Documentation Verification Report

Opposite

πŸ“ Source: Mathlib/CategoryTheory/Monoidal/Opposite.lean

Statistics

MetricCount
Definitionsmop, unmop, MonoidalOpposite, monoidalOppositeCategory, mopEquiv, mopMopEquivalence, mopMopEquivalenceFunctorMonoidal, mopMopEquivalenceInverseMonoidal, tensorIso, tensorLeftIso, tensorLeftMopIso, tensorLeftUnmopIso, tensorRightIso, tensorRightMopIso, tensorRightUnmopIso, unmop, unmopEquiv, Β«term_α΄Ήα΅’α΅–Β», instMonoidalOppositeFunctorOpOpEquivalence, instMonoidalOppositeInverseOpOpEquivalence, monoidalCategoryMop, monoidalCategoryOp, monoidalOpOp, monoidalUnopUnop, mopFunctor, unmopFunctor, mop, unmop
28
TheoremsinstMonoidalOppositeMop, instUnmopOfMonoidalOpposite, hom_ext, mopEquiv_counitIso, mopEquiv_functor, mopEquiv_inverse, mopEquiv_unitIso, mopMopEquivalenceFunctorMonoidal_Ξ΄, mopMopEquivalenceFunctorMonoidal_Ξ΅, mopMopEquivalenceFunctorMonoidal_Ξ·, mopMopEquivalenceFunctorMonoidal_ΞΌ, mopMopEquivalenceInverseMonoidal_Ξ΄_unmop_unmop, mopMopEquivalenceInverseMonoidal_Ξ΅_unmop_unmop, mopMopEquivalenceInverseMonoidal_Ξ·_unmop_unmop, mopMopEquivalenceInverseMonoidal_ΞΌ_unmop_unmop, mopMopEquivalence_counitIso_hom_app, mopMopEquivalence_counitIso_inv_app, mopMopEquivalence_functor_map, mopMopEquivalence_functor_obj, mopMopEquivalence_inverse_map_unmop_unmop, mopMopEquivalence_inverse_obj_unmop_unmop, mopMopEquivalence_unitIso_hom_app_unmop_unmop, mopMopEquivalence_unitIso_inv_app_unmop_unmop, mop_inj_iff, mop_injective, mop_unmop, tensorIso_hom_app_unmop, tensorIso_inv_app_unmop, tensorLeftIso_hom_app_unmop, tensorLeftIso_inv_app_unmop, tensorLeftMopIso_hom_app_unmop, tensorLeftMopIso_inv_app_unmop, tensorLeftUnmopIso_hom_app, tensorLeftUnmopIso_inv_app, tensorRightIso_hom_app_unmop, tensorRightIso_inv_app_unmop, tensorRightMopIso_hom_app_unmop, tensorRightMopIso_inv_app_unmop, tensorRightUnmopIso_hom_app, tensorRightUnmopIso_inv_app, unmopEquiv_counitIso_hom_app, unmopEquiv_counitIso_inv_app, unmopEquiv_functor_map, unmopEquiv_functor_obj, unmopEquiv_inverse_map_unmop, unmopEquiv_inverse_obj_unmop, unmopEquiv_unitIso_hom_app_unmop, unmopEquiv_unitIso_inv_app_unmop, unmop_inj_iff, unmop_injective, unmop_mop, instIsMonoidalMonoidalOppositeMopMopEquivalence, instIsMonoidalOppositeOpOpEquivalence, monoidalOpOp_Ξ΄, monoidalOpOp_Ξ΅, monoidalOpOp_Ξ·, monoidalOpOp_ΞΌ, monoidalUnopUnop_Ξ΄, monoidalUnopUnop_Ξ΅, monoidalUnopUnop_Ξ·, monoidalUnopUnop_ΞΌ, mopFunctor_map, mopFunctor_obj, mop_associator, mop_comp, mop_hom_associator, mop_hom_leftUnitor, mop_hom_rightUnitor, mop_id, mop_id_unmop, mop_inv_associator, mop_inv_leftUnitor, mop_inv_rightUnitor, mop_leftUnitor, mop_rightUnitor, mop_tensorHom, mop_tensorObj, mop_tensorUnit, mop_whiskerLeft, mop_whiskerRight, op_associator, op_hom_associator, op_hom_leftUnitor, op_hom_rightUnitor, op_inv_associator, op_inv_leftUnitor, op_inv_rightUnitor, op_leftUnitor, op_rightUnitor, op_tensorHom, op_tensorObj, op_tensorUnit, op_tensor_op, op_whiskerLeft, op_whiskerRight, unmopFunctor_map, unmopFunctor_obj, unmop_associator, unmop_comp, unmop_hom_associator, unmop_hom_leftUnitor, unmop_hom_rightUnitor, unmop_id, unmop_id_mop, unmop_inv_associator, unmop_inv_leftUnitor, unmop_inv_rightUnitor, unmop_leftUnitor, unmop_rightUnitor, unmop_tensorHom, unmop_tensorObj, unmop_tensorUnit, unmop_whiskerLeft, unmop_whiskerRight, unop_associator, unop_hom_associator, unop_hom_leftUnitor, unop_hom_rightUnitor, unop_inv_associator, unop_inv_leftUnitor, unop_inv_rightUnitor, unop_leftUnitor, unop_rightUnitor, unop_tensorHom, unop_tensorObj, unop_tensorUnit, unop_tensor_unop, unop_whiskerLeft, unop_whiskerRight, mop_inj, mop_unmop, unmop_inj, unmop_mop
133
Total161

CategoryTheory

Definitions

NameCategoryTheorems
MonoidalOpposite πŸ“–CompData
174 mathmath: MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomLeft, mop_hom_leftUnitor, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, MonoidalOpposite.unmop_hom_braiding, MonoidalOpposite.unmopFunctor_Ξ΄, unmop_hom_rightUnitor, MonoidalOpposite.tensorLeftMopIso_hom_app_unmop, MonoidalOpposite.mopMopEquivalence_functor_obj, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionObj, unmopFunctor_obj, mop_comp, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomLeft, MonoidalOpposite.mopFunctor_Ξ΅, mop_hom_rightUnitor, MonObj.mopEquivCompForgetIso_hom_app_unmop, unmopFunctor_map, MonoidalOpposite.mopMopEquivalenceInverseMonoidal_Ξ΅_unmop_unmop, mop_inv_associator, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHom, mopFunctor_map, MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_hom_app_unmop_app, MonoidalOpposite.unmopEquiv_inverse_map_unmop, mopFunctor_obj, leftDualFunctor_obj, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, unmop_hom_associator, MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ΞΌ_unmop_app, mop_associator, MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHom, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso_mop_mop, MonoidalOpposite.tensorLeftUnmopIso_inv_app, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomRight, MonObj.mop_isMonHom, Quiver.Hom.mop_inj, MonoidalOpposite.unmopEquiv_inverse_obj_unmop, MonObj.mopEquiv_functor_obj_mon_one_unmop, MonObj.unmopMonObj_one, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom, MonoidalOpposite.tensorIso_hom_app_unmop, mop_whiskerLeft, mop_tensorObj, MonoidalOpposite.mopMopEquivalence_inverse_map_unmop_unmop, MonoidalOpposite.mopFunctor_Ξ·, unmop_inv_leftUnitor, MonoidalOpposite.mopEquiv_unitIso, unmop_inv_associator, unmop_tensorUnit, MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_ΞΌ, mop_id, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight_mop, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso, MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_Ξ΅, unmop_id, MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_inv_app_unmop_app, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft_mop, MonoidalOpposite.mop_inv_braiding, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionObj, MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionUnitIso, unmop_leftUnitor, unmop_comp, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom_mop_mop, MonObj.mopEquiv_inverse_map_hom, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionAssocIso, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, mop_rightUnitor, MonObj.mopEquiv_inverse_obj_X, MonoidalOpposite.tensorRightUnmopIso_inv_app, leftDualFunctor_map, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionUnitIso, MonoidalOpposite.unmopEquiv_counitIso_hom_app, rightDualFunctor_map, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomLeft, MonObj.mopEquiv_functor_map_hom_unmop, MonoidalOpposite.tensorLeftUnmopIso_hom_app, MonoidalOpposite.mopMopEquivalence_functor_map, MonObj.mopEquivCompForgetIso_inv_app_unmop, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionObj, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionUnitIso, MonoidalOpposite.mopMopEquivalence_counitIso_inv_app, MonoidalOpposite.tensorRightIso_hom_app_unmop, MonObj.mopEquiv_unitIso_hom_app_hom, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomLeft, MonoidalCategory.MonoidalLeftAction.curriedActionMop_map_unmop_app, MonoidalOpposite.tensorRightIso_inv_app_unmop, MonObj.mopEquiv_functor_obj_X_unmop, MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ΄_unmop_app, unmop_rightUnitor, MonoidalOpposite.mopFunctor_ΞΌ, MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, MonoidalOpposite.mop_injective, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj_mop, rightDualFunctor_obj, MonoidalCategory.MonoidalLeftAction.curriedActionMop_obj_unmop_obj, MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, unmop_tensorHom, MonoidalOpposite.mopMopEquivalenceInverseMonoidal_Ξ΄_unmop_unmop, mop_inv_leftUnitor, MonoidalOpposite.unmopFunctor_ΞΌ, MonoidalOpposite.tensorRightMopIso_inv_app_unmop, MonObj.unmopMonObj_mul, MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_Ξ΄, mop_inv_rightUnitor, mop_leftUnitor, unmop_inv_rightUnitor, MonObj.mopEquiv_functor_obj_mon_mul_unmop, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj, MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_Ξ·, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj_mop, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom_mop_mop, MonoidalOpposite.mop_hom_braiding, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomRight, unmop_tensorObj, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, MonoidalOpposite.unmop_inv_braiding, MonObj.mopMonObj_one_unmop, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionRight_mop, MonoidalOpposite.mopEquiv_inverse, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomRight, unmop_whiskerRight, MonObj.mopEquiv_inverse_obj_mon_one, MonoidalOpposite.tensorLeftIso_hom_app_unmop, MonoidalOpposite.mop_braiding, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, MonoidalOpposite.unmopEquiv_counitIso_inv_app, unmop_associator, MonoidalOpposite.unmopEquiv_functor_map, MonoidalOpposite.tensorRightMopIso_hom_app_unmop, MonoidalCategory.MonoidalLeftAction.curriedActionMop_obj_unmop_map, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionAssocIso, mop_hom_associator, MonoidalOpposite.mopMopEquivalence_inverse_obj_unmop_unmop, instIsMonoidalMonoidalOppositeMopMopEquivalence, MonoidalOpposite.unmopFunctor_Ξ·, MonObj.mopEquiv_unitIso_inv_app_hom, MonoidalOpposite.unmopFunctor_Ξ΅, Quiver.Hom.unmop_inj, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, unmop_whiskerLeft, MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ·_unmop_app, MonoidalOpposite.tensorRightUnmopIso_hom_app, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomRight, MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ΅_unmop_app, MonoidalOpposite.tensorLeftMopIso_inv_app_unmop, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionRight_mop, unmop_hom_leftUnitor, MonObj.mopMonObj_mul_unmop, MonoidalOpposite.unmop_injective, MonoidalOpposite.mopFunctor_Ξ΄, IsIso.instMonoidalOppositeMop, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso_mop_mop, MonoidalOpposite.tensorLeftIso_inv_app_unmop, MonoidalOpposite.tensorIso_inv_app_unmop, MonoidalOpposite.mopMopEquivalence_counitIso_hom_app, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHom, MonoidalOpposite.unmop_braiding, mop_whiskerRight, mop_tensorUnit, MonoidalOpposite.mopEquiv_functor, MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ΞΌ_unmop_unmop, MonoidalOpposite.mopMopEquivalenceInverseMonoidal_Ξ·_unmop_unmop, mop_tensorHom, mop_id_unmop, MonoidalOpposite.unmopEquiv_functor_obj, unmop_id_mop, MonoidalOpposite.mopEquiv_counitIso, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionUnitIso, MonObj.mopEquiv_inverse_obj_mon_mul
instMonoidalOppositeFunctorOpOpEquivalence πŸ“–CompOp
1 mathmath: instIsMonoidalOppositeOpOpEquivalence
instMonoidalOppositeInverseOpOpEquivalence πŸ“–CompOp
1 mathmath: instIsMonoidalOppositeOpOpEquivalence
monoidalCategoryMop πŸ“–CompOp
126 mathmath: mop_hom_leftUnitor, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, MonoidalOpposite.unmop_hom_braiding, MonoidalOpposite.unmopFunctor_Ξ΄, unmop_hom_rightUnitor, MonoidalOpposite.tensorLeftMopIso_hom_app_unmop, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionObj, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomLeft, MonoidalOpposite.mopFunctor_Ξ΅, mop_hom_rightUnitor, MonObj.mopEquivCompForgetIso_hom_app_unmop, MonoidalOpposite.mopMopEquivalenceInverseMonoidal_Ξ΅_unmop_unmop, mop_inv_associator, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHom, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, unmop_hom_associator, MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ΞΌ_unmop_app, mop_associator, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHom, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso_mop_mop, MonoidalOpposite.tensorLeftUnmopIso_inv_app, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomRight, MonObj.mop_isMonHom, MonObj.mopEquiv_functor_obj_mon_one_unmop, MonObj.unmopMonObj_one, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom, MonoidalOpposite.tensorIso_hom_app_unmop, mop_whiskerLeft, mop_tensorObj, MonoidalOpposite.mopFunctor_Ξ·, unmop_inv_leftUnitor, unmop_inv_associator, unmop_tensorUnit, MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_ΞΌ, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight_mop, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso, MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_Ξ΅, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft_mop, MonoidalOpposite.mop_inv_braiding, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionObj, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionUnitIso, unmop_leftUnitor, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom_mop_mop, MonObj.mopEquiv_inverse_map_hom, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionAssocIso, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, mop_rightUnitor, MonObj.mopEquiv_inverse_obj_X, MonoidalOpposite.tensorRightUnmopIso_inv_app, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionUnitIso, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomLeft, MonObj.mopEquiv_functor_map_hom_unmop, MonoidalOpposite.tensorLeftUnmopIso_hom_app, MonObj.mopEquivCompForgetIso_inv_app_unmop, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionUnitIso, MonoidalOpposite.tensorRightIso_hom_app_unmop, MonObj.mopEquiv_unitIso_hom_app_hom, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomLeft, MonoidalOpposite.tensorRightIso_inv_app_unmop, MonObj.mopEquiv_functor_obj_X_unmop, MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ΄_unmop_app, unmop_rightUnitor, MonoidalOpposite.mopFunctor_ΞΌ, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj_mop, unmop_tensorHom, MonoidalOpposite.mopMopEquivalenceInverseMonoidal_Ξ΄_unmop_unmop, mop_inv_leftUnitor, MonoidalOpposite.unmopFunctor_ΞΌ, MonoidalOpposite.tensorRightMopIso_inv_app_unmop, MonObj.unmopMonObj_mul, MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_Ξ΄, mop_inv_rightUnitor, mop_leftUnitor, unmop_inv_rightUnitor, MonObj.mopEquiv_functor_obj_mon_mul_unmop, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj, MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_Ξ·, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj_mop, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom_mop_mop, MonoidalOpposite.mop_hom_braiding, unmop_tensorObj, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, MonoidalOpposite.unmop_inv_braiding, MonObj.mopMonObj_one_unmop, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionRight_mop, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomRight, unmop_whiskerRight, MonObj.mopEquiv_inverse_obj_mon_one, MonoidalOpposite.tensorLeftIso_hom_app_unmop, MonoidalOpposite.mop_braiding, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, unmop_associator, MonoidalOpposite.tensorRightMopIso_hom_app_unmop, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj, MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionAssocIso, mop_hom_associator, instIsMonoidalMonoidalOppositeMopMopEquivalence, MonoidalOpposite.unmopFunctor_Ξ·, MonObj.mopEquiv_unitIso_inv_app_hom, MonoidalOpposite.unmopFunctor_Ξ΅, MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, unmop_whiskerLeft, MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ·_unmop_app, MonoidalOpposite.tensorRightUnmopIso_hom_app, MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomRight, MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ΅_unmop_app, MonoidalOpposite.tensorLeftMopIso_inv_app_unmop, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionRight_mop, unmop_hom_leftUnitor, MonObj.mopMonObj_mul_unmop, MonoidalOpposite.mopFunctor_Ξ΄, MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso_mop_mop, MonoidalOpposite.tensorLeftIso_inv_app_unmop, MonoidalOpposite.tensorIso_inv_app_unmop, MonoidalOpposite.unmop_braiding, mop_whiskerRight, mop_tensorUnit, MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ΞΌ_unmop_unmop, MonoidalOpposite.mopMopEquivalenceInverseMonoidal_Ξ·_unmop_unmop, mop_tensorHom, MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionUnitIso, MonObj.mopEquiv_inverse_obj_mon_mul
monoidalCategoryOp πŸ“–CompOp
132 mathmath: Comon.tensorObj_comul', MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionRight_unop, op_hom_leftUnitor, op_inv_associator, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomRight, op_tensorHom, Comon.MonOpOpToComon_obj, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso, unop_tensorHom, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionObj, Comon.ComonToMonOpOp_obj, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomRight, op_whiskerRight, unop_inv_associator, Comon.Comon_EquivMon_OpOp_counitIso, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso, Comon.monoidal_rightUnitor_inv_hom, unop_tensor_unop, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomRight, unop_tensorUnit, monoidalOpOp_Ξ΄, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, op_tensorUnit, Comon.Comon_EquivMon_OpOp_functor, op_tensorObj, Comon.MonOpOpToComon_map_hom, op_whiskerLeft, BraidedCategory.unop_tensorΞΌ, op_tensor_op, Comon.ComonToMonOpOp_map, op_inv_braiding, Comon.monoidal_whiskerLeft_hom, unop_whiskerRight, op_leftUnitor, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CommAlgCat.mul_op_of_unop_hom, Comon.monoidal_leftUnitor_hom_hom, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionObj, unop_inv_leftUnitor, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom_unop, monoidalUnopUnop_Ξ΅, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionObj, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionUnitIso, monoidalUnopUnop_Ξ΄, Comon.MonOpOpToComonObj_comon_comul, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso_unop, Comon.monoidal_whiskerRight_hom, op_braiding, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft_op, monoidalOpOp_ΞΌ, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionObj_unop, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionUnitIso, monoidalOpOp_Ξ·, Comon.monoidal_associator_hom_hom, op_inv_leftUnitor, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso_op, op_rightUnitor, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft_unop, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionObj, op_hom_braiding, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionRight_op, unop_leftUnitor, unop_braiding, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom_unop, Comon.Comon_EquivMon_OpOp_unitIso, op_hom_associator, op_hom_rightUnitor, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso_unop, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, monoidalOpOp_Ξ΅, CommAlgCat.one_op_of_unop_hom, unop_rightUnitor, Comon.monoidal_tensorUnit_comon_comul, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionRight_op, instIsMonoidalOppositeOpOpEquivalence, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom_op, op_inv_rightUnitor, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso, unop_inv_braiding, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionRight_unop, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomRight, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionObj_unop, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom, Comon.monoidal_leftUnitor_inv_hom, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft, monoidalUnopUnop_ΞΌ, Comon.MonOpOpToComonObj_X, Comon.monoidal_rightUnitor_hom_hom, Comon.ComonToMonOpOpObj_mon_mul, commBialgCatEquivComonCommAlgCat_inverse_obj, BraidedCategory.op_tensorΞΌ, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso_op, unop_hom_rightUnitor, unop_hom_braiding, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom_op, Comon.monoidal_associator_inv_hom, Comon.Comon_EquivMon_OpOp_inverse, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft_op, Comon.monoidal_tensorUnit_comon_counit, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso, unop_hom_associator, op_associator, unop_tensorObj, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionObj_op, instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, unop_inv_rightUnitor, Comon.monoidal_tensorHom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, unop_hom_leftUnitor, unop_associator, Comon.MonOpOpToComonObj_comon_counit, monoidalUnopUnop_Ξ·, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionObj_op, unop_whiskerLeft, MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionUnitIso, Comon.monoidal_tensorObj_comon_counit, MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft, MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft_unop, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionUnitIso, Comon.ComonToMonOpOpObj_X, Comon.monoidal_tensorObj_comon_comul, Comon.ComonToMonOpOpObj_mon_one
monoidalOpOp πŸ“–CompOp
4 mathmath: monoidalOpOp_Ξ΄, monoidalOpOp_ΞΌ, monoidalOpOp_Ξ·, monoidalOpOp_Ξ΅
monoidalUnopUnop πŸ“–CompOp
4 mathmath: monoidalUnopUnop_Ξ΅, monoidalUnopUnop_Ξ΄, monoidalUnopUnop_ΞΌ, monoidalUnopUnop_Ξ·
mopFunctor πŸ“–CompOp
24 mathmath: MonoidalOpposite.tensorLeftMopIso_hom_app_unmop, MonoidalOpposite.mopFunctor_Ξ΅, mopFunctor_map, mopFunctor_obj, MonoidalOpposite.tensorLeftUnmopIso_inv_app, MonoidalOpposite.tensorIso_hom_app_unmop, MonoidalOpposite.mopFunctor_Ξ·, MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, MonoidalOpposite.tensorRightUnmopIso_inv_app, MonoidalOpposite.tensorLeftUnmopIso_hom_app, MonoidalOpposite.tensorRightIso_hom_app_unmop, MonoidalOpposite.tensorRightIso_inv_app_unmop, MonoidalOpposite.mopFunctor_ΞΌ, MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, MonoidalOpposite.tensorRightMopIso_inv_app_unmop, MonoidalOpposite.tensorLeftIso_hom_app_unmop, MonoidalOpposite.tensorRightMopIso_hom_app_unmop, MonoidalOpposite.tensorRightUnmopIso_hom_app, MonoidalOpposite.tensorLeftMopIso_inv_app_unmop, MonoidalOpposite.mopFunctor_Ξ΄, MonoidalOpposite.tensorLeftIso_inv_app_unmop, MonoidalOpposite.tensorIso_inv_app_unmop, MonoidalOpposite.mopEquiv_functor, MonoidalOpposite.mopEquiv_counitIso
unmopFunctor πŸ“–CompOp
24 mathmath: MonoidalOpposite.unmopFunctor_Ξ΄, MonoidalOpposite.tensorLeftMopIso_hom_app_unmop, unmopFunctor_obj, unmopFunctor_map, MonoidalOpposite.tensorLeftUnmopIso_inv_app, MonoidalOpposite.tensorIso_hom_app_unmop, MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, MonoidalOpposite.tensorRightUnmopIso_inv_app, MonoidalOpposite.tensorLeftUnmopIso_hom_app, MonoidalOpposite.tensorRightIso_hom_app_unmop, MonoidalOpposite.tensorRightIso_inv_app_unmop, MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, MonoidalOpposite.unmopFunctor_ΞΌ, MonoidalOpposite.tensorRightMopIso_inv_app_unmop, MonoidalOpposite.mopEquiv_inverse, MonoidalOpposite.tensorLeftIso_hom_app_unmop, MonoidalOpposite.tensorRightMopIso_hom_app_unmop, MonoidalOpposite.unmopFunctor_Ξ·, MonoidalOpposite.unmopFunctor_Ξ΅, MonoidalOpposite.tensorRightUnmopIso_hom_app, MonoidalOpposite.tensorLeftMopIso_inv_app_unmop, MonoidalOpposite.tensorLeftIso_inv_app_unmop, MonoidalOpposite.tensorIso_inv_app_unmop, MonoidalOpposite.mopEquiv_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidalMonoidalOppositeMopMopEquivalence πŸ“–mathematicalβ€”Equivalence.IsMonoidal
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mopMopEquivalence
MonoidalOpposite.mopMopEquivalenceFunctorMonoidal
MonoidalOpposite.mopMopEquivalenceInverseMonoidal
β€”Functor.isoWhiskerRight_trans
Iso.trans_assoc
Category.comp_id
MonoidalCategory.tensorHom_id
MonoidalCategory.id_whiskerRight
instIsMonoidalOppositeOpOpEquivalence πŸ“–mathematicalβ€”Equivalence.IsMonoidal
Opposite
Category.opposite
monoidalCategoryOp
opOpEquivalence
instMonoidalOppositeFunctorOpOpEquivalence
instMonoidalOppositeInverseOpOpEquivalence
β€”Category.comp_id
MonoidalCategory.tensorHom_id
MonoidalCategory.id_whiskerRight
monoidalOpOp_Ξ΄ πŸ“–mathematicalβ€”Functor.OplaxMonoidal.Ξ΄
Opposite
Category.opposite
monoidalCategoryOp
opOp
Functor.Monoidal.toOplaxMonoidal
monoidalOpOp
CategoryStruct.id
CategoryStruct.opposite
Category.toCategoryStruct
Functor.obj
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
monoidalOpOp_Ξ΅ πŸ“–mathematicalβ€”Functor.LaxMonoidal.Ξ΅
Opposite
Category.opposite
monoidalCategoryOp
opOp
Functor.Monoidal.toLaxMonoidal
monoidalOpOp
CategoryStruct.id
CategoryStruct.opposite
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
monoidalOpOp_Ξ· πŸ“–mathematicalβ€”Functor.OplaxMonoidal.Ξ·
Opposite
Category.opposite
monoidalCategoryOp
opOp
Functor.Monoidal.toOplaxMonoidal
monoidalOpOp
CategoryStruct.id
CategoryStruct.opposite
Category.toCategoryStruct
Functor.obj
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
monoidalOpOp_ΞΌ πŸ“–mathematicalβ€”Functor.LaxMonoidal.ΞΌ
Opposite
Category.opposite
monoidalCategoryOp
opOp
Functor.Monoidal.toLaxMonoidal
monoidalOpOp
CategoryStruct.id
CategoryStruct.opposite
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Functor.obj
β€”β€”
monoidalUnopUnop_Ξ΄ πŸ“–mathematicalβ€”Functor.OplaxMonoidal.Ξ΄
Opposite
Category.opposite
monoidalCategoryOp
unopUnop
Functor.Monoidal.toOplaxMonoidal
monoidalUnopUnop
CategoryStruct.id
Category.toCategoryStruct
Functor.obj
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
monoidalUnopUnop_Ξ΅ πŸ“–mathematicalβ€”Functor.LaxMonoidal.Ξ΅
Opposite
Category.opposite
monoidalCategoryOp
unopUnop
Functor.Monoidal.toLaxMonoidal
monoidalUnopUnop
CategoryStruct.id
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
monoidalUnopUnop_Ξ· πŸ“–mathematicalβ€”Functor.OplaxMonoidal.Ξ·
Opposite
Category.opposite
monoidalCategoryOp
unopUnop
Functor.Monoidal.toOplaxMonoidal
monoidalUnopUnop
CategoryStruct.id
Category.toCategoryStruct
Functor.obj
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
monoidalUnopUnop_ΞΌ πŸ“–mathematicalβ€”Functor.LaxMonoidal.ΞΌ
Opposite
Category.opposite
monoidalCategoryOp
unopUnop
Functor.Monoidal.toLaxMonoidal
monoidalUnopUnop
CategoryStruct.id
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Functor.obj
β€”β€”
mopFunctor_map πŸ“–mathematicalβ€”Functor.map
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
mopFunctor
Quiver.Hom.mop
β€”β€”
mopFunctor_obj πŸ“–mathematicalβ€”Functor.obj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
mopFunctor
MonoidalOpposite.mop
β€”β€”
mop_associator πŸ“–mathematicalβ€”Iso.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.associator
Iso.symm
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
β€”β€”
mop_comp πŸ“–mathematicalβ€”Quiver.Hom.mop
CategoryStruct.comp
Category.toCategoryStruct
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalOpposite.mop
β€”β€”
mop_hom_associator πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Iso.hom
MonoidalCategoryStruct.associator
Iso.inv
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
β€”β€”
mop_hom_leftUnitor πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.hom
MonoidalCategoryStruct.leftUnitor
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
MonoidalCategoryStruct.rightUnitor
β€”β€”
mop_hom_rightUnitor πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.hom
MonoidalCategoryStruct.rightUnitor
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
MonoidalCategoryStruct.leftUnitor
β€”β€”
mop_id πŸ“–mathematicalβ€”Quiver.Hom.mop
CategoryStruct.id
Category.toCategoryStruct
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalOpposite.mop
β€”β€”
mop_id_unmop πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalOpposite.unmop
CategoryStruct.id
Category.toCategoryStruct
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
β€”β€”
mop_inv_associator πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Iso.inv
MonoidalCategoryStruct.associator
Iso.hom
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
β€”β€”
mop_inv_leftUnitor πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.leftUnitor
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
MonoidalCategoryStruct.rightUnitor
β€”β€”
mop_inv_rightUnitor πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.rightUnitor
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
MonoidalCategoryStruct.leftUnitor
β€”β€”
mop_leftUnitor πŸ“–mathematicalβ€”Iso.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.leftUnitor
MonoidalCategoryStruct.rightUnitor
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
β€”β€”
mop_rightUnitor πŸ“–mathematicalβ€”Iso.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.rightUnitor
MonoidalCategoryStruct.leftUnitor
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
β€”β€”
mop_tensorHom πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorHom
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
β€”β€”
mop_tensorObj πŸ“–mathematicalβ€”MonoidalOpposite.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
β€”β€”
mop_tensorUnit πŸ“–mathematicalβ€”MonoidalOpposite.mop
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
β€”β€”
mop_whiskerLeft πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.whiskerLeft
MonoidalCategoryStruct.whiskerRight
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
β€”β€”
mop_whiskerRight πŸ“–mathematicalβ€”Quiver.Hom.mop
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.whiskerRight
MonoidalCategoryStruct.whiskerLeft
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
monoidalCategoryMop
MonoidalOpposite.mop
β€”β€”
op_associator πŸ“–mathematicalβ€”Iso.op
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.associator
Iso.symm
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_hom_associator πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Iso.hom
MonoidalCategoryStruct.associator
Iso.inv
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_hom_leftUnitor πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.hom
MonoidalCategoryStruct.leftUnitor
Iso.inv
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_hom_rightUnitor πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.hom
MonoidalCategoryStruct.rightUnitor
Iso.inv
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_inv_associator πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Iso.inv
MonoidalCategoryStruct.associator
Iso.hom
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_inv_leftUnitor πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.leftUnitor
Iso.hom
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_inv_rightUnitor πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.rightUnitor
Iso.hom
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_leftUnitor πŸ“–mathematicalβ€”Iso.op
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.leftUnitor
Iso.symm
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_rightUnitor πŸ“–mathematicalβ€”Iso.op
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.rightUnitor
Iso.symm
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_tensorHom πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorHom
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_tensorObj πŸ“–mathematicalβ€”Opposite.op
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Opposite
Category.opposite
monoidalCategoryOp
β€”β€”
op_tensorUnit πŸ“–mathematicalβ€”Opposite.op
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
Opposite
Category.opposite
monoidalCategoryOp
β€”β€”
op_tensor_op πŸ“–mathematicalβ€”MonoidalCategoryStruct.tensorHom
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
β€”β€”
op_whiskerLeft πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.whiskerLeft
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
op_whiskerRight πŸ“–mathematicalβ€”Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.whiskerRight
Opposite
Category.opposite
monoidalCategoryOp
Opposite.op
β€”β€”
unmopFunctor_map πŸ“–mathematicalβ€”Functor.map
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
unmopFunctor
Quiver.Hom.unmop
β€”β€”
unmopFunctor_obj πŸ“–mathematicalβ€”Functor.obj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
unmopFunctor
MonoidalOpposite.unmop
β€”β€”
unmop_associator πŸ“–mathematicalβ€”Iso.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.associator
Iso.symm
MonoidalOpposite.unmop
β€”β€”
unmop_comp πŸ“–mathematicalβ€”Quiver.Hom.unmop
CategoryStruct.comp
MonoidalOpposite
Category.toCategoryStruct
MonoidalOpposite.monoidalOppositeCategory
MonoidalOpposite.unmop
β€”β€”
unmop_hom_associator πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
Iso.hom
MonoidalCategoryStruct.associator
Iso.inv
MonoidalOpposite.unmop
β€”β€”
unmop_hom_leftUnitor πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.tensorUnit
Iso.hom
MonoidalCategoryStruct.leftUnitor
MonoidalOpposite.unmop
MonoidalCategoryStruct.rightUnitor
β€”β€”
unmop_hom_rightUnitor πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.tensorUnit
Iso.hom
MonoidalCategoryStruct.rightUnitor
MonoidalOpposite.unmop
MonoidalCategoryStruct.leftUnitor
β€”β€”
unmop_id πŸ“–mathematicalβ€”Quiver.Hom.unmop
CategoryStruct.id
MonoidalOpposite
Category.toCategoryStruct
MonoidalOpposite.monoidalOppositeCategory
MonoidalOpposite.unmop
β€”β€”
unmop_id_mop πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalOpposite.mop
CategoryStruct.id
MonoidalOpposite
Category.toCategoryStruct
MonoidalOpposite.monoidalOppositeCategory
β€”β€”
unmop_inv_associator πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
Iso.inv
MonoidalCategoryStruct.associator
Iso.hom
MonoidalOpposite.unmop
β€”β€”
unmop_inv_leftUnitor πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.leftUnitor
MonoidalOpposite.unmop
MonoidalCategoryStruct.rightUnitor
β€”β€”
unmop_inv_rightUnitor πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.rightUnitor
MonoidalOpposite.unmop
MonoidalCategoryStruct.leftUnitor
β€”β€”
unmop_leftUnitor πŸ“–mathematicalβ€”Iso.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.leftUnitor
MonoidalCategoryStruct.rightUnitor
MonoidalOpposite.unmop
β€”β€”
unmop_rightUnitor πŸ“–mathematicalβ€”Iso.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.rightUnitor
MonoidalCategoryStruct.leftUnitor
MonoidalOpposite.unmop
β€”β€”
unmop_tensorHom πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.tensorHom
MonoidalOpposite.unmop
β€”β€”
unmop_tensorObj πŸ“–mathematicalβ€”MonoidalOpposite.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
β€”β€”
unmop_tensorUnit πŸ“–mathematicalβ€”MonoidalOpposite.unmop
MonoidalCategoryStruct.tensorUnit
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
β€”β€”
unmop_whiskerLeft πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.whiskerLeft
MonoidalCategoryStruct.whiskerRight
MonoidalOpposite.unmop
β€”β€”
unmop_whiskerRight πŸ“–mathematicalβ€”Quiver.Hom.unmop
MonoidalCategoryStruct.tensorObj
MonoidalOpposite
MonoidalOpposite.monoidalOppositeCategory
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryMop
MonoidalCategoryStruct.whiskerRight
MonoidalCategoryStruct.whiskerLeft
MonoidalOpposite.unmop
β€”β€”
unop_associator πŸ“–mathematicalβ€”Iso.unop
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.associator
Iso.symm
Opposite.unop
β€”β€”
unop_hom_associator πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
Iso.hom
MonoidalCategoryStruct.associator
Iso.inv
Opposite.unop
β€”β€”
unop_hom_leftUnitor πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.tensorUnit
Iso.hom
MonoidalCategoryStruct.leftUnitor
Iso.inv
Opposite.unop
β€”β€”
unop_hom_rightUnitor πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.tensorUnit
Iso.hom
MonoidalCategoryStruct.rightUnitor
Iso.inv
Opposite.unop
β€”β€”
unop_inv_associator πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
Iso.inv
MonoidalCategoryStruct.associator
Iso.hom
Opposite.unop
β€”β€”
unop_inv_leftUnitor πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.leftUnitor
Iso.hom
Opposite.unop
β€”β€”
unop_inv_rightUnitor πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.rightUnitor
Iso.hom
Opposite.unop
β€”β€”
unop_leftUnitor πŸ“–mathematicalβ€”Iso.unop
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.leftUnitor
Iso.symm
Opposite.unop
β€”β€”
unop_rightUnitor πŸ“–mathematicalβ€”Iso.unop
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.rightUnitor
Iso.symm
Opposite.unop
β€”β€”
unop_tensorHom πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.tensorHom
Opposite.unop
β€”β€”
unop_tensorObj πŸ“–mathematicalβ€”Opposite.unop
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
β€”β€”
unop_tensorUnit πŸ“–mathematicalβ€”Opposite.unop
MonoidalCategoryStruct.tensorUnit
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
β€”β€”
unop_tensor_unop πŸ“–mathematicalβ€”MonoidalCategoryStruct.tensorHom
MonoidalCategory.toMonoidalCategoryStruct
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
monoidalCategoryOp
β€”β€”
unop_whiskerLeft πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.whiskerLeft
Opposite.unop
β€”β€”
unop_whiskerRight πŸ“–mathematicalβ€”Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
Opposite
Category.opposite
MonoidalCategory.toMonoidalCategoryStruct
monoidalCategoryOp
MonoidalCategoryStruct.whiskerRight
Opposite.unop
β€”β€”

CategoryTheory.IsIso

Theorems

NameKindAssumesProvesValidatesDepends On
instMonoidalOppositeMop πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.MonoidalOpposite
CategoryTheory.MonoidalOpposite.monoidalOppositeCategory
CategoryTheory.MonoidalOpposite.mop
Quiver.Hom.mop
β€”CategoryTheory.Functor.map_isIso
instUnmopOfMonoidalOpposite πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.MonoidalOpposite.unmop
Quiver.Hom.unmop
β€”CategoryTheory.Functor.map_isIso

CategoryTheory.Iso

Definitions

NameCategoryTheorems
mop πŸ“–CompOp
4 mathmath: CategoryTheory.mop_associator, CategoryTheory.mop_rightUnitor, CategoryTheory.mop_leftUnitor, CategoryTheory.MonoidalOpposite.mop_braiding
unmop πŸ“–CompOp
4 mathmath: CategoryTheory.unmop_leftUnitor, CategoryTheory.unmop_rightUnitor, CategoryTheory.unmop_associator, CategoryTheory.MonoidalOpposite.unmop_braiding

CategoryTheory.MonoidalOpposite

Definitions

NameCategoryTheorems
monoidalOppositeCategory πŸ“–CompOp
172 mathmath: CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomLeft, CategoryTheory.mop_hom_leftUnitor, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, unmop_hom_braiding, unmopFunctor_Ξ΄, CategoryTheory.unmop_hom_rightUnitor, tensorLeftMopIso_hom_app_unmop, mopMopEquivalence_functor_obj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionObj, CategoryTheory.unmopFunctor_obj, CategoryTheory.mop_comp, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomLeft, mopFunctor_Ξ΅, CategoryTheory.mop_hom_rightUnitor, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.unmopFunctor_map, mopMopEquivalenceInverseMonoidal_Ξ΅_unmop_unmop, CategoryTheory.mop_inv_associator, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHom, CategoryTheory.mopFunctor_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_hom_app_unmop_app, unmopEquiv_inverse_map_unmop, CategoryTheory.mopFunctor_obj, CategoryTheory.leftDualFunctor_obj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, CategoryTheory.unmop_hom_associator, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ΞΌ_unmop_app, CategoryTheory.mop_associator, mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso_mop_mop, tensorLeftUnmopIso_inv_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomRight, MonObj.mop_isMonHom, Quiver.Hom.mop_inj, unmopEquiv_inverse_obj_unmop, MonObj.mopEquiv_functor_obj_mon_one_unmop, MonObj.unmopMonObj_one, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom, tensorIso_hom_app_unmop, CategoryTheory.mop_whiskerLeft, CategoryTheory.mop_tensorObj, mopMopEquivalence_inverse_map_unmop_unmop, mopFunctor_Ξ·, CategoryTheory.unmop_inv_leftUnitor, mopEquiv_unitIso, CategoryTheory.unmop_inv_associator, CategoryTheory.unmop_tensorUnit, mopMopEquivalenceFunctorMonoidal_ΞΌ, CategoryTheory.mop_id, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso, mopMopEquivalenceFunctorMonoidal_Ξ΅, CategoryTheory.unmop_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_inv_app_unmop_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft_mop, mop_inv_braiding, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionObj, unmopEquiv_unitIso_inv_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionUnitIso, CategoryTheory.unmop_leftUnitor, CategoryTheory.unmop_comp, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom_mop_mop, MonObj.mopEquiv_inverse_map_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, CategoryTheory.mop_rightUnitor, MonObj.mopEquiv_inverse_obj_X, tensorRightUnmopIso_inv_app, CategoryTheory.leftDualFunctor_map, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionUnitIso, unmopEquiv_counitIso_hom_app, CategoryTheory.rightDualFunctor_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomLeft, MonObj.mopEquiv_functor_map_hom_unmop, tensorLeftUnmopIso_hom_app, mopMopEquivalence_functor_map, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionUnitIso, mopMopEquivalence_counitIso_inv_app, tensorRightIso_hom_app_unmop, MonObj.mopEquiv_unitIso_hom_app_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_map_unmop_app, tensorRightIso_inv_app_unmop, MonObj.mopEquiv_functor_obj_X_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ΄_unmop_app, CategoryTheory.unmop_rightUnitor, mopFunctor_ΞΌ, unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj_mop, CategoryTheory.rightDualFunctor_obj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_obj_unmop_obj, mopMopEquivalence_unitIso_inv_app_unmop_unmop, CategoryTheory.unmop_tensorHom, mopMopEquivalenceInverseMonoidal_Ξ΄_unmop_unmop, CategoryTheory.mop_inv_leftUnitor, unmopFunctor_ΞΌ, tensorRightMopIso_inv_app_unmop, MonObj.unmopMonObj_mul, mopMopEquivalenceFunctorMonoidal_Ξ΄, CategoryTheory.mop_inv_rightUnitor, CategoryTheory.mop_leftUnitor, CategoryTheory.unmop_inv_rightUnitor, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj, mopMopEquivalenceFunctorMonoidal_Ξ·, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj_mop, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom_mop_mop, mop_hom_braiding, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomRight, CategoryTheory.unmop_tensorObj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, unmop_inv_braiding, MonObj.mopMonObj_one_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionRight_mop, mopEquiv_inverse, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomRight, CategoryTheory.unmop_whiskerRight, MonObj.mopEquiv_inverse_obj_mon_one, tensorLeftIso_hom_app_unmop, mop_braiding, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, unmopEquiv_counitIso_inv_app, CategoryTheory.unmop_associator, unmopEquiv_functor_map, tensorRightMopIso_hom_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_obj_unmop_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionAssocIso, CategoryTheory.mop_hom_associator, mopMopEquivalence_inverse_obj_unmop_unmop, CategoryTheory.instIsMonoidalMonoidalOppositeMopMopEquivalence, unmopFunctor_Ξ·, MonObj.mopEquiv_unitIso_inv_app_hom, unmopFunctor_Ξ΅, Quiver.Hom.unmop_inj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, CategoryTheory.unmop_whiskerLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ·_unmop_app, tensorRightUnmopIso_hom_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomRight, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ΅_unmop_app, tensorLeftMopIso_inv_app_unmop, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionRight_mop, CategoryTheory.unmop_hom_leftUnitor, MonObj.mopMonObj_mul_unmop, mopFunctor_Ξ΄, CategoryTheory.IsIso.instMonoidalOppositeMop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso_mop_mop, tensorLeftIso_inv_app_unmop, tensorIso_inv_app_unmop, mopMopEquivalence_counitIso_hom_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHom, unmop_braiding, CategoryTheory.mop_whiskerRight, CategoryTheory.mop_tensorUnit, mopEquiv_functor, mopMopEquivalenceInverseMonoidal_ΞΌ_unmop_unmop, mopMopEquivalenceInverseMonoidal_Ξ·_unmop_unmop, CategoryTheory.mop_tensorHom, CategoryTheory.mop_id_unmop, unmopEquiv_functor_obj, CategoryTheory.unmop_id_mop, mopEquiv_counitIso, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionUnitIso, MonObj.mopEquiv_inverse_obj_mon_mul
mopEquiv πŸ“–CompOp
10 mathmath: MonObj.mopEquivCompForgetIso_hom_app_unmop, mopEquiv_unitIso, unmopEquiv_unitIso_inv_app_unmop, unmopEquiv_counitIso_hom_app, MonObj.mopEquivCompForgetIso_inv_app_unmop, unmopEquiv_unitIso_hom_app_unmop, mopEquiv_inverse, unmopEquiv_counitIso_inv_app, mopEquiv_functor, mopEquiv_counitIso
mopMopEquivalence πŸ“–CompOp
17 mathmath: mopMopEquivalence_functor_obj, mopMopEquivalenceInverseMonoidal_Ξ΅_unmop_unmop, mopMopEquivalence_unitIso_hom_app_unmop_unmop, mopMopEquivalence_inverse_map_unmop_unmop, mopMopEquivalenceFunctorMonoidal_ΞΌ, mopMopEquivalenceFunctorMonoidal_Ξ΅, mopMopEquivalence_functor_map, mopMopEquivalence_counitIso_inv_app, mopMopEquivalence_unitIso_inv_app_unmop_unmop, mopMopEquivalenceInverseMonoidal_Ξ΄_unmop_unmop, mopMopEquivalenceFunctorMonoidal_Ξ΄, mopMopEquivalenceFunctorMonoidal_Ξ·, mopMopEquivalence_inverse_obj_unmop_unmop, CategoryTheory.instIsMonoidalMonoidalOppositeMopMopEquivalence, mopMopEquivalence_counitIso_hom_app, mopMopEquivalenceInverseMonoidal_ΞΌ_unmop_unmop, mopMopEquivalenceInverseMonoidal_Ξ·_unmop_unmop
mopMopEquivalenceFunctorMonoidal πŸ“–CompOp
5 mathmath: mopMopEquivalenceFunctorMonoidal_ΞΌ, mopMopEquivalenceFunctorMonoidal_Ξ΅, mopMopEquivalenceFunctorMonoidal_Ξ΄, mopMopEquivalenceFunctorMonoidal_Ξ·, CategoryTheory.instIsMonoidalMonoidalOppositeMopMopEquivalence
mopMopEquivalenceInverseMonoidal πŸ“–CompOp
5 mathmath: mopMopEquivalenceInverseMonoidal_Ξ΅_unmop_unmop, mopMopEquivalenceInverseMonoidal_Ξ΄_unmop_unmop, CategoryTheory.instIsMonoidalMonoidalOppositeMopMopEquivalence, mopMopEquivalenceInverseMonoidal_ΞΌ_unmop_unmop, mopMopEquivalenceInverseMonoidal_Ξ·_unmop_unmop
tensorIso πŸ“–CompOp
2 mathmath: tensorIso_hom_app_unmop, tensorIso_inv_app_unmop
tensorLeftIso πŸ“–CompOp
2 mathmath: tensorLeftIso_hom_app_unmop, tensorLeftIso_inv_app_unmop
tensorLeftMopIso πŸ“–CompOp
2 mathmath: tensorLeftMopIso_hom_app_unmop, tensorLeftMopIso_inv_app_unmop
tensorLeftUnmopIso πŸ“–CompOp
2 mathmath: tensorLeftUnmopIso_inv_app, tensorLeftUnmopIso_hom_app
tensorRightIso πŸ“–CompOp
2 mathmath: tensorRightIso_hom_app_unmop, tensorRightIso_inv_app_unmop
tensorRightMopIso πŸ“–CompOp
2 mathmath: tensorRightMopIso_inv_app_unmop, tensorRightMopIso_hom_app_unmop
tensorRightUnmopIso πŸ“–CompOp
2 mathmath: tensorRightUnmopIso_inv_app, tensorRightUnmopIso_hom_app
unmop πŸ“–CompOp
105 mathmath: CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, unmop_hom_braiding, unmopFunctor_Ξ΄, CategoryTheory.unmop_hom_rightUnitor, tensorLeftMopIso_hom_app_unmop, mopMopEquivalence_functor_obj, CategoryTheory.unmopFunctor_obj, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomLeft, MonObj.mopEquivCompForgetIso_hom_app_unmop, mopMopEquivalenceInverseMonoidal_Ξ΅_unmop_unmop, mop_unmop, CategoryTheory.IsIso.instUnmopOfMonoidalOpposite, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_hom_app_unmop_app, unmopEquiv_inverse_map_unmop, unmop_inj_iff, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, CategoryTheory.unmop_hom_associator, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ΞΌ_unmop_app, mopMopEquivalence_unitIso_hom_app_unmop_unmop, tensorLeftUnmopIso_inv_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomRight, unmopEquiv_inverse_obj_unmop, MonObj.mopEquiv_functor_obj_mon_one_unmop, MonObj.unmopMonObj_one, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom, tensorIso_hom_app_unmop, mopMopEquivalence_inverse_map_unmop_unmop, CategoryTheory.unmop_inv_leftUnitor, CategoryTheory.unmop_inv_associator, CategoryTheory.unmop_tensorUnit, mopMopEquivalenceFunctorMonoidal_ΞΌ, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionAssocIso, CategoryTheory.unmop_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_inv_app_unmop_app, unmopEquiv_unitIso_inv_app_unmop, CategoryTheory.unmop_leftUnitor, CategoryTheory.unmop_comp, MonObj.mopEquiv_inverse_map_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, MonObj.mopEquiv_inverse_obj_X, tensorRightUnmopIso_inv_app, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionAssocIso, MonObj.mopEquiv_functor_map_hom_unmop, tensorLeftUnmopIso_hom_app, mopMopEquivalence_functor_map, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionObj, Quiver.Hom.mop_unmop, tensorRightIso_hom_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_map_unmop_app, tensorRightIso_inv_app_unmop, MonObj.mopEquiv_functor_obj_X_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ΄_unmop_app, CategoryTheory.unmop_rightUnitor, unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_obj_unmop_obj, mopMopEquivalence_unitIso_inv_app_unmop_unmop, CategoryTheory.unmop_tensorHom, mopMopEquivalenceInverseMonoidal_Ξ΄_unmop_unmop, unmopFunctor_ΞΌ, tensorRightMopIso_inv_app_unmop, MonObj.unmopMonObj_mul, mopMopEquivalenceFunctorMonoidal_Ξ΄, CategoryTheory.unmop_inv_rightUnitor, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionObj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomRight, CategoryTheory.unmop_tensorObj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, unmop_inv_braiding, unmop_mop, MonObj.mopMonObj_one_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, CategoryTheory.unmop_whiskerRight, MonObj.mopEquiv_inverse_obj_mon_one, tensorLeftIso_hom_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, CategoryTheory.unmop_associator, tensorRightMopIso_hom_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_obj_unmop_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionObj, mopMopEquivalence_inverse_obj_unmop_unmop, Quiver.Hom.unmop_inj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, CategoryTheory.unmop_whiskerLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ·_unmop_app, tensorRightUnmopIso_hom_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_Ξ΅_unmop_app, tensorLeftMopIso_inv_app_unmop, CategoryTheory.unmop_hom_leftUnitor, MonObj.mopMonObj_mul_unmop, unmop_injective, tensorLeftIso_inv_app_unmop, tensorIso_inv_app_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHom, unmop_braiding, mopMopEquivalenceInverseMonoidal_ΞΌ_unmop_unmop, mopMopEquivalenceInverseMonoidal_Ξ·_unmop_unmop, CategoryTheory.mop_id_unmop, unmopEquiv_functor_obj, MonObj.unmop_isMonHom, MonObj.mopEquiv_inverse_obj_mon_mul
unmopEquiv πŸ“–CompOp
13 mathmath: unmopEquiv_inverse_map_unmop, mopMopEquivalence_unitIso_hom_app_unmop_unmop, unmopEquiv_inverse_obj_unmop, mopMopEquivalence_inverse_map_unmop_unmop, unmopEquiv_unitIso_inv_app_unmop, unmopEquiv_counitIso_hom_app, mopMopEquivalence_counitIso_inv_app, unmopEquiv_unitIso_hom_app_unmop, mopMopEquivalence_unitIso_inv_app_unmop_unmop, unmopEquiv_counitIso_inv_app, unmopEquiv_functor_map, mopMopEquivalence_counitIso_hom_app, unmopEquiv_functor_obj
Β«term_α΄Ήα΅’α΅–Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext πŸ“–β€”Quiver.Hom.unmopβ€”β€”β€”
mopEquiv_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
mopEquiv
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.mopFunctor
β€”β€”
mopEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
mopEquiv
CategoryTheory.mopFunctor
β€”β€”
mopEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
mopEquiv
CategoryTheory.unmopFunctor
β€”β€”
mopEquiv_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
mopEquiv
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
β€”β€”
mopMopEquivalenceFunctorMonoidal_Ξ΄ πŸ“–mathematicalβ€”CategoryTheory.Functor.OplaxMonoidal.Ξ΄
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.monoidalCategoryMop
CategoryTheory.Equivalence.functor
mopMopEquivalence
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
mopMopEquivalenceFunctorMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
unmop
β€”β€”
mopMopEquivalenceFunctorMonoidal_Ξ΅ πŸ“–mathematicalβ€”CategoryTheory.Functor.LaxMonoidal.Ξ΅
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.monoidalCategoryMop
CategoryTheory.Equivalence.functor
mopMopEquivalence
CategoryTheory.Functor.Monoidal.toLaxMonoidal
mopMopEquivalenceFunctorMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
mopMopEquivalenceFunctorMonoidal_Ξ· πŸ“–mathematicalβ€”CategoryTheory.Functor.OplaxMonoidal.Ξ·
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.monoidalCategoryMop
CategoryTheory.Equivalence.functor
mopMopEquivalence
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
mopMopEquivalenceFunctorMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
mopMopEquivalenceFunctorMonoidal_ΞΌ πŸ“–mathematicalβ€”CategoryTheory.Functor.LaxMonoidal.ΞΌ
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.monoidalCategoryMop
CategoryTheory.Equivalence.functor
mopMopEquivalence
CategoryTheory.Functor.Monoidal.toLaxMonoidal
mopMopEquivalenceFunctorMonoidal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
unmop
β€”β€”
mopMopEquivalenceInverseMonoidal_Ξ΄_unmop_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalOpposite
CategoryTheory.Functor.obj
monoidalOppositeCategory
CategoryTheory.Equivalence.inverse
mopMopEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.Ξ΄
CategoryTheory.monoidalCategoryMop
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
mopMopEquivalenceInverseMonoidal
CategoryTheory.CategoryStruct.id
β€”β€”
mopMopEquivalenceInverseMonoidal_Ξ΅_unmop_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalOpposite
CategoryTheory.MonoidalCategoryStruct.tensorUnit
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.monoidalCategoryMop
CategoryTheory.Functor.LaxMonoidal.Ξ΅
CategoryTheory.Equivalence.inverse
mopMopEquivalence
CategoryTheory.Functor.Monoidal.toLaxMonoidal
mopMopEquivalenceInverseMonoidal
CategoryTheory.CategoryStruct.id
β€”β€”
mopMopEquivalenceInverseMonoidal_Ξ·_unmop_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalOpposite
CategoryTheory.Functor.obj
monoidalOppositeCategory
CategoryTheory.Equivalence.inverse
mopMopEquivalence
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.OplaxMonoidal.Ξ·
CategoryTheory.monoidalCategoryMop
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
mopMopEquivalenceInverseMonoidal
CategoryTheory.CategoryStruct.id
β€”β€”
mopMopEquivalenceInverseMonoidal_ΞΌ_unmop_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalOpposite
CategoryTheory.MonoidalCategoryStruct.tensorObj
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.monoidalCategoryMop
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.inverse
mopMopEquivalence
CategoryTheory.Functor.LaxMonoidal.ΞΌ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
mopMopEquivalenceInverseMonoidal
CategoryTheory.CategoryStruct.id
β€”β€”
mopMopEquivalence_counitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.inverse
unmopEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
mopMopEquivalence
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Category.comp_id
mopMopEquivalence_counitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.inverse
unmopEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
mopMopEquivalence
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Category.comp_id
mopMopEquivalence_functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.functor
mopMopEquivalence
Quiver.Hom.unmop
unmop
β€”β€”
mopMopEquivalence_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.functor
mopMopEquivalence
unmop
β€”β€”
mopMopEquivalence_inverse_map_unmop_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.inverse
unmopEquiv
CategoryTheory.Functor.map
mopMopEquivalence
β€”β€”
mopMopEquivalence_inverse_obj_unmop_unmop πŸ“–mathematicalβ€”unmop
CategoryTheory.MonoidalOpposite
CategoryTheory.Functor.obj
monoidalOppositeCategory
CategoryTheory.Equivalence.inverse
mopMopEquivalence
β€”β€”
mopMopEquivalence_unitIso_hom_app_unmop_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalOpposite
CategoryTheory.Functor.obj
monoidalOppositeCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
unmopEquiv
CategoryTheory.Equivalence.inverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
mopMopEquivalence
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mopMopEquivalence_unitIso_inv_app_unmop_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalOpposite
CategoryTheory.Functor.obj
monoidalOppositeCategory
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
unmopEquiv
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
mopMopEquivalence
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
mop_inj_iff πŸ“–mathematicalβ€”mopβ€”mop_injective
mop_injective πŸ“–mathematicalβ€”CategoryTheory.MonoidalOpposite
mop
β€”β€”
mop_unmop πŸ“–mathematicalβ€”mop
unmop
β€”β€”
tensorIso_hom_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
CategoryTheory.uniformProd
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.monoidalCategoryMop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.unmopFunctor
CategoryTheory.Prod.swap
CategoryTheory.mopFunctor
tensorIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorIso_inv_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
CategoryTheory.uniformProd
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensor
CategoryTheory.monoidalCategoryMop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.unmopFunctor
CategoryTheory.Prod.swap
CategoryTheory.mopFunctor
tensorIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorLeftIso_hom_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.monoidalCategoryMop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.mopFunctor
tensorLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorLeftIso_inv_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.monoidalCategoryMop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.mopFunctor
tensorLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorLeftMopIso_hom_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.monoidalCategoryMop
mop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.mopFunctor
tensorLeftMopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorLeftMopIso_inv_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.monoidalCategoryMop
mop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.mopFunctor
tensorLeftMopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorLeftUnmopIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.tensorLeft
unmop
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.mopFunctor
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.monoidalCategoryMop
CategoryTheory.unmopFunctor
tensorLeftUnmopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorLeftUnmopIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.tensorLeft
unmop
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.mopFunctor
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.monoidalCategoryMop
CategoryTheory.unmopFunctor
tensorLeftUnmopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorRightIso_hom_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.monoidalCategoryMop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.mopFunctor
tensorRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorRightIso_inv_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.monoidalCategoryMop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.mopFunctor
tensorRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorRightMopIso_hom_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.monoidalCategoryMop
mop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.mopFunctor
tensorRightMopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorRightMopIso_inv_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.monoidalCategoryMop
mop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.mopFunctor
tensorRightMopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorRightUnmopIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.tensorRight
unmop
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.mopFunctor
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.monoidalCategoryMop
CategoryTheory.unmopFunctor
tensorRightUnmopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
tensorRightUnmopIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategory.tensorRight
unmop
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.mopFunctor
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.monoidalCategoryMop
CategoryTheory.unmopFunctor
tensorRightUnmopIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
β€”β€”
unmopEquiv_counitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.functor
mopEquiv
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
unmopEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unmopEquiv_counitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.functor
mopEquiv
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
unmopEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unmopEquiv_functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.functor
unmopEquiv
Quiver.Hom.unmop
β€”β€”
unmopEquiv_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.functor
unmopEquiv
unmop
β€”β€”
unmopEquiv_inverse_map_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
mop
CategoryTheory.Functor.map
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.inverse
unmopEquiv
β€”β€”
unmopEquiv_inverse_obj_unmop πŸ“–mathematicalβ€”unmop
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Equivalence.inverse
unmopEquiv
β€”β€”
unmopEquiv_unitIso_hom_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.mopFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Equivalence.inverse
mopEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
unmopEquiv
CategoryTheory.CategoryStruct.id
β€”β€”
unmopEquiv_unitIso_inv_app_unmop πŸ“–mathematicalβ€”unmop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalOpposite
monoidalOppositeCategory
CategoryTheory.Functor.comp
CategoryTheory.unmopFunctor
CategoryTheory.mopFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.inverse
mopEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
unmopEquiv
CategoryTheory.CategoryStruct.id
β€”β€”
unmop_inj_iff πŸ“–mathematicalβ€”unmopβ€”unmop_injective
unmop_injective πŸ“–mathematicalβ€”CategoryTheory.MonoidalOpposite
unmop
β€”β€”
unmop_mop πŸ“–mathematicalβ€”unmop
mop
β€”β€”

Quiver.Hom

Definitions

NameCategoryTheorems
mop πŸ“–CompOp
32 mathmath: CategoryTheory.mop_hom_leftUnitor, CategoryTheory.mop_comp, CategoryTheory.mop_hom_rightUnitor, CategoryTheory.mop_inv_associator, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHom, CategoryTheory.mopFunctor_map, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHom, MonObj.mop_isMonHom, mop_inj, CategoryTheory.mop_whiskerLeft, CategoryTheory.mop_id, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight_mop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft_mop, CategoryTheory.MonoidalOpposite.mop_inv_braiding, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom_mop_mop, unmop_mop, CategoryTheory.leftDualFunctor_map, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.rightDualFunctor_map, mop_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfMonoidalOppositeRightAction_actionHomLeft, CategoryTheory.mop_inv_leftUnitor, CategoryTheory.mop_inv_rightUnitor, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom_mop_mop, CategoryTheory.MonoidalOpposite.mop_hom_braiding, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfMonoidalOppositeLeftAction_actionHomRight, CategoryTheory.mop_hom_associator, CategoryTheory.IsIso.instMonoidalOppositeMop, CategoryTheory.mop_whiskerRight, CategoryTheory.mop_tensorHom, CategoryTheory.mop_id_unmop
unmop πŸ“–CompOp
40 mathmath: CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHomLeft, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_hom, CategoryTheory.MonoidalOpposite.unmop_hom_braiding, CategoryTheory.unmop_hom_rightUnitor, CategoryTheory.unmopFunctor_map, CategoryTheory.IsIso.instUnmopOfMonoidalOpposite, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHomLeft, CategoryTheory.unmop_hom_associator, MonObj.unmopMonObj_one, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHom, CategoryTheory.unmop_inv_leftUnitor, CategoryTheory.unmop_inv_associator, CategoryTheory.unmop_id, CategoryTheory.unmop_comp, MonObj.mopEquiv_inverse_map_hom, CategoryTheory.MonoidalCategory.MonoidalRightAction.monoidalOppositeRightAction_actionHomRight, unmop_mop, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.MonoidalOpposite.mopMopEquivalence_functor_map, mop_unmop, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop_map_unmop_app, CategoryTheory.unmop_tensorHom, MonObj.unmopMonObj_mul, CategoryTheory.unmop_inv_rightUnitor, CategoryTheory.MonoidalCategory.MonoidalLeftAction.monoidalOppositeLeftAction_actionHom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.MonoidalOpposite.unmop_inv_braiding, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_hom, CategoryTheory.unmop_whiskerRight, MonObj.mopEquiv_inverse_obj_mon_one, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionUnitIso_inv, CategoryTheory.MonoidalOpposite.unmopEquiv_functor_map, unmop_inj, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionAssocIso_inv, CategoryTheory.unmop_whiskerLeft, CategoryTheory.unmop_hom_leftUnitor, CategoryTheory.MonoidalCategory.MonoidalLeftAction.actionOfMonoidalFunctorToEndofunctorMop_actionHom, CategoryTheory.unmop_id_mop, MonObj.unmop_isMonHom, MonObj.mopEquiv_inverse_obj_mon_mul

Theorems

NameKindAssumesProvesValidatesDepends On
mop_inj πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalOpposite
CategoryTheory.MonoidalOpposite.monoidalOppositeCategory
CategoryTheory.MonoidalOpposite.mop
mop
β€”β€”
mop_unmop πŸ“–mathematicalβ€”mop
CategoryTheory.MonoidalOpposite.unmop
unmop
β€”β€”
unmop_inj πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.MonoidalOpposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalOpposite.monoidalOppositeCategory
CategoryTheory.MonoidalOpposite.unmop
unmop
β€”β€”
unmop_mop πŸ“–mathematicalβ€”unmop
CategoryTheory.MonoidalOpposite.mop
mop
β€”β€”

---

← Back to Index