_Comon_ofMon_Comon_obj_mul, Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, Bimon.comp_hom', Monoidal.MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, Grp.braiding_hom_hom_hom, Bimon.toMon_Comon_ofMon_Comon_obj_one, Mon.tensorUnit_mul, Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CommMon.forgetāMon_map_hom, Comon.monoidal_tensorObj_comon_counit, Mon.tensor_one, Mon.hom_one, yonedaMon_obj, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, Mon.mkIso'_hom_hom, Mon.monMonoidalStruct_tensorObj_X, Mon.EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app, Monoidal.monFunctorCategoryEquivalence_inverse, Functor.comp_mapMon_one, Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, Monoidal.CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, CommMon.forgetāMon_obj_one, Grp.comp_hom, Mon.id_hom', Grp.instFullMonForgetāMon, Grp.id_hom_hom, Functor.Faithful.mapMon, Bimon.toComon_obj_comon_comul, Mon.snd_hom, Mon.Hom.hom_one, CommGrp.forget_map, Mon.instHasInitial, Comon.monoidal_tensorObj_comon_comul, Bimon.trivial_X_mon_one, Mon.tensor_mul, Functor.mapCommMonCompIso_hom_app_hom_hom, MonObj.mopEquiv_inverse_obj_mon_mul
|
MonObj š | CompData | 2 mathmath: GrpObj.toMon_Class_injective, GrpObj.toMonObj_injective
|
Mon_Class š | CompOp | ā |
| Name | Category | Theorems |
X š | CompOp | 229 mathmath: CategoryTheory.Grp.Hom.hom_div, id_hom, CategoryTheory.Grp.instIsIsoHomHomMon, CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Functor.mapMonNatTrans_app_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, Bimod.TensorBimod.Ļ_tensor_id_actRight, Bimod.AssociatorBimod.hom_left_act_hom', CategoryTheory.Functor.FullyFaithful.mapMon_preimage_hom, CategoryTheory.CommMon.comp_hom, Bimod.RightUnitorBimod.hom_right_act_hom', Bimod.LeftUnitorBimod.hom_right_act_hom', CategoryTheory.Grp.Hom.hom_hom_zpow, CategoryTheory.Monad.ofMon_Ī·, EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, forget_obj, leftUnitor_inv_hom, CategoryTheory.Functor.mapCommMon_obj_mon_mul, forget_μ, CategoryTheory.Bimon.ofMonComonObjX_mul, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, hom_injective, Bimod.whiskerLeft_hom, CategoryTheory.Functor.mapMon_obj_mon_mul, Bimod.TensorBimod.right_assoc', instIsMonHomHom, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CategoryTheory.Grp.whiskerLeft_hom_hom, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_hom, Bimod.TensorBimod.whiskerLeft_Ļ_actLeft, CategoryTheory.Monad.monadMonEquiv_counitIso_hom_app_hom, Bimod.actRight_one, CategoryTheory.Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, CategoryTheory.Bimon.instIsComonHomHomEquivMonComonCounitIsoAppXAux, CategoryTheory.Bimon.equivMonComonUnitIsoApp_hom_hom_hom, rightUnitor_inv_hom, Bimod.left_assoc_assoc, CategoryTheory.Bimon.mk'X_X, Bimod.right_assoc, CategoryTheory.Bimon.trivial_X_X, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Bimon.ofMonComonObj_comon_comul_hom, Bimod.TensorBimod.actRight_one', CategoryTheory.Functor.mapMonCompIso_hom_app_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CategoryTheory.Grp.Hom.hom_zpow, CategoryTheory.Bimon.toComon_obj_X, CategoryTheory.Comon.MonOpOpToComon_map_hom, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.Grp.Hom.hom_hom_div, tensorObj_one, lift_hom, whiskerRight_hom, CategoryTheory.CommMon.instIsIsoHomHomMon, CategoryTheory.Bimon.equivMonComonCounitIsoAppXAux_inv, Bimod.TensorBimod.middle_assoc', CategoryTheory.Bimon.ofMon_Comon_ObjX_one, tensorUnit_X, limit_mon_mul, CategoryTheory.Functor.mapMon_obj_X, CategoryTheory.Grp.whiskerRight_hom_hom, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CategoryTheory.Functor.mapMonNatIso_hom_app_hom, CategoryTheory.Grp.Hom.hom_hom_inv, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, Bimod.right_assoc_assoc, fst_hom, CategoryTheory.Functor.mapMonNatIso_inv_app_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_obj, Bimod.Hom.left_act_hom, CategoryTheory.Bimon.ofMon_Comon_ObjX_mul, CategoryTheory.Grp.whiskerLeft_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.yonedaMon_map_app, associator_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, MonObj.mopEquiv_inverse_map_hom, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, Bimod.middle_assoc_assoc, CategoryTheory.Comon.MonOpOpToComonObj_comon_comul, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_obj, CategoryTheory.Functor.mapMonFunctor_map_app_hom, CategoryTheory.CommMon.toMon_X, CategoryTheory.Functor.mapMon_obj_mon_one, CategoryTheory.Functor.mapMonIdIso_hom_app_hom, Bimod.one_actLeft_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.Grp.forgetāMon_obj_mul, MonObj.mopEquiv_inverse_obj_X, tensorObj_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverse_map_hom_app, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_counit, whiskerLeft_hom, CategoryTheory.Grp.toMon_X, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_comul, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_inv, EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, Hom.hom_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_X, CategoryTheory.Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_map, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_μ, associator_inv_hom, CategoryTheory.CommMon.forgetāMon_obj_mul, CategoryTheory.Bimon.equivMonComonCounitIsoAppX_hom_hom, Bimod.regular_X, uniqueHomFromTrivial_default_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_inv, MonObj.mopEquiv_functor_map_hom_unmop, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.Bimon.equivMonComonUnitIsoApp_inv_hom_hom, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_counit, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.Grp.comp_hom_hom, CategoryTheory.Functor.mapMonIdIso_inv_app_hom, Bimod.one_actLeft, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CategoryTheory.Bimon.ofMonComonObj_comon_counit_hom, Bimod.TensorBimod.left_assoc', MonObj.mopEquiv_unitIso_hom_app_hom, CategoryTheory.Functor.mapCommMon_obj_mon_one, tensorUnit_one, MonObj.mopEquiv_functor_obj_X_unmop, Hom.hom_pow, CategoryTheory.Grp.forgetāMon_obj_X, Bimod.left_assoc, Bimod.regular_actRight, Bimod.Hom.left_act_hom_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_X, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.Bimon.ofMonComonObjX_one, CategoryTheory.Functor.mapMon_map_hom, leftUnitor_hom_hom, CategoryTheory.Bimon.equivMonComonCounitIsoAppX_inv_hom, EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, CategoryTheory.Functor.id_mapMon_mul, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, Bimod.RightUnitorBimod.hom_left_act_hom', MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Monad.ofMon_μ, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, CategoryTheory.Functor.mapMonCompIso_inv_app_hom, limit_X, CategoryTheory.Bimon.equivMonComonCounitIsoApp_hom_hom_hom, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_comul, CategoryTheory.Grp.forgetāMon_obj_one, CategoryTheory.Mod_.trivialAction_X, Bimod.actRight_one_assoc, CategoryTheory.Bimon.ofMonComonObjX_X, Bimod.middle_assoc, CategoryTheory.Comon.MonOpOpToComonObj_X, comp_hom', CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, braiding_inv_hom, CategoryTheory.Functor.essImage_mapMon, CategoryTheory.Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, commBialgCatEquivComonCommAlgCat_inverse_obj, hom_mul, CategoryTheory.Monad.ofMon_obj, Bimod.TensorBimod.one_act_left', comp_hom, trivial_X, CategoryTheory.Grp.Hom.hom_inv, limit_mon_one, MonObj.mopEquiv_inverse_obj_mon_one, Bimod.whiskerRight_hom, forget_Ī“, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, rightUnitor_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, Bimod.Hom.right_act_hom, instIsIsoHom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.Monad.toMon_X, Hom.isMonHom_hom, Bimod.regular_actLeft, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, MonObj.mopEquiv_unitIso_inv_app_hom, Bimod.Hom.right_act_hom_assoc, CategoryTheory.CommMon.forgetāMon_obj_X, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, CategoryTheory.Bimon.equivMonComonCounitIsoAppXAux_hom, monMonoidalStruct_tensorHom_hom, CategoryTheory.Grp.whiskerRight_hom, instIsIsoHomOfMapForget, braiding_hom_hom, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, Bimod.AssociatorBimod.hom_right_act_hom', CategoryTheory.Mod_.trivialAction_mod_smul, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Comon.MonOpOpToComonObj_comon_counit, CategoryTheory.Bimon.toMonComonObj_X, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, tensorUnit_mul, CategoryTheory.Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, tensor_one, hom_one, CategoryTheory.yonedaMon_obj, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, monMonoidalStruct_tensorObj_X, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CategoryTheory.CommMon.forgetāMon_obj_one, CategoryTheory.Grp.comp_hom, id_hom', CategoryTheory.Comon.ComonToMonOpOpObj_X, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_ε, snd_hom, Hom.hom_one, Bimod.LeftUnitorBimod.hom_left_act_hom', CategoryTheory.Comon.monoidal_tensorObj_comon_comul, tensor_mul, MonObj.mopEquiv_inverse_obj_mon_mul
|
comp š | CompOp | 1 mathmath: comp_hom
|
equivLaxMonoidalFunctorPUnit š | CompOp | 4 mathmath: equivLaxMonoidalFunctorPUnit_inverse, equivLaxMonoidalFunctorPUnit_counitIso, equivLaxMonoidalFunctorPUnit_unitIso, equivLaxMonoidalFunctorPUnit_functor
|
forget š | CompOp | 27 mathmath: forget_obj, forget_μ, forget_ε, CategoryTheory.Bimon.toMon_forget, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.Bimon.toComon_obj_comon_counit, CategoryTheory.Bimon.toComon_map_hom, limitConeIsLimit_lift_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, forget_faithful, limit_mon_mul, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, instReflectsIsomorphismsForget, limitCone_Ļ_app_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_X, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.Grp.forgetāMon_comp_forget, limit_X, forget_preservesLimitsOfShape, forget_Ī·, CategoryTheory.CommMon.forgetāMon_comp_forget, limit_mon_one, forget_Ī“, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, forget_map, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.Bimon.toComon_obj_comon_comul
|
homInhabited š | CompOp | ā |
id š | CompOp | 1 mathmath: id_hom
|
instCategory š | CompOp | 378 mathmath: CategoryTheory.Grp.mkIso_inv_hom, CategoryTheory.Grp.Hom.hom_div, CategoryTheory.Grp.comp', CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverse_obj, CategoryTheory.Grp.mkIso_hom_hom, CategoryTheory.Monad.monadMonEquiv_unitIso_inv_app_toNatTrans_app, CategoryTheory.Grp.instIsIsoHomHomMon, CategoryTheory.Grp.homMk'_hom, CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Bimon.Bimon_ClassAux_comul, CategoryTheory.Functor.mapMonNatTrans_app_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, CategoryTheory.Functor.FullyFaithful.mapMon_preimage_hom, CategoryTheory.CommMon.comp_hom, CategoryTheory.Grp.Hom.hom_hom_zpow, CategoryTheory.Equivalence.mapMon_inverse, EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, CategoryTheory.Functor.mapCommGrpCompIso_inv_app_hom_hom_hom, CategoryTheory.Functor.mapCommMonNatIso_inv_app_hom_hom, forget_obj, CategoryTheory.instFullMonFunctorOppositeMonCatYonedaMon, leftUnitor_inv_hom, CategoryTheory.Functor.mapCommMon_obj_mon_mul, forget_μ, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, CategoryTheory.Adjunction.mapMon_unit, CategoryTheory.Grp.id', CategoryTheory.Bimon.ext_iff, equivLaxMonoidalFunctorPUnit_inverse, CategoryTheory.Comon.MonOpOpToComon_obj, CategoryTheory.CommMon.forget_map, CategoryTheory.Functor.FullyFaithful.mapGrp_preimage, CategoryTheory.Comon.ComonToMonOpOp_obj, CategoryTheory.Functor.mapMon_obj_mon_mul, CategoryTheory.CommGrp.mkIso_inv_hom, forget_ε, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CategoryTheory.Grp.whiskerLeft_hom_hom, CategoryTheory.Functor.mapGrpIdIso_hom_app_hom_hom, CategoryTheory.Bimon.toMon_forget, CategoryTheory.Comon.Comon_EquivMon_OpOp_counitIso, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.counitIso_inv_app_app_hom_hom, CategoryTheory.Grp.leftUnitor_hom_hom, CategoryTheory.Functor.mapCommMonNatTrans_app_hom_hom, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.Monad.monadMonEquiv_counitIso_hom_app_hom, CategoryTheory.Bimon.trivial_comon_counit_hom, CategoryTheory.Bimon.toTrivial_hom, CategoryTheory.Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, CategoryTheory.Bimon.instIsComonHomHomEquivMonComonCounitIsoAppXAux, CategoryTheory.Bimon.equivMonComonUnitIsoApp_hom_hom_hom, rightUnitor_inv_hom, CategoryTheory.CommMon.mkIso'_inv_hom_hom, CategoryTheory.Grp.ε_def, CategoryTheory.Grp.rightUnitor_hom_hom_hom, CategoryTheory.Bimon.toComon_obj_comon_counit, mkIso_hom_hom, CategoryTheory.Bimon.toComon_map_hom, CategoryTheory.Grp.lift_hom, CategoryTheory.Grp.hom_mul, CategoryTheory.Bimon.trivial_X_X, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Bimon.ofMonComonObj_comon_comul_hom, CategoryTheory.Monad.monadToMon_obj, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, CategoryTheory.Functor.mapMonCompIso_hom_app_hom, limitConeIsLimit_lift_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CategoryTheory.Grp.Hom.hom_zpow, CategoryTheory.Functor.mapCommGrpCompIso_hom_app_hom_hom_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_functor, CategoryTheory.Bimon.toComon_obj_X, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.unitIso_inv_app_hom_hom_app, CategoryTheory.Bimon.trivial_comon_comul_hom, CategoryTheory.Comon.MonOpOpToComon_map_hom, CategoryTheory.Grp.associator_inv_hom_hom, CategoryTheory.Monad.monToMonad_obj, CategoryTheory.Functor.mapCommMonNatIso_hom_app_hom_hom, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.Grp.Hom.hom_hom_div, CategoryTheory.Grp.leftUnitor_hom_hom_hom, CategoryTheory.CommGrp.instIsIsoMonHomGrp, CategoryTheory.Grp.forget_map, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_unitIso, tensorObj_one, lift_hom, whiskerRight_hom, CategoryTheory.Grp.mkIso_hom_hom_hom, CategoryTheory.CommMon.instIsIsoHomHomMon, CategoryTheory.Bimon.equivMonComonCounitIsoAppXAux_inv, CategoryTheory.CommGrp.forgetāCommMon_map_hom, CategoryTheory.essImage_yonedaMon, CategoryTheory.Comon.ComonToMonOpOp_map, forget_faithful, CategoryTheory.Grp.rightUnitor_inv_hom_hom, CategoryTheory.Grp.forgetāMon_map_hom, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.Equivalence.mapMon_unitIso, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_functor, tensorUnit_X, CategoryTheory.instFaithfulMonFunctorOppositeMonCatYonedaMon, limit_mon_mul, CategoryTheory.Functor.mapMon_obj_X, CategoryTheory.Grp.whiskerRight_hom_hom, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CategoryTheory.Functor.mapMonNatIso_hom_app_hom, CategoryTheory.Grp.Hom.hom_hom_inv, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.Preadditive.commGrpEquivalenceAux_hom_app_hom_hom_hom, fst_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, CategoryTheory.Grp.μ_def, CategoryTheory.Functor.mapMonNatIso_inv_app_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.unitIso_hom_app_hom_hom_app, CategoryTheory.Grp.snd_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_obj, CategoryTheory.Monad.monadToMon_map_hom, mkIso_inv_hom, CategoryTheory.Bimon.Bimon_ClassAux_counit, CategoryTheory.Grp.whiskerLeft_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Adjunction.mapMon_counit, CategoryTheory.Functor.mapMonFunctor_obj, CategoryTheory.Functor.mapGrpNatIso_hom_app_hom_hom, CategoryTheory.Bimon.instIsComonHomMonHomEquivMonComonUnitIsoAppX, CategoryTheory.Functor.mapCommMonCompIso_inv_app_hom_hom, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.Functor.mapCommMonIdIso_hom_app_hom_hom, CategoryTheory.Grp.leftUnitor_inv_hom_hom, CategoryTheory.yonedaMon_map_app, instReflectsIsomorphismsForget, associator_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, CategoryTheory.Functor.mapCommGrpNatIso_inv_app_hom_hom_hom, MonObj.mopEquiv_inverse_map_hom, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, CategoryTheory.Bimon.BimonObjAux_counit, CategoryTheory.Grp.rightUnitor_inv_hom, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, CategoryTheory.Functor.mapMonFunctor_map_app_hom, CategoryTheory.Functor.mapMon_obj_mon_one, CategoryTheory.Functor.mapMonIdIso_hom_app_hom, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.CommGrp.hom_ext_iff, CategoryTheory.Grp.forgetāMon_obj_mul, MonObj.mopEquiv_inverse_obj_X, tensorObj_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverse_map_hom_app, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.counitIso_hom_app_app_hom_hom, CategoryTheory.Grp.Hom.hom_pow, CategoryTheory.Grp.Ī“_def, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_counit, whiskerLeft_hom, CategoryTheory.Grp.associator_hom_hom_hom, CategoryTheory.CommMon.mkIso_inv_hom_hom, limitCone_Ļ_app_hom, CategoryTheory.Grp.braiding_inv_hom, CategoryTheory.Grp.mkIso'_hom_hom_hom, CategoryTheory.Grp.id_hom, CategoryTheory.Comon.monoidal_associator_hom_hom, equivLaxMonoidalFunctorPUnit_counitIso, CategoryTheory.Functor.mapGrpCompIso_hom_app_hom_hom, equivLaxMonoidalFunctorPUnit_unitIso, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_obj, EquivLaxMonoidalFunctorPUnit.unitIso_hom_app_hom_app, CategoryTheory.Grp.fst_hom, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_comul, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_inv, CategoryTheory.CommGrp.mkIso_inv_hom_hom_hom, CategoryTheory.CommGrp.mkIso'_inv_hom_hom_hom, EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, instIsCommMonObj, Hom.hom_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_X, CategoryTheory.Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, associator_inv_hom, CategoryTheory.CommMon.forgetāMon_obj_mul, CategoryTheory.Bimon.equivMonComonCounitIsoAppX_hom_hom, CategoryTheory.Monad.monToMonad_map_toNatTrans, mkIso'_inv_hom, uniqueHomFromTrivial_default_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_unitIso, EquivLaxMonoidalFunctorPUnit.counitIsoAux_inv, MonObj.mopEquiv_functor_map_hom_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObj_map_hom, MonObj.mopEquivCompForgetIso_inv_app_unmop, equivLaxMonoidalFunctorPUnit_functor, CategoryTheory.Functor.mapCommMon_map_hom_hom, CategoryTheory.Functor.FullyFaithful.mapCommMon_preimage, CategoryTheory.Bimon.equivMonComonUnitIsoApp_inv_hom_hom, CategoryTheory.Bimon.ofMon_Comon_toMon_Comon_obj_counit, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.Preadditive.commGrpEquivalenceAux_inv_app_hom_hom_hom, CategoryTheory.Functor.mapGrp_map_hom_hom, CategoryTheory.CommGrp.forgetāGrp_map_hom, CategoryTheory.Grp.comp_hom_hom, CategoryTheory.Bimon.id_hom', CategoryTheory.Functor.mapMonIdIso_inv_app_hom, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CategoryTheory.Bimon.trivialTo_hom, CategoryTheory.Equivalence.mapMon_counitIso, CategoryTheory.Bimon.ofMonComonObj_comon_counit_hom, MonObj.mopEquiv_unitIso_hom_app_hom, CategoryTheory.Grp.braiding_inv_hom_hom, CategoryTheory.Functor.mapCommGrpIdIso_hom_app_hom_hom_hom, CategoryTheory.CommGrp.mkIso_hom_hom, CategoryTheory.Functor.mapCommMon_obj_mon_one, CategoryTheory.Bimon.ofMonComon_map_hom, CategoryTheory.Functor.Full.mapMon, tensorUnit_one, MonObj.mopEquiv_functor_obj_X_unmop, CategoryTheory.Grp.Hom.hom_mul, Hom.hom_pow, CategoryTheory.Grp.rightUnitor_hom_hom, CategoryTheory.Monad.monadMonEquiv_inverse, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, CategoryTheory.Bimon.ofMonComon_obj, CategoryTheory.Grp.forgetāMon_obj_X, CategoryTheory.Grp.hom_ext_iff, CategoryTheory.Grp.homMk''_hom_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.CommMon.id_hom, CategoryTheory.Grp.forgetāMon_comp_forget, CategoryTheory.Bimon.toMonComon_obj, CategoryTheory.Functor.mapMon_map_hom, CategoryTheory.Functor.FullyFaithful.mapCommGrp_preimage, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_X_map, leftUnitor_hom_hom, hasLimitsOfShape, CategoryTheory.Bimon.equivMonComonCounitIsoAppX_inv_hom, CategoryTheory.Functor.mapGrpIdIso_inv_app_hom_hom, EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, CategoryTheory.CommGrp.mkIso_hom_hom_hom_hom, CategoryTheory.CommMon.homMk_hom, CategoryTheory.Grp.leftUnitor_inv_hom, CategoryTheory.Functor.id_mapMon_mul, CategoryTheory.CommMon.mkIso_hom_hom_hom, CategoryTheory.Equivalence.mapMon_functor, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_hom_app_app_hom, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Bimon.BimonObjAux_comul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, CategoryTheory.Functor.mapMonCompIso_inv_app_hom, limit_X, CategoryTheory.CommMon.hom_ext_iff, CategoryTheory.Grp.mkIso_inv_hom_hom, CategoryTheory.Bimon.equivMonComonCounitIsoApp_hom_hom_hom, CategoryTheory.Grp.snd_hom_hom, CategoryTheory.Functor.mapGrpNatTrans_app_hom_hom, CategoryTheory.Bimon.ofMonComon_toMonComon_obj_comul, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_counitIso, CategoryTheory.CommMon.instFullMonForgetāMon, CategoryTheory.Grp.hom_one, CategoryTheory.Grp.forgetāMon_obj_one, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, forget_preservesLimitsOfShape, CategoryTheory.Functor.mapCommGrpIdIso_inv_app_hom_hom_hom, comp_hom', CategoryTheory.Grp.associator_inv_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.counitIso_inv_app_app_hom, braiding_inv_hom, CategoryTheory.Grp.homMk_hom_hom, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, CategoryTheory.Functor.essImage_mapMon, forget_Ī·, CategoryTheory.Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_inv_app_hom_app, CategoryTheory.Bimon.mk'_X, CategoryTheory.Functor.mapGrpNatIso_inv_app_hom_hom, commBialgCatEquivComonCommAlgCat_inverse_obj, hom_mul, limitCone_pt, CategoryTheory.Functor.mapGrpCompIso_inv_app_hom_hom, CategoryTheory.Grp.Hom.hom_inv, CategoryTheory.CommMon.forgetāMon_comp_forget, limit_mon_one, CategoryTheory.Functor.mapCommGrpNatIso_hom_app_hom_hom_hom, MonObj.mopEquiv_inverse_obj_mon_one, CategoryTheory.Grp.instFaithfulMonForgetāMon, CategoryTheory.Monad.monadMonEquiv_functor, forget_Ī“, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, rightUnitor_hom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, CategoryTheory.Bimon.ofMonComonObj_X, CategoryTheory.Grp.braiding_hom_hom, CategoryTheory.Functor.mapCommGrp_map_hom_hom_hom, CategoryTheory.Grp.Ī·_def, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_inverse, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, CategoryTheory.Bimon.toMonComon_map_hom, CategoryTheory.Grp.associator_hom_hom, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, forget_map, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.Functor.mapCommGrpNatTrans_app_hom_hom_hom, CategoryTheory.Functor.mapCommMonIdIso_inv_app_hom_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, MonObj.mopEquiv_unitIso_inv_app_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_inv_app_hom_hom, CategoryTheory.CommMon.forgetāMon_obj_X, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, CategoryTheory.Monad.monadMonEquiv_unitIso_hom_app_toNatTrans_app, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj, CategoryTheory.yonedaGrp_map_app, CategoryTheory.Bimon.equivMonComonCounitIsoAppXAux_hom, monMonoidalStruct_tensorHom_hom, CategoryTheory.CommGrp.mkIso'_hom_hom_hom_hom, CategoryTheory.Grp.whiskerRight_hom, braiding_hom_hom, CategoryTheory.Grp.tensorHom_hom, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObj_obj, CategoryTheory.CommMon.mkIso'_hom_hom_hom, CategoryTheory.Grp.Hom.hom_one, CategoryTheory.CommMon.instFaithfulMonForgetāMon, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CategoryTheory.Grp.fst_hom_hom, CategoryTheory.Grp.mkIso'_inv_hom_hom, CategoryTheory.Comon.monoidal_tensorHom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_hom_app_hom_hom, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, CategoryTheory.Bimon.comp_hom', CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.unitIso_hom_app_hom_app, CategoryTheory.Grp.braiding_hom_hom_hom, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, tensorUnit_mul, CategoryTheory.Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CategoryTheory.CommMon.forgetāMon_map_hom, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, tensor_one, hom_one, CategoryTheory.yonedaMon_obj, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, mkIso'_hom_hom, monMonoidalStruct_tensorObj_X, EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_inverse, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, CategoryTheory.CommMon.forgetāMon_obj_one, CategoryTheory.Grp.comp_hom, id_hom', CategoryTheory.Grp.instFullMonForgetāMon, CategoryTheory.Grp.id_hom_hom, CategoryTheory.Functor.Faithful.mapMon, CategoryTheory.Bimon.toComon_obj_comon_comul, snd_hom, Hom.hom_one, CategoryTheory.CommGrp.forget_map, instHasInitial, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Bimon.trivial_X_mon_one, tensor_mul, CategoryTheory.Functor.mapCommMonCompIso_hom_app_hom_hom, MonObj.mopEquiv_inverse_obj_mon_mul
|
instInhabited š | CompOp | ā |
instMonObjTensorObj š | CompOp | 14 mathmath: CategoryTheory.MonObj.instIsMonHomHomBraiding, CategoryTheory.BimonObj.one_comul, CategoryTheory.Functor.instIsMonHomμ, CategoryTheory.MonObj.instIsMonHomSnd, CategoryTheory.MonObj.instIsMonHomLift, CategoryTheory.MonObj.instIsMonHomFst, CategoryTheory.BimonObj.one_comul_assoc, CategoryTheory.Grp.tensorObj_mul, CategoryTheory.Grp.tensorObj_one, mul_def, CategoryTheory.MonObj.mul_braiding, CategoryTheory.instIsCommMonObjTensorObj, one_def, CategoryTheory.MonObj.instIsMonHomMulOfIsCommMonObj
|
instMonoidalForget š | CompOp | 5 mathmath: forget_μ, forget_ε, CategoryTheory.Bimon.toComon_map_hom, forget_Ī·, forget_Ī“
|
instSymmetricCategory š | CompOp | 3 mathmath: instIsCommMonObj, braiding_inv_hom, braiding_hom_hom
|
mkIso š | CompOp | 2 mathmath: mkIso_hom_hom, mkIso_inv_hom
|
mkIso' š | CompOp | 2 mathmath: mkIso'_inv_hom, mkIso'_hom_hom
|
mon š | CompOp | 103 mathmath: CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, CategoryTheory.Monad.ofMon_Ī·, EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, CategoryTheory.Bimon.ofMonComonObjX_mul, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, CategoryTheory.Functor.mapMon_obj_mon_mul, Bimod.TensorBimod.right_assoc', instIsMonHomHom, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, Bimod.actRight_one, CategoryTheory.Bimon.instIsMonHomComonHomEquivMonComonCounitIsoAppX, Bimod.left_assoc_assoc, Bimod.right_assoc, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, Bimod.TensorBimod.actRight_one', trivial_mon_mul, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_one, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_mul, tensorObj_one, CategoryTheory.Bimon.ofMon_Comon_ObjX_one, limit_mon_mul, Bimod.right_assoc_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_obj, CategoryTheory.Bimon.ofMon_Comon_ObjX_mul, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.yonedaMon_map_app, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, MonObj.mopEquiv_inverse_map_hom, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, CategoryTheory.Monad.toMon_mon, CategoryTheory.Comon.MonOpOpToComonObj_comon_comul, CategoryTheory.Functor.mapMon_obj_mon_one, Bimod.one_actLeft_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functor_map_app_hom, CategoryTheory.Grp.forgetāMon_obj_mul, tensorObj_mul, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, Hom.hom_mul, CategoryTheory.Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_μ, CategoryTheory.CommMon.forgetāMon_obj_mul, uniqueHomFromTrivial_default_hom, MonObj.mopEquiv_functor_map_hom_unmop, Bimod.one_actLeft, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, Bimod.TensorBimod.left_assoc', trivial_mon_one, tensorUnit_one, Hom.hom_pow, Bimod.left_assoc, Bimod.regular_actRight, CategoryTheory.Bimon.ofMonComonObjX_one, CategoryTheory.Functor.mapMon_map_hom, EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.Functor.id_mapMon_mul, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Monad.ofMon_μ, CategoryTheory.Bimon.equivMonComonCounitIsoApp_hom_hom_hom, CategoryTheory.Grp.forgetāMon_obj_one, CategoryTheory.Mod_.trivialAction_X, Bimod.actRight_one_assoc, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.Comon.ComonToMonOpOpObj_mon_mul, commBialgCatEquivComonCommAlgCat_inverse_obj, hom_mul, Bimod.TensorBimod.one_act_left', limit_mon_one, MonObj.mopEquiv_inverse_obj_mon_one, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, Hom.isMonHom_hom, Bimod.regular_actLeft, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, monMonoidalStruct_tensorHom_hom, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CategoryTheory.Mod_.trivialAction_mod_smul, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Comon.MonOpOpToComonObj_comon_counit, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, tensorUnit_mul, CategoryTheory.Bimon.equivMonComonCounitIsoApp_inv_hom_hom, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, tensor_one, hom_one, CategoryTheory.yonedaMon_obj, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, CategoryTheory.Functor.comp_mapMon_one, CategoryTheory.CommMon.forgetāMon_obj_one, EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_ε, Hom.hom_one, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Bimon.trivial_X_mon_one, tensor_mul, MonObj.mopEquiv_inverse_obj_mon_mul, CategoryTheory.Comon.ComonToMonOpOpObj_mon_one
|
monMonoidal š | CompOp | 63 mathmath: CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Bimon.Bimon_ClassAux_comul, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_hom_hom, forget_μ, CategoryTheory.Bimon.ext_iff, forget_ε, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_hom, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.Bimon.trivial_comon_counit_hom, CategoryTheory.Bimon.toTrivial_hom, CategoryTheory.Bimon.equivMonComonUnitIsoApp_hom_hom_hom, CategoryTheory.Grp.ε_def, CategoryTheory.Bimon.toComon_obj_comon_counit, CategoryTheory.Bimon.toComon_map_hom, CategoryTheory.Bimon.trivial_X_X, CategoryTheory.Bimon.ofMonComonObj_comon_comul_hom, CategoryTheory.Bimon.toComon_obj_X, CategoryTheory.Bimon.trivial_comon_comul_hom, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.Grp.μ_def, CategoryTheory.Bimon.Bimon_ClassAux_counit, CategoryTheory.Bimon.equivMonComonUnitIsoAppX_inv_hom, CategoryTheory.Bimon.instIsComonHomMonHomEquivMonComonUnitIsoAppX, CategoryTheory.Bimon.BimonObjAux_counit, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Grp.Ī“_def, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.Bimon.equivMonComonUnitIsoAppXAux_inv, instIsCommMonObj, CategoryTheory.Bimon.instIsMonHomHomEquivMonComonUnitIsoAppXAux, CategoryTheory.Bimon.equivMonComonUnitIsoApp_inv_hom_hom, CategoryTheory.Bimon.id_hom', CategoryTheory.Bimon.trivialTo_hom, CategoryTheory.Bimon.ofMonComonObj_comon_counit_hom, CategoryTheory.Bimon.ofMonComon_map_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_comul, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Bimon.BimonObjAux_comul, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, braiding_inv_hom, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, forget_Ī·, CategoryTheory.Bimon.mk'_X, hom_mul, forget_Ī“, CategoryTheory.Bimon.ofMonComonObj_X, CategoryTheory.Grp.Ī·_def, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comon.monoidal_tensorUnit_comon_counit, braiding_hom_hom, CategoryTheory.Comon.monoidal_tensorHom_hom, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Bimon.comp_hom', CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, hom_one, CategoryTheory.Bimon.toComon_obj_comon_comul, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Bimon.trivial_X_mon_one
|
monMonoidalStruct š | CompOp | 18 mathmath: leftUnitor_inv_hom, rightUnitor_inv_hom, tensorObj_one, whiskerRight_hom, tensorUnit_X, associator_hom_hom, tensorObj_mul, whiskerLeft_hom, associator_inv_hom, tensorUnit_one, leftUnitor_hom_hom, rightUnitor_hom_hom, monMonoidalStruct_tensorHom_hom, CategoryTheory.Grp.tensorHom_hom, tensorUnit_mul, tensor_one, monMonoidalStruct_tensorObj_X, tensor_mul
|
trivial š | CompOp | 7 mathmath: trivial_mon_mul, uniqueHomFromTrivial_default_hom, CategoryTheory.Bimon.trivialTo_hom, trivial_mon_one, EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map, trivial_X, EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj
|
uniqueHomFromTrivial š | CompOp | 2 mathmath: uniqueHomFromTrivial_default_hom, CategoryTheory.Bimon.trivialTo_hom
|
| Name | Category | Theorems |
instTensorUnit š | CompOp | 11 mathmath: CategoryTheory.IsCommMonObj.instTensorUnit, instIsMonHomOne, instIsMonHomToUnit, mul_def, one_def, instIsMonHomHomLeftUnitor, CategoryTheory.Grp.tensorUnit_mul, CategoryTheory.Grp.tensorUnit_one, instIsMonHomHomRightUnitor, CategoryTheory.Functor.instIsMonHomε, CategoryTheory.ModObj.smul_def
|
mul š | CompOp | 178 mathmath: CategoryTheory.GrpObj.lift_inv_comp_left, CategoryTheory.Bimon.toMonComonObj_mon_mul_hom, CategoryTheory.Functor.mapCommMon_obj_mon_mul, CategoryTheory.ModObj.mul_smul_assoc, CategoryTheory.Bimon.ofMonComonObjX_mul, CategoryTheory.Monad.mul_def, CategoryTheory.GrpObj.lift_inv_right_eq, mul_assoc, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, ofIso_mul, CategoryTheory.Functor.mapMon_obj_mon_mul, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Functor.comp_mapGrp_mul, Bimod.TensorBimod.right_assoc', CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul, CategoryTheory.GrpObj.left_inv_assoc, CategoryTheory.Functor.mapGrp_id_mul, CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.Functor.FullyFaithful.monObj_mul, lift_comp_one_right, Bimod.left_assoc_assoc, Bimod.right_assoc, CategoryTheory.GrpObj.lift_inv_comp_right, CategoryTheory.HopfObj.mul_antipode, CategoryTheory.Grp.hom_mul, lift_lift_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, mul_leftUnitor, lift_comp_one_right_assoc, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CategoryTheory.Bimon.compatibility_assoc, CategoryTheory.ModObj.mul_smul'_assoc, CategoryTheory.BimonObj.mul_counit_assoc, CategoryTheory.Mon.trivial_mon_mul, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_mul, CategoryTheory.CommGrp.forgetāGrp_obj_mul, mul_def, mul_mul_mul_comm'_assoc, one_mul_assoc, CategoryTheory.HopfObj.antipode_left, CategoryTheory.GrpObj.tensorHom_inv_inv_mul_assoc, CategoryTheory.Mon.limit_mon_mul, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_hom, ext_iff, CommAlgCat.mul_op_of_unop_hom, mul_mul_mul_comm, CategoryTheory.Hom.mul_def, Bimod.right_assoc_assoc, tensorObj.mul_def, lift_comp_one_left, CategoryTheory.Grp.tensorUnit_mul, CategoryTheory.Bimon.ofMon_Comon_ObjX_mul, CategoryTheory.Mon_Class.mul_eq_mul, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_inv, CategoryTheory.Functor.comp_mapMon_mul, CategoryTheory.HopfObj.antipode_comulā, CategoryTheory.IsMonHom.mul_hom, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul_assoc, CategoryTheory.BimonObj.mul_comul_assoc, CategoryTheory.Functor.comp_mapCommMon_mul, CategoryTheory.Comon.MonOpOpToComonObj_comon_comul, CategoryTheory.HopfObj.antipode_left_assoc, CategoryTheory.ModObj.smul_eq_mul, mul_one, CategoryTheory.Grp.forgetāMon_obj_mul, CategoryTheory.Mon.tensorObj_mul, CategoryTheory.GrpObj.lift_inv_left_eq, CategoryTheory.Functor.comp_mapCommGrp_mul, Mon_tensor_mul_one, CategoryTheory.BimonObj.mul_counit, Mon_tensor_one_mul, CategoryTheory.Functor.mapCommMon_id_mul, CategoryTheory.Mathlib.Tactic.MonTauto.eq_mul_one, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_μ, CategoryTheory.CommMon.forgetāMon_obj_mul, CategoryTheory.Conv.mul_eq, CategoryTheory.GrpObj.isPullback, CategoryTheory.Functor.obj.μ_def, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, Mon_tensor_mul_assoc, CategoryTheory.IsCommMonObj.mul_comm'_assoc, mul_mul_mul_comm', CategoryTheory.HopfObj.mul_antipodeā, CategoryTheory.CommGrp.forgetāCommMon_obj_mul, Bimod.TensorBimod.left_assoc', CategoryTheory.GrpObj.eq_lift_inv_right, mul_mul_mul_comm_assoc, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, ofRepresentableBy_mul, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraidedObj_μ, CategoryTheory.GrpObj.left_inv, CategoryTheory.Bimon.mul_counit, CategoryTheory.ModObj.assoc_flip, CategoryTheory.HopfObj.antipode_right_assoc, CategoryTheory.GrpObj.mul_inv_rev_assoc, CategoryTheory.Grp.tensorObj_mul, Bimod.left_assoc, Bimod.regular_actRight, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul, CategoryTheory.GrpObj.tensorHom_inv_inv_mul, mul_associator, CategoryTheory.GrpObj.mul_inv, CategoryTheory.IsCommMonObj.mul_comm, CategoryTheory.Functor.obj.μ_def_assoc, CategoryTheory.Mon.mul_def, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, MonObj.unmopMonObj_mul, CategoryTheory.Functor.id_mapMon_mul, mul_braiding, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_mul, CategoryTheory.Functor.mapGrp_obj_grp_mul, CategoryTheory.Functor.mapCommpGrp_id_mul, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_inv_assoc, CategoryTheory.Monad.ofMon_μ, CategoryTheory.GrpObj.mul_inv_rev, CategoryTheory.GrpObj.mulRight_hom, CategoryTheory.CommMon.trivial_mon_mul, CategoryTheory.Preadditive.mul_def, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Mod_.regular_mod_smul, CategoryTheory.HopfObj.antipode_comulā, CategoryTheory.Functor.FullyFaithful.grpObj_mul, CategoryTheory.GrpObj.mulRight_inv, CategoryTheory.Comon.ComonToMonOpOpObj_mon_mul, CategoryTheory.GrpObj.mul_inv_assoc, CategoryTheory.IsCommMonObj.mul_comm_assoc, CategoryTheory.Mon.hom_mul, CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.GrpObj.eq_lift_inv_left, lift_comp_one_left_assoc, CategoryTheory.HopfObj.mul_antipodeā, mul_assoc_assoc, CategoryTheory.Mathlib.Tactic.MonTauto.mul_assoc_hom_assoc, CategoryTheory.IsCommMonObj.mul_comm', CommGrpTypeEquivalenceCommGrp.inverse_obj_mul, mul_one_assoc, mul_assoc_flip_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_mul_app, CategoryTheory.CommGrp.trivial_grp_mul, CategoryTheory.Mod_.assoc_flip, CategoryTheory.BimonObj.mul_comul, CategoryTheory.IsMonHom.mul_hom_assoc, Bimod.regular_actLeft, CategoryTheory.GrpObj.ofIso_mul, CategoryTheory.GrpObj.lift_comp_inv_right, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, CategoryTheory.Bimon.mul_counit_assoc, CategoryTheory.ModObj.mul_smul, CategoryTheory.Functor.mapCommGrp_obj_grp_mul, MonObj.mopMonObj_mul_unmop, CategoryTheory.ModObj.mul_smul', CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_aux_mul, one_mul, mul_rightUnitor, CategoryTheory.Bimon.trivial_X_mon_mul, CategoryTheory.HopfObj.antipode_right, mul_one_hom, CategoryTheory.Grp.trivial_grp_mul, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_mul, CategoryTheory.Bimon.compatibility, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.Mon.tensorUnit_mul, CategoryTheory.Bimon.Mon_Class.tensorObj.mul_def, instIsMonHomMulOfIsCommMonObj, one_mul_hom, mul_eq_mul, CategoryTheory.Mathlib.Tactic.MonTauto.eq_one_mul, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.Mon_Class.mul_mul_mul_comm', CategoryTheory.Mon_Class.mul_mul_mul_comm, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, CategoryTheory.Mon.tensor_mul, mul_assoc_flip, MonObj.mopEquiv_inverse_obj_mon_mul
|
ofIso š | CompOp | 3 mathmath: ofIso_mul, ofIso_one, CategoryTheory.isMonHom_ofIso
|
one š | CompOp | 147 mathmath: CategoryTheory.GrpObj.lift_inv_comp_left, CategoryTheory.ModObj.one_smul_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Monad.ofMon_Ī·, CategoryTheory.Functor.mapCommGrp_obj_grp_one, CategoryTheory.BimonObj.one_comul, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, CommGrpTypeEquivalenceCommGrp.inverse_obj_one, CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul, CategoryTheory.Bimon.toMonComon_ofMonComon_obj_one, CategoryTheory.GrpObj.left_inv_assoc, instIsMonHomOne, CategoryTheory.Over.grpObjMkPullbackSnd_one, ofIso_one, lift_comp_one_right, Bimod.actRight_one, ofRepresentableBy_one, CategoryTheory.GrpObj.lift_inv_comp_right, Bimod.TensorBimod.actRight_one', lift_comp_one_right_assoc, CategoryTheory.GrpObj.one_inv_assoc, CategoryTheory.Functor.mapGrp_obj_grp_one, CategoryTheory.Functor.mapGrp_id_one, CategoryTheory.GrpObj.Ī·_whiskerRight_commutator_assoc, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.functorObjObj_mon_one, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, MonObj.mopEquiv_functor_obj_mon_one_unmop, MonObj.unmopMonObj_one, CategoryTheory.HopfObj.one_antipode, CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_Ī·, CategoryTheory.Mathlib.Tactic.MonTauto.leftUnitor_inv_one_tensor_mul_assoc, CategoryTheory.Mon.tensorObj_one, one_def, one_mul_assoc, CategoryTheory.Bimon.ofMon_Comon_ObjX_one, CategoryTheory.HopfObj.antipode_left, CategoryTheory.IsMonHom.one_hom_assoc, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CategoryTheory.ModObj.one_smul'_assoc, CategoryTheory.Functor.obj.Ī·_def_assoc, lift_comp_one_left, CategoryTheory.Functor.obj.Ī·_def, CategoryTheory.CommGrp.trivial_grp_one, CategoryTheory.Bimon.one_comul, CategoryTheory.GrpObj.one_inv, CategoryTheory.GrpObj.mulRight_one, CategoryTheory.HopfObj.antipode_comulā, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul_assoc, tensorObj.one_def, CategoryTheory.HopfObj.antipode_left_assoc, CategoryTheory.Functor.mapMon_obj_mon_one, Bimod.one_actLeft_assoc, mul_one, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.GrpObj.whiskerLeft_Ī·_commutator, CategoryTheory.BimonObj.one_counit_assoc, Mon_tensor_mul_one, CategoryTheory.BimonObj.one_comul_assoc, Mon_tensor_one_mul, CategoryTheory.IsMonHom.one_hom, CategoryTheory.Conv.one_eq, CategoryTheory.Grp.tensorUnit_one, CategoryTheory.Functor.FullyFaithful.monObj_one, CategoryTheory.Mathlib.Tactic.MonTauto.eq_mul_one, CategoryTheory.Over.monObjMkPullbackSnd_one, CategoryTheory.CommGrp.forgetāGrp_obj_one, CategoryTheory.GrpObj.whiskerLeft_Ī·_commutator_assoc, CategoryTheory.ModObj.one_smul', one_leftUnitor, CategoryTheory.Mon.uniqueHomFromTrivial_default_hom, one_braiding, CategoryTheory.Functor.mapCommGrp_id_one, ModuleCat.MonModuleEquivalenceAlgebra.algebraMap, Bimod.one_actLeft, CategoryTheory.HopfObj.mul_antipodeā, CategoryTheory.Mon.trivial_mon_one, CategoryTheory.Functor.mapCommMon_obj_mon_one, CategoryTheory.GrpObj.left_inv, CategoryTheory.Mon.tensorUnit_one, CategoryTheory.HopfObj.antipode_right_assoc, CategoryTheory.CommMon.trivial_mon_one, CommAlgCat.one_op_of_unop_hom, CategoryTheory.BimonObj.one_counit, CategoryTheory.Mathlib.Tactic.MonTauto.rightUnitor_inv_tensor_one_mul, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso_aux_one, CategoryTheory.Bimon.ofMonComonObjX_one, CategoryTheory.Grp.tensorObj_one, one_associator, CategoryTheory.Bimon.toMonComonObj_mon_one_hom, CategoryTheory.ModObj.one_smul, CategoryTheory.CommGrp.forgetāCommMon_obj_one, CategoryTheory.Grp.trivial_grp_one, CategoryTheory.Bimon.one_comul_assoc, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, CategoryTheory.Functor.comp_mapCommGrp_one, CategoryTheory.Grp.hom_one, CategoryTheory.Grp.forgetāMon_obj_one, Bimod.actRight_one_assoc, CategoryTheory.Hom.one_def, CategoryTheory.HopfObj.antipode_comulā, CategoryTheory.GrpObj.Ī·_whiskerRight_commutator, MonObj.mopMonObj_one_unmop, Bimod.TensorBimod.one_act_left', CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.Mon.limit_mon_one, lift_comp_one_left_assoc, CategoryTheory.HopfObj.mul_antipodeā, MonObj.mopEquiv_inverse_obj_mon_one, mul_one_assoc, CategoryTheory.Functor.FullyFaithful.grpObj_one, one_rightUnitor, CategoryTheory.Mon.one_def, CategoryTheory.Monoidal.MonFunctorCategoryEquivalence.inverseObj_mon_one_app, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraidedObj_ε, CategoryTheory.Preadditive.one_def, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.GrpObj.lift_comp_inv_right, one_eq_one, CategoryTheory.Functor.mapCommMon_id_one, CategoryTheory.Monad.one_def, CategoryTheory.GrpObj.ofIso_one, one_mul, CategoryTheory.Functor.id_mapMon_one, CategoryTheory.HopfObj.antipode_right, mul_one_hom, CategoryTheory.Comon.MonOpOpToComonObj_comon_counit, CategoryTheory.GrpObj.right_inv_assoc, CategoryTheory.Bimon.toMon_Comon_ofMon_Comon_obj_one, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, CategoryTheory.Mon.tensor_one, CategoryTheory.Mon.hom_one, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one, CategoryTheory.HopfObj.one_antipode_assoc, CategoryTheory.Functor.comp_mapMon_one, one_mul_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, CategoryTheory.CommMon.forgetāMon_obj_one, CategoryTheory.Mathlib.Tactic.MonTauto.eq_one_mul, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, CategoryTheory.Functor.comp_mapCommMon_one, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidalObj_ε, CategoryTheory.Functor.comp_mapGrp_one, CategoryTheory.Bimon.trivial_X_mon_one, CategoryTheory.Comon.ComonToMonOpOpObj_mon_one
|
termĪ· š | CompOp | ā |
termμ š | CompOp | ā |
Ā«termĪ·[_]Ā» š | CompOp | ā |
Ā«termμ[_]Ā» š | CompOp | ā |