| Name | Category | Theorems |
ExactPairing π | CompData | β |
HasLeftDual π | CompData | β |
HasRightDual π | CompData | β |
LeftRigidCategory π | CompData | β |
RightRigidCategory π | CompData | β |
RigidCategory π | CompData | β |
closedOfHasLeftDual π | CompOp | β |
exactPairingCongr π | CompOp | β |
exactPairingCongrLeft π | CompOp | β |
exactPairingCongrRight π | CompOp | β |
exactPairingUnit π | CompOp | β |
hasLeftDualRightDual π | CompOp | 1 mathmath: leftDual_rightDual
|
hasLeftDualUnit π | CompOp | β |
hasRightDualLeftDual π | CompOp | 1 mathmath: rightDual_leftDual
|
hasRightDualUnit π | CompOp | β |
leftAdjointMate π | CompOp | 12 mathmath: coevaluation_comp_leftAdjointMate_assoc, leftAdjointMate_id, comp_leftAdjointMate_assoc, tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, leftDualFunctor_map, leftAdjointMate_comp_evaluation, leftAdjointMate_comp_evaluation_assoc, coevaluation_comp_leftAdjointMate, comp_leftAdjointMate, leftAdjointMate_comp, Action.leftDual_Ο, tensorLeftHomEquiv_whiskerRight_comp_evaluation
|
leftDualIso π | CompOp | 1 mathmath: leftDualIso_id
|
monoidalClosedOfLeftRigidCategory π | CompOp | β |
rightAdjointMate π | CompOp | 12 mathmath: Action.rightDual_Ο, tensorRightHomEquiv_whiskerLeft_comp_evaluation, rightAdjointMate_comp_evaluation_assoc, comp_rightAdjointMate, comp_rightAdjointMate_assoc, rightDualFunctor_map, coevaluation_comp_rightAdjointMate, rightAdjointMate_id, tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, rightAdjointMate_comp, rightAdjointMate_comp_evaluation, coevaluation_comp_rightAdjointMate_assoc
|
rightDualIso π | CompOp | 1 mathmath: rightDualIso_id
|
tensorLeftAdjunction π | CompOp | β |
tensorLeftHomEquiv π | CompOp | 7 mathmath: tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft, tensorLeftHomEquiv_naturality, tensorLeftHomEquiv_tensor, tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, tensorLeftHomEquiv_whiskerLeft_comp_evaluation, tensorLeftHomEquiv_whiskerRight_comp_evaluation, tensorLeftHomEquiv_symm_naturality
|
tensorRightAdjunction π | CompOp | β |
tensorRightHomEquiv π | CompOp | 7 mathmath: tensorRightHomEquiv_symm_naturality, tensorRightHomEquiv_whiskerLeft_comp_evaluation, tensorRightHomEquiv_whiskerRight_comp_evaluation, tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight, tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, tensorRightHomEquiv_naturality, tensorRightHomEquiv_tensor
|
Β«term_α_1Β» π | CompOp | β |
Β«term_αΒ» π | CompOp | β |
Β«termα__1Β» π | CompOp | β |
Β«termα_Β» π | CompOp | β |