Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean

Statistics

MetricCount
DefinitionsExactPairing, coevaluation, coevaluation', evaluation, evaluation', termΡ_, termη_, HasLeftDual, exact, leftDual, HasRightDual, exact, rightDual, LeftRigidCategory, leftDual, RightRigidCategory, rightDual, RigidCategory, toLeftRigidCategory, toRightRigidCategory, closedOfHasLeftDual, exactPairingCongr, exactPairingCongrLeft, exactPairingCongrRight, exactPairingUnit, hasLeftDualRightDual, hasLeftDualUnit, hasRightDualLeftDual, hasRightDualUnit, leftAdjointMate, leftDualIso, monoidalClosedOfLeftRigidCategory, rightAdjointMate, rightDualIso, tensorLeftAdjunction, tensorLeftHomEquiv, tensorRightAdjunction, tensorRightHomEquiv, «term_ᘁ_1», «term_ᘁ», «termᘁ__1», «termᘁ_»
42
Theoremscoevaluation_evaluation, coevaluation_evaluation', coevaluation_evaluation'', coevaluation_evaluation_assoc, evaluation_coevaluation, evaluation_coevaluation', evaluation_coevaluation'', evaluation_coevaluation_assoc, coevaluation_comp_leftAdjointMate, coevaluation_comp_leftAdjointMate_assoc, coevaluation_comp_rightAdjointMate, coevaluation_comp_rightAdjointMate_assoc, comp_leftAdjointMate, comp_leftAdjointMate_assoc, comp_rightAdjointMate, comp_rightAdjointMate_assoc, leftAdjointMate_comp, leftAdjointMate_comp_evaluation, leftAdjointMate_comp_evaluation_assoc, leftAdjointMate_id, leftDualIso_id, leftDual_rightDual, rightAdjointMate_comp, rightAdjointMate_comp_evaluation, rightAdjointMate_comp_evaluation_assoc, rightAdjointMate_id, rightDualIso_id, rightDual_leftDual, tensorLeftHomEquiv_naturality, tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft, tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, tensorLeftHomEquiv_symm_naturality, tensorLeftHomEquiv_tensor, tensorLeftHomEquiv_whiskerLeft_comp_evaluation, tensorLeftHomEquiv_whiskerRight_comp_evaluation, tensorRightHomEquiv_naturality, tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight, tensorRightHomEquiv_symm_naturality, tensorRightHomEquiv_tensor, tensorRightHomEquiv_whiskerLeft_comp_evaluation, tensorRightHomEquiv_whiskerRight_comp_evaluation
42
Total84

CategoryTheory

Definitions

NameCategoryTheorems
ExactPairing πŸ“–CompDataβ€”
HasLeftDual πŸ“–CompDataβ€”
HasRightDual πŸ“–CompDataβ€”
LeftRigidCategory πŸ“–CompDataβ€”
RightRigidCategory πŸ“–CompDataβ€”
RigidCategory πŸ“–CompDataβ€”
closedOfHasLeftDual πŸ“–CompOpβ€”
exactPairingCongr πŸ“–CompOpβ€”
exactPairingCongrLeft πŸ“–CompOpβ€”
exactPairingCongrRight πŸ“–CompOpβ€”
exactPairingUnit πŸ“–CompOpβ€”
hasLeftDualRightDual πŸ“–CompOp
1 mathmath: leftDual_rightDual
hasLeftDualUnit πŸ“–CompOpβ€”
hasRightDualLeftDual πŸ“–CompOp
1 mathmath: rightDual_leftDual
hasRightDualUnit πŸ“–CompOpβ€”
leftAdjointMate πŸ“–CompOp
12 mathmath: coevaluation_comp_leftAdjointMate_assoc, leftAdjointMate_id, comp_leftAdjointMate_assoc, tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, leftDualFunctor_map, leftAdjointMate_comp_evaluation, leftAdjointMate_comp_evaluation_assoc, coevaluation_comp_leftAdjointMate, comp_leftAdjointMate, leftAdjointMate_comp, Action.leftDual_ρ, tensorLeftHomEquiv_whiskerRight_comp_evaluation
leftDualIso πŸ“–CompOp
1 mathmath: leftDualIso_id
monoidalClosedOfLeftRigidCategory πŸ“–CompOpβ€”
rightAdjointMate πŸ“–CompOp
12 mathmath: Action.rightDual_ρ, tensorRightHomEquiv_whiskerLeft_comp_evaluation, rightAdjointMate_comp_evaluation_assoc, comp_rightAdjointMate, comp_rightAdjointMate_assoc, rightDualFunctor_map, coevaluation_comp_rightAdjointMate, rightAdjointMate_id, tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, rightAdjointMate_comp, rightAdjointMate_comp_evaluation, coevaluation_comp_rightAdjointMate_assoc
rightDualIso πŸ“–CompOp
1 mathmath: rightDualIso_id
tensorLeftAdjunction πŸ“–CompOpβ€”
tensorLeftHomEquiv πŸ“–CompOp
7 mathmath: tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft, tensorLeftHomEquiv_naturality, tensorLeftHomEquiv_tensor, tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, tensorLeftHomEquiv_whiskerLeft_comp_evaluation, tensorLeftHomEquiv_whiskerRight_comp_evaluation, tensorLeftHomEquiv_symm_naturality
tensorRightAdjunction πŸ“–CompOpβ€”
tensorRightHomEquiv πŸ“–CompOp
7 mathmath: tensorRightHomEquiv_symm_naturality, tensorRightHomEquiv_whiskerLeft_comp_evaluation, tensorRightHomEquiv_whiskerRight_comp_evaluation, tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight, tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, tensorRightHomEquiv_naturality, tensorRightHomEquiv_tensor
Β«term_ᘁ_1Β» πŸ“–CompOpβ€”
Β«term_ᘁ» πŸ“–CompOpβ€”
Β«termᘁ__1Β» πŸ“–CompOpβ€”
Β«termᘁ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coevaluation_comp_leftAdjointMate πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorObj
HasLeftDual.leftDual
ExactPairing.coevaluation
HasLeftDual.exact
MonoidalCategoryStruct.whiskerRight
leftAdjointMate
MonoidalCategoryStruct.whiskerLeft
β€”Equiv.injective
tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight
tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft
coevaluation_comp_leftAdjointMate_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorObj
HasLeftDual.leftDual
ExactPairing.coevaluation
HasLeftDual.exact
MonoidalCategoryStruct.whiskerRight
leftAdjointMate
MonoidalCategoryStruct.whiskerLeft
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coevaluation_comp_leftAdjointMate
coevaluation_comp_rightAdjointMate πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorObj
HasRightDual.rightDual
ExactPairing.coevaluation
HasRightDual.exact
MonoidalCategoryStruct.whiskerLeft
rightAdjointMate
MonoidalCategoryStruct.whiskerRight
β€”Equiv.injective
tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft
tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight
coevaluation_comp_rightAdjointMate_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorObj
HasRightDual.rightDual
ExactPairing.coevaluation
HasRightDual.exact
MonoidalCategoryStruct.whiskerLeft
rightAdjointMate
MonoidalCategoryStruct.whiskerRight
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coevaluation_comp_rightAdjointMate
comp_leftAdjointMate πŸ“–mathematicalβ€”leftAdjointMate
CategoryStruct.comp
Category.toCategoryStruct
HasLeftDual.leftDual
β€”leftAdjointMate_comp
MonoidalCategory.whiskerLeft_comp
Category.assoc
MonoidalCategory.tensorHom_def
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_whisker
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerLeft_id
Mathlib.Tactic.Monoidal.evalWhiskerRight_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_leftUnitor
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_rightUnitor
MonoidalCategory.whisker_exchange
Mathlib.Tactic.Monoidal.evalWhiskerRight_id
Mathlib.Tactic.Monoidal.evalWhiskerLeft_comp
ExactPairing.coevaluation_evaluation''
comp_leftAdjointMate_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
HasLeftDual.leftDual
leftAdjointMate
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_leftAdjointMate
comp_rightAdjointMate πŸ“–mathematicalβ€”rightAdjointMate
CategoryStruct.comp
Category.toCategoryStruct
HasRightDual.rightDual
β€”rightAdjointMate_comp
MonoidalCategory.comp_whiskerRight
Category.assoc
MonoidalCategory.tensorHom_def'
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerRight_id
Mathlib.Tactic.Monoidal.evalWhiskerLeft_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_leftUnitor
Mathlib.Tactic.Monoidal.naturality_rightUnitor
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerRight
MonoidalCategory.whisker_exchange
Mathlib.Tactic.Monoidal.evalWhiskerLeft_id
Mathlib.Tactic.Monoidal.evalWhiskerRight_comp
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_whisker
ExactPairing.evaluation_coevaluation''
comp_rightAdjointMate_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
HasRightDual.rightDual
rightAdjointMate
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_rightAdjointMate
leftAdjointMate_comp πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
HasLeftDual.leftDual
leftAdjointMate
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.leftUnitor
MonoidalCategoryStruct.whiskerRight
ExactPairing.coevaluation
HasLeftDual.exact
MonoidalCategoryStruct.tensorHom
Iso.hom
MonoidalCategoryStruct.associator
MonoidalCategoryStruct.whiskerLeft
ExactPairing.evaluation
MonoidalCategoryStruct.rightUnitor
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_whisker
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerRight_id
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_leftUnitor
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_rightUnitor
MonoidalCategory.whisker_exchange
MonoidalCategory.tensorHom_def'
Mathlib.Tactic.Monoidal.evalWhiskerRight_comp
leftAdjointMate_comp_evaluation πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
HasLeftDual.leftDual
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.whiskerLeft
leftAdjointMate
ExactPairing.evaluation
HasLeftDual.exact
MonoidalCategoryStruct.whiskerRight
β€”Equiv.injective
tensorLeftHomEquiv_whiskerLeft_comp_evaluation
tensorLeftHomEquiv_whiskerRight_comp_evaluation
leftAdjointMate_comp_evaluation_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
HasLeftDual.leftDual
MonoidalCategoryStruct.whiskerLeft
leftAdjointMate
MonoidalCategoryStruct.tensorUnit
ExactPairing.evaluation
HasLeftDual.exact
MonoidalCategoryStruct.whiskerRight
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftAdjointMate_comp_evaluation
leftAdjointMate_id πŸ“–mathematicalβ€”leftAdjointMate
CategoryStruct.id
Category.toCategoryStruct
HasLeftDual.leftDual
β€”MonoidalCategory.whiskerLeft_id
MonoidalCategory.id_whiskerRight
Category.id_comp
ExactPairing.evaluation_coevaluation_assoc
Iso.inv_hom_id
Category.comp_id
leftDualIso_id πŸ“–mathematicalβ€”leftDualIso
Iso.refl
β€”Iso.ext
leftAdjointMate_id
leftDual_rightDual πŸ“–mathematicalβ€”HasLeftDual.leftDual
HasRightDual.rightDual
hasLeftDualRightDual
β€”β€”
rightAdjointMate_comp πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
HasRightDual.rightDual
rightAdjointMate
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.rightUnitor
MonoidalCategoryStruct.whiskerLeft
ExactPairing.coevaluation
HasRightDual.exact
MonoidalCategoryStruct.tensorHom
MonoidalCategoryStruct.associator
MonoidalCategoryStruct.whiskerRight
ExactPairing.evaluation
Iso.hom
MonoidalCategoryStruct.leftUnitor
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerLeft_id
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_rightUnitor
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_leftUnitor
MonoidalCategory.whisker_exchange
MonoidalCategory.tensorHom_def
Mathlib.Tactic.Monoidal.evalWhiskerLeft_comp
rightAdjointMate_comp_evaluation πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
HasRightDual.rightDual
MonoidalCategoryStruct.tensorUnit
MonoidalCategoryStruct.whiskerRight
rightAdjointMate
ExactPairing.evaluation
HasRightDual.exact
MonoidalCategoryStruct.whiskerLeft
β€”Equiv.injective
tensorRightHomEquiv_whiskerRight_comp_evaluation
tensorRightHomEquiv_whiskerLeft_comp_evaluation
rightAdjointMate_comp_evaluation_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
HasRightDual.rightDual
MonoidalCategoryStruct.whiskerRight
rightAdjointMate
MonoidalCategoryStruct.tensorUnit
ExactPairing.evaluation
HasRightDual.exact
MonoidalCategoryStruct.whiskerLeft
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightAdjointMate_comp_evaluation
rightAdjointMate_id πŸ“–mathematicalβ€”rightAdjointMate
CategoryStruct.id
Category.toCategoryStruct
HasRightDual.rightDual
β€”MonoidalCategory.id_whiskerRight
MonoidalCategory.whiskerLeft_id
Category.id_comp
ExactPairing.coevaluation_evaluation_assoc
Iso.inv_hom_id
Category.comp_id
rightDualIso_id πŸ“–mathematicalβ€”rightDualIso
Iso.refl
β€”Iso.ext
rightAdjointMate_id
rightDual_leftDual πŸ“–mathematicalβ€”HasRightDual.rightDual
HasLeftDual.leftDual
hasRightDualLeftDual
β€”β€”
tensorLeftHomEquiv_naturality πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
tensorLeftHomEquiv
CategoryStruct.comp
MonoidalCategoryStruct.whiskerLeft
β€”MonoidalCategory.whiskerLeft_comp
Category.assoc
tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorObj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
tensorLeftHomEquiv
CategoryStruct.comp
ExactPairing.coevaluation
MonoidalCategoryStruct.whiskerLeft
Iso.hom
MonoidalCategoryStruct.rightUnitor
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerLeft_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_leftUnitor
MonoidalCategory.whisker_exchange
Mathlib.Tactic.Monoidal.evalWhiskerLeft_id
ExactPairing.coevaluation_evaluation''
Mathlib.Tactic.Monoidal.naturality_rightUnitor
tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorObj
HasRightDual.rightDual
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
tensorLeftHomEquiv
HasRightDual.exact
CategoryStruct.comp
ExactPairing.coevaluation
MonoidalCategoryStruct.whiskerRight
Iso.hom
MonoidalCategoryStruct.rightUnitor
rightAdjointMate
β€”MonoidalCategory.whiskerLeft_comp
Category.assoc
Iso.hom_inv_id_assoc
tensorLeftHomEquiv_symm_naturality πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
tensorLeftHomEquiv
CategoryStruct.comp
MonoidalCategoryStruct.whiskerLeft
β€”MonoidalCategory.whiskerLeft_comp
Category.assoc
tensorLeftHomEquiv_tensor πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
tensorLeftHomEquiv
CategoryStruct.comp
MonoidalCategoryStruct.tensorHom
Iso.hom
MonoidalCategoryStruct.associator
Iso.inv
β€”MonoidalCategory.whiskerRight_tensor
Category.assoc
MonoidalCategory.tensorHom_def'
MonoidalCategory.whiskerLeft_comp
MonoidalCategory.pentagon_hom_inv_inv_inv_inv_assoc
MonoidalCategory.tensor_whiskerLeft
MonoidalCategory.comp_whiskerRight
MonoidalCategory.whisker_assoc
MonoidalCategory.leftUnitor_whiskerRight
Iso.inv_hom_id_assoc
tensorLeftHomEquiv_whiskerLeft_comp_evaluation πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
HasLeftDual.leftDual
EquivLike.toFunLike
Equiv.instEquivLike
tensorLeftHomEquiv
HasLeftDual.exact
CategoryStruct.comp
MonoidalCategoryStruct.whiskerLeft
ExactPairing.evaluation
Iso.inv
MonoidalCategoryStruct.rightUnitor
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerLeft_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_leftUnitor
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
MonoidalCategory.whisker_exchange
Mathlib.Tactic.Monoidal.evalWhiskerLeft_id
ExactPairing.evaluation_coevaluation''
Mathlib.Tactic.Monoidal.naturality_rightUnitor
tensorLeftHomEquiv_whiskerRight_comp_evaluation πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
HasLeftDual.leftDual
MonoidalCategoryStruct.tensorUnit
EquivLike.toFunLike
Equiv.instEquivLike
tensorLeftHomEquiv
HasLeftDual.exact
CategoryStruct.comp
MonoidalCategoryStruct.whiskerRight
ExactPairing.evaluation
leftAdjointMate
Iso.inv
MonoidalCategoryStruct.rightUnitor
β€”MonoidalCategory.whiskerLeft_comp
MonoidalCategory.whisker_assoc
Category.assoc
Iso.inv_hom_id_assoc
Iso.hom_inv_id
Category.comp_id
tensorRightHomEquiv_naturality πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
tensorRightHomEquiv
CategoryStruct.comp
MonoidalCategoryStruct.whiskerRight
β€”MonoidalCategory.comp_whiskerRight
Category.assoc
tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorObj
HasLeftDual.leftDual
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
tensorRightHomEquiv
HasLeftDual.exact
CategoryStruct.comp
ExactPairing.coevaluation
MonoidalCategoryStruct.whiskerLeft
Iso.hom
MonoidalCategoryStruct.leftUnitor
leftAdjointMate
β€”MonoidalCategory.comp_whiskerRight
MonoidalCategory.whisker_assoc
Category.assoc
Iso.inv_hom_id_assoc
Iso.hom_inv_id_assoc
tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorObj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
tensorRightHomEquiv
CategoryStruct.comp
ExactPairing.coevaluation
MonoidalCategoryStruct.whiskerRight
Iso.hom
MonoidalCategoryStruct.leftUnitor
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerRight_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_rightUnitor
MonoidalCategory.whisker_exchange
Mathlib.Tactic.Monoidal.evalWhiskerRight_id
ExactPairing.evaluation_coevaluation''
Mathlib.Tactic.Monoidal.naturality_leftUnitor
tensorRightHomEquiv_symm_naturality πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
tensorRightHomEquiv
CategoryStruct.comp
MonoidalCategoryStruct.whiskerRight
β€”MonoidalCategory.comp_whiskerRight
Category.assoc
tensorRightHomEquiv_tensor πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
tensorRightHomEquiv
CategoryStruct.comp
MonoidalCategoryStruct.tensorHom
Iso.inv
MonoidalCategoryStruct.associator
Iso.hom
β€”MonoidalCategory.tensor_whiskerLeft
Category.assoc
MonoidalCategory.tensorHom_def
MonoidalCategory.comp_whiskerRight
MonoidalCategory.whisker_assoc
MonoidalCategory.pentagon_inv_hom_hom_hom_hom_assoc
Iso.inv_hom_id_assoc
MonoidalCategory.whiskerRight_tensor
MonoidalCategory.whiskerLeft_comp
MonoidalCategory.whiskerLeft_rightUnitor
Iso.hom_inv_id_assoc
tensorRightHomEquiv_whiskerLeft_comp_evaluation πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
HasRightDual.rightDual
MonoidalCategoryStruct.tensorUnit
EquivLike.toFunLike
Equiv.instEquivLike
tensorRightHomEquiv
HasRightDual.exact
CategoryStruct.comp
MonoidalCategoryStruct.whiskerLeft
ExactPairing.evaluation
rightAdjointMate
Iso.inv
MonoidalCategoryStruct.leftUnitor
β€”MonoidalCategory.comp_whiskerRight
MonoidalCategory.whisker_assoc
Category.assoc
Iso.inv_hom_id_assoc
Iso.hom_inv_id
Category.comp_id
tensorRightHomEquiv_whiskerRight_comp_evaluation πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
HasRightDual.rightDual
EquivLike.toFunLike
Equiv.instEquivLike
tensorRightHomEquiv
HasRightDual.exact
CategoryStruct.comp
MonoidalCategoryStruct.whiskerRight
ExactPairing.evaluation
Iso.inv
MonoidalCategoryStruct.leftUnitor
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_monoidalComp
Mathlib.Tactic.Monoidal.evalWhiskerRight_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_rightUnitor
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerRight
MonoidalCategory.whisker_exchange
Mathlib.Tactic.Monoidal.evalWhiskerRight_id
ExactPairing.coevaluation_evaluation''
Mathlib.Tactic.Monoidal.naturality_leftUnitor

CategoryTheory.ExactPairing

Definitions

NameCategoryTheorems
coevaluation πŸ“–CompOp
16 mathmath: CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft, coevaluation_evaluation'', evaluation_coevaluation, CategoryTheory.coevaluation_comp_leftAdjointMate_assoc, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, evaluation_coevaluation'', CategoryTheory.coevaluation_comp_rightAdjointMate, evaluation_coevaluation_assoc, coevaluation_evaluation, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.coevaluation_comp_leftAdjointMate, CategoryTheory.leftAdjointMate_comp, coevaluation_evaluation_assoc, CategoryTheory.rightAdjointMate_comp, CategoryTheory.coevaluation_comp_rightAdjointMate_assoc
coevaluation' πŸ“–CompOp
2 mathmath: coevaluation_evaluation', evaluation_coevaluation'
evaluation πŸ“–CompOp
16 mathmath: coevaluation_evaluation'', evaluation_coevaluation, CategoryTheory.tensorRightHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.tensorRightHomEquiv_whiskerRight_comp_evaluation, CategoryTheory.rightAdjointMate_comp_evaluation_assoc, evaluation_coevaluation'', CategoryTheory.leftAdjointMate_comp_evaluation, evaluation_coevaluation_assoc, coevaluation_evaluation, CategoryTheory.leftAdjointMate_comp_evaluation_assoc, CategoryTheory.tensorLeftHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.leftAdjointMate_comp, CategoryTheory.tensorLeftHomEquiv_whiskerRight_comp_evaluation, coevaluation_evaluation_assoc, CategoryTheory.rightAdjointMate_comp, CategoryTheory.rightAdjointMate_comp_evaluation
evaluation' πŸ“–CompOp
2 mathmath: coevaluation_evaluation', evaluation_coevaluation'
termΞ΅_ πŸ“–CompOpβ€”
termΞ·_ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coevaluation_evaluation πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
coevaluation
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
evaluation
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.leftUnitor
β€”coevaluation_evaluation'
coevaluation_evaluation' πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
coevaluation'
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
evaluation'
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.leftUnitor
β€”β€”
coevaluation_evaluation'' πŸ“–mathematicalβ€”CategoryTheory.monoidalComp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCoherence.assoc'
CategoryTheory.MonoidalCoherence.whiskerRight
CategoryTheory.MonoidalCoherence.refl
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
coevaluation
CategoryTheory.MonoidalCategoryStruct.whiskerRight
evaluation
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCoherence.iso
CategoryTheory.MonoidalCoherence.right
CategoryTheory.MonoidalCoherence.left'
β€”CategoryTheory.MonoidalCategory.whiskerRightIso_refl
CategoryTheory.Iso.refl_trans
coevaluation_evaluation
coevaluation_evaluation_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
coevaluation
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
evaluation
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.leftUnitor
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coevaluation_evaluation
evaluation_coevaluation πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
coevaluation
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
evaluation
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
β€”evaluation_coevaluation'
evaluation_coevaluation' πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
coevaluation'
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
evaluation'
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
β€”β€”
evaluation_coevaluation'' πŸ“–mathematicalβ€”CategoryTheory.monoidalComp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCoherence.assoc
CategoryTheory.MonoidalCoherence.whiskerRight
CategoryTheory.MonoidalCoherence.refl
CategoryTheory.MonoidalCategoryStruct.whiskerRight
coevaluation
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
evaluation
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCoherence.iso
CategoryTheory.MonoidalCoherence.left
CategoryTheory.MonoidalCoherence.right'
β€”CategoryTheory.MonoidalCategory.whiskerRightIso_refl
CategoryTheory.Iso.trans_refl
CategoryTheory.Iso.refl_trans
evaluation_coevaluation
evaluation_coevaluation_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerRight
coevaluation
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
evaluation
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
evaluation_coevaluation

CategoryTheory.HasLeftDual

Definitions

NameCategoryTheorems
exact πŸ“–CompOp
8 mathmath: CategoryTheory.coevaluation_comp_leftAdjointMate_assoc, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, CategoryTheory.leftAdjointMate_comp_evaluation, CategoryTheory.leftAdjointMate_comp_evaluation_assoc, CategoryTheory.coevaluation_comp_leftAdjointMate, CategoryTheory.tensorLeftHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.leftAdjointMate_comp, CategoryTheory.tensorLeftHomEquiv_whiskerRight_comp_evaluation
leftDual πŸ“–CompOp
17 mathmath: CategoryTheory.coevaluation_comp_leftAdjointMate_assoc, CategoryTheory.leftDual_rightDual, CategoryTheory.leftDualFunctor_obj, CategoryTheory.leftAdjointMate_id, CategoryTheory.comp_leftAdjointMate_assoc, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, CategoryTheory.leftDualFunctor_map, CategoryTheory.leftAdjointMate_comp_evaluation, CategoryTheory.rightDual_leftDual, CategoryTheory.leftAdjointMate_comp_evaluation_assoc, CategoryTheory.coevaluation_comp_leftAdjointMate, CategoryTheory.comp_leftAdjointMate, CategoryTheory.tensorLeftHomEquiv_whiskerLeft_comp_evaluation, Action.leftDual_v, CategoryTheory.leftAdjointMate_comp, Action.leftDual_ρ, CategoryTheory.tensorLeftHomEquiv_whiskerRight_comp_evaluation

CategoryTheory.HasRightDual

Definitions

NameCategoryTheorems
exact πŸ“–CompOp
8 mathmath: CategoryTheory.tensorRightHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.tensorRightHomEquiv_whiskerRight_comp_evaluation, CategoryTheory.rightAdjointMate_comp_evaluation_assoc, CategoryTheory.coevaluation_comp_rightAdjointMate, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.rightAdjointMate_comp, CategoryTheory.rightAdjointMate_comp_evaluation, CategoryTheory.coevaluation_comp_rightAdjointMate_assoc
rightDual πŸ“–CompOp
17 mathmath: CategoryTheory.leftDual_rightDual, Action.rightDual_ρ, CategoryTheory.tensorRightHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.tensorRightHomEquiv_whiskerRight_comp_evaluation, CategoryTheory.rightAdjointMate_comp_evaluation_assoc, CategoryTheory.comp_rightAdjointMate, CategoryTheory.comp_rightAdjointMate_assoc, Action.rightDual_v, CategoryTheory.rightDualFunctor_map, CategoryTheory.coevaluation_comp_rightAdjointMate, CategoryTheory.rightDual_leftDual, CategoryTheory.rightAdjointMate_id, CategoryTheory.rightDualFunctor_obj, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.rightAdjointMate_comp, CategoryTheory.rightAdjointMate_comp_evaluation, CategoryTheory.coevaluation_comp_rightAdjointMate_assoc

CategoryTheory.LeftRigidCategory

Definitions

NameCategoryTheorems
leftDual πŸ“–CompOp
4 mathmath: CategoryTheory.leftDualFunctor_obj, CategoryTheory.leftDualFunctor_map, Action.leftDual_v, Action.leftDual_ρ

CategoryTheory.RightRigidCategory

Definitions

NameCategoryTheorems
rightDual πŸ“–CompOp
4 mathmath: Action.rightDual_ρ, Action.rightDual_v, CategoryTheory.rightDualFunctor_map, CategoryTheory.rightDualFunctor_obj

CategoryTheory.RigidCategory

Definitions

NameCategoryTheorems
toLeftRigidCategory πŸ“–CompOpβ€”
toRightRigidCategory πŸ“–CompOpβ€”

---

← Back to Index