Documentation Verification Report

NaturalTransformation

📁 Source: Mathlib/CategoryTheory/Monoidal/NaturalTransformation.lean

Statistics

MetricCount
Definitionshom, homMk, instCategory, isoMk, isoOfComponents, IsMonoidal
6
TheoremsinstIsMonoidalCounit, instIsMonoidalUnit, instIsMonoidalCounit, instIsMonoidalUnit, natTransIsMonoidal_of_transport, instIsMonoidalInvFunctor, isMonoidal, comp_hom, comp_hom_assoc, homMk_hom, hom_ext, hom_ext_iff, id_hom, isoMk_hom, isoMk_inv, isoOfComponents_hom_hom_app, isoOfComponents_inv_hom_app, comp, hcomp, id, instHomFunctorAssociator, instHomFunctorLeftUnitor, instHomFunctorRightUnitor, tensor, tensor_assoc, unit, unit_assoc, whiskerLeft, whiskerRight, instIsMonoidalProdProd'
30
Total36

CategoryTheory.Adjunction.Equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidalCounit 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counit
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalCounit
instIsMonoidalUnit 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.unit
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalUnit

CategoryTheory.Adjunction.IsMonoidal

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidalCounit 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Category.assoc
CategoryTheory.Adjunction.map_ε_comp_counit_app_unit
CategoryTheory.Functor.Monoidal.ε_η
CategoryTheory.Adjunction.map_μ_comp_counit_app_tensor
CategoryTheory.Functor.Monoidal.μ_δ_assoc
CategoryTheory.Category.comp_id
instIsMonoidalUnit 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Adjunction.unit
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.Monoidal.toLaxMonoidal
CategoryTheory.Category.id_comp
CategoryTheory.Adjunction.unit_app_unit_comp_map_η
CategoryTheory.Category.assoc
CategoryTheory.Functor.Monoidal.map_η_ε
CategoryTheory.Category.comp_id
CategoryTheory.Adjunction.unit_app_tensor_comp_map_δ_assoc
CategoryTheory.Functor.Monoidal.map_δ_μ

CategoryTheory.Functor.Monoidal

Theorems

NameKindAssumesProvesValidatesDepends On
natTransIsMonoidal_of_transport 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
toLaxMonoidal
transport
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp

CategoryTheory.Iso

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidalInvFunctor 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.IsMonoidal.unit
CategoryTheory.Category.assoc
hom_inv_id_app
CategoryTheory.Category.comp_id
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.NatIso.hom_app_isIso
inv_hom_id_app
CategoryTheory.NatTrans.IsMonoidal.tensor
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp

CategoryTheory.LaxMonoidalFunctor

Definitions

NameCategoryTheorems
homMk 📖CompOp
3 mathmath: isoMk_inv, homMk_hom, isoMk_hom
instCategory 📖CompOp
47 mathmath: TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.isMonHom_counitIsoAux, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_inverse, CategoryTheory.LaxBraidedFunctor.isoOfComponents_inv_hom_hom_app, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.unitIso_hom_app_hom_hom_app, CategoryTheory.LaxBraidedFunctor.comp_hom, CategoryTheory.LaxBraidedFunctor.isoOfComponents_hom_hom_app, isoOfComponents_inv_hom_app, CategoryTheory.LaxBraidedFunctor.forget_map, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, isoMk_inv, CategoryTheory.LaxBraidedFunctor.isoOfComponents_hom_hom_hom_app, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, CategoryTheory.Functor.mapCommMonFunctor_map_app, CategoryTheory.LaxBraidedFunctor.comp_hom_assoc, CategoryTheory.Functor.mapMonFunctor_obj, isoOfComponents_hom_hom_app, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_one, CategoryTheory.Functor.mapMonFunctor_map_app_hom, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_counitIso, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_unitIso, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_obj, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.unitIso_hom_app_hom_app, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.counitIso_inv_app_hom, CategoryTheory.LaxBraidedFunctor.homMk_hom_hom, CategoryTheory.LaxBraidedFunctor.forget_obj, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_inv, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_functor, CategoryTheory.LaxBraidedFunctor.isoOfComponents_inv_hom_app, comp_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.counitIso_hom_app_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.counitIsoAux_IsMon_Hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_map, isoMk_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.unitIso_inv_app_hom_hom_app, comp_hom_assoc, CategoryTheory.LaxBraidedFunctor.id_hom, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_laxMonoidalToMon_obj_mul, CategoryTheory.LaxBraidedFunctor.hom_ext_iff, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.laxMonoidalToMon_obj, TannakaDuality.FiniteGroup.equivHom_surjective, TannakaDuality.FiniteGroup.equivHom_injective, id_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app, TannakaDuality.FiniteGroup.equivHom_apply
isoMk 📖CompOp
2 mathmath: isoMk_inv, isoMk_hom
isoOfComponents 📖CompOp
3 mathmath: isoOfComponents_inv_hom_app, isoOfComponents_hom_hom_app, TannakaDuality.FiniteGroup.equivHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comp_hom 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
toFunctor
comp_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
toFunctor
Hom.hom
CategoryTheory.LaxMonoidalFunctor
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_hom
homMk_hom 📖mathematicalHom.hom
homMk
hom_ext 📖Hom.hom
hom_ext_iff 📖mathematicalHom.homhom_ext
id_hom 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.LaxMonoidalFunctor
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
toFunctor
isoMk_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.LaxMonoidalFunctor
instCategory
isoMk
homMk
CategoryTheory.Functor
CategoryTheory.Functor.category
toFunctor
isoMk_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.LaxMonoidalFunctor
instCategory
isoMk
homMk
CategoryTheory.Functor
CategoryTheory.Functor.category
toFunctor
isoOfComponents_hom_hom_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.LaxMonoidal.ε
laxMonoidal
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
Hom.hom
CategoryTheory.LaxMonoidalFunctor
instCategory
isoOfComponents
isoOfComponents_inv_hom_app 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
toFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.LaxMonoidal.ε
laxMonoidal
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
Hom.hom
CategoryTheory.Iso.inv
CategoryTheory.LaxMonoidalFunctor
instCategory
isoOfComponents

CategoryTheory.LaxMonoidalFunctor.Hom

Definitions

NameCategoryTheorems
hom 📖CompOp
25 mathmath: TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, CategoryTheory.LaxBraidedFunctor.isoOfComponents_inv_hom_hom_app, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.unitIso_hom_app_hom_hom_app, CategoryTheory.LaxBraidedFunctor.isoOfComponents_hom_hom_app, CategoryTheory.LaxMonoidalFunctor.isoOfComponents_inv_hom_app, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.monToLaxMonoidal_map_hom_app, CategoryTheory.LaxMonoidalFunctor.homMk_hom, CategoryTheory.LaxBraidedFunctor.isoOfComponents_hom_hom_hom_app, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.commMonToLaxBraided_map_hom_hom_app, CategoryTheory.Functor.mapCommMonFunctor_map_app, CategoryTheory.LaxMonoidalFunctor.isoOfComponents_hom_hom_app, CategoryTheory.LaxMonoidalFunctor.hom_ext_iff, CategoryTheory.Functor.mapMonFunctor_map_app_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.unitIso_hom_app_hom_app, CategoryTheory.LaxBraidedFunctor.homMk_hom_hom, CategoryTheory.LaxBraidedFunctor.isoOfComponents_inv_hom_app, CategoryTheory.LaxMonoidalFunctor.comp_hom, CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.unitIso_inv_app_hom_hom_app, isMonoidal, CategoryTheory.LaxMonoidalFunctor.comp_hom_assoc, CategoryTheory.LaxBraidedFunctor.id_hom, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, CategoryTheory.LaxBraidedFunctor.hom_ext_iff, CategoryTheory.LaxMonoidalFunctor.id_hom, CategoryTheory.Mon.EquivLaxMonoidalFunctorPUnit.unitIso_inv_app_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
isMonoidal 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.LaxMonoidalFunctor.toFunctor
hom
CategoryTheory.LaxMonoidalFunctor.laxMonoidal

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
IsMonoidal 📖CompData
22 mathmath: IsMonoidal.instHomFunctorAssociator, CategoryTheory.Functor.Monoidal.natTransIsMonoidal_of_transport, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, instIsMonoidalProdProd', CategoryTheory.Discrete.monoidalFunctorComp_isMonoidal, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, CategoryTheory.Localization.Monoidal.lifting_isMonoidal, IsMonoidal.of_cartesianMonoidalCategory, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, IsMonoidal.hcomp, CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalUnit, IsMonoidal.comp, IsMonoidal.whiskerRight, IsMonoidal.id, IsMonoidal.instHomFunctorRightUnitor, IsMonoidal.instHomFunctorLeftUnitor, CategoryTheory.Discrete.addMonoidalFunctorComp_isMonoidal, CategoryTheory.Iso.instIsMonoidalInvFunctor, CategoryTheory.LaxMonoidalFunctor.Hom.isMonoidal, CategoryTheory.Adjunction.IsMonoidal.instIsMonoidalCounit, IsMonoidal.whiskerLeft

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidalProdProd' 📖mathematicalIsMonoidal
CategoryTheory.prod'
CategoryTheory.MonoidalCategory.prodMonoidal
CategoryTheory.Functor.prod'
prod'
CategoryTheory.Functor.LaxMonoidal.prod'
CategoryTheory.Prod.hom_ext
CategoryTheory.prod_comp_fst
CategoryTheory.Functor.prod'_ε_fst
prod'_app_fst
IsMonoidal.unit
CategoryTheory.prod_comp_snd
CategoryTheory.Functor.prod'_ε_snd
prod'_app_snd
CategoryTheory.Functor.prod'_μ_fst
IsMonoidal.tensor
CategoryTheory.Functor.prod'_μ_snd

CategoryTheory.NatTrans.IsMonoidal

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
unit_assoc
unit
tensor_assoc
tensor
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
hcomp 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.hcomp
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_assoc
unit
unit_assoc
tensor_assoc
CategoryTheory.Functor.LaxMonoidal.μ_natural_assoc
tensor
id 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
instHomFunctorAssociator 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.associator
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
instHomFunctorLeftUnitor 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.leftUnitor
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Category.id_comp
instHomFunctorRightUnitor 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.LaxMonoidal.id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.id_whiskerRight
tensor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorHom
tensor_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.μ
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
tensor
unit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.NatTrans.app
unit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.LaxMonoidal.ε
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit
whiskerLeft 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.id_hcomp
hcomp
id
whiskerRight 📖mathematicalCategoryTheory.NatTrans.IsMonoidal
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.LaxMonoidal.comp
CategoryTheory.Functor.hcomp_id
hcomp
id

---

← Back to Index