| Name | Category | Theorems |
ContainsUnit 📖 | CompData | 1 mathmath: IsMonoidal.toContainsUnit
|
IsMonoidal 📖 | CompData | 1 mathmath: FGModuleCat.instIsMonoidalModuleCatIsFG
|
IsMonoidalClosed 📖 | CompData | 1 mathmath: FGModuleCat.instIsMonoidalClosedModuleCatIsFG
|
TensorLE 📖 | CompData | 1 mathmath: IsMonoidal.toTensorLE
|
fullBraidedSubcategory 📖 | CompOp | — |
fullMonoidalClosedSubcategory 📖 | CompOp | 4 mathmath: FGModuleCat.ihom_obj, ihom_obj, ihom_map, ihom_map_hom
|
fullMonoidalSubcategory 📖 | CompOp | 23 mathmath: TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, FDRep.char_tensor, TannakaDuality.FiniteGroup.forget_obj, ι_η, ι_ε, instMonoidalLinearFullSubcategory, TannakaDuality.FiniteGroup.forget_map, FGModuleCat.ihom_obj, ι_δ, ihom_obj, ihom_map, ι_μ, instMonoidalPreadditiveFullSubcategory, ιOfLE_ε, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, ιOfLE_η, ιOfLE_μ, TannakaDuality.FiniteGroup.equivHom_surjective, TannakaDuality.FiniteGroup.equivHom_injective, FDRep.dualTensorIsoLinHom_hom_hom, ιOfLE_δ, ihom_map_hom, TannakaDuality.FiniteGroup.equivHom_apply
|
fullSymmetricSubcategory 📖 | CompOp | — |
instBraidedFullSubcategoryι 📖 | CompOp | — |
instBraidedFullSubcategoryιOfLE 📖 | CompOp | — |
instMonoidalCategoryStructFullSubcategory 📖 | CompOp | 13 mathmath: rightUnitor_def, tensorUnit_obj, tensorHom_def, FGModuleCat.FGModuleCatEvaluation_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, tensorObj_obj, whiskerLeft_def, whiskerRight_def, leftUnitor_def, FGModuleCat.tensorObj_obj, FGModuleCat.tensorUnit_obj, associator_def, FGModuleCat.FGModuleCatEvaluation_apply'
|
instMonoidalFullSubcategoryιOfLE 📖 | CompOp | 4 mathmath: ιOfLE_ε, ιOfLE_η, ιOfLE_μ, ιOfLE_δ
|
monoidalι 📖 | CompOp | 4 mathmath: ι_η, ι_ε, ι_δ, ι_μ
|