Documentation Verification Report

Subcategory

📁 Source: Mathlib/CategoryTheory/Monoidal/Subcategory.lean

Statistics

MetricCount
DefinitionsContainsUnit, IsMonoidal, IsMonoidalClosed, TensorLE, fullBraidedSubcategory, fullMonoidalClosedSubcategory, fullMonoidalSubcategory, fullSymmetricSubcategory, instBraidedFullSubcategoryι, instBraidedFullSubcategoryιOfLE, instMonoidalCategoryStructFullSubcategory, instMonoidalFullSubcategoryιOfLE, monoidalι
13
Theoremsprop_unit, toContainsUnit, toTensorLE, prop_ihom, prop_tensor, associator_def, ihom_map, ihom_map_hom, ihom_obj, instMonoidalLinearFullSubcategory, instMonoidalPreadditiveFullSubcategory, leftUnitor_def, prop_ihom, prop_tensor, prop_unit, rightUnitor_def, tensorHom_def, tensorObj_obj, tensorUnit_obj, whiskerLeft_def, whiskerRight_def, ιOfLE_δ, ιOfLE_ε, ιOfLE_η, ιOfLE_μ, ι_δ, ι_ε, ι_η, ι_μ
29
Total42

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
ContainsUnit 📖CompData
1 mathmath: IsMonoidal.toContainsUnit
IsMonoidal 📖CompData
1 mathmath: FGModuleCat.instIsMonoidalModuleCatIsFG
IsMonoidalClosed 📖CompData
1 mathmath: FGModuleCat.instIsMonoidalClosedModuleCatIsFG
TensorLE 📖CompData
1 mathmath: IsMonoidal.toTensorLE
fullBraidedSubcategory 📖CompOp
fullMonoidalClosedSubcategory 📖CompOp
4 mathmath: FGModuleCat.ihom_obj, ihom_obj, ihom_map, ihom_map_hom
fullMonoidalSubcategory 📖CompOp
23 mathmath: TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, FDRep.char_tensor, TannakaDuality.FiniteGroup.forget_obj, ι_η, ι_ε, instMonoidalLinearFullSubcategory, TannakaDuality.FiniteGroup.forget_map, FGModuleCat.ihom_obj, ι_δ, ihom_obj, ihom_map, ι_μ, instMonoidalPreadditiveFullSubcategory, ιOfLE_ε, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, ιOfLE_η, ιOfLE_μ, TannakaDuality.FiniteGroup.equivHom_surjective, TannakaDuality.FiniteGroup.equivHom_injective, FDRep.dualTensorIsoLinHom_hom_hom, ιOfLE_δ, ihom_map_hom, TannakaDuality.FiniteGroup.equivHom_apply
fullSymmetricSubcategory 📖CompOp
instBraidedFullSubcategoryι 📖CompOp
instBraidedFullSubcategoryιOfLE 📖CompOp
instMonoidalCategoryStructFullSubcategory 📖CompOp
13 mathmath: rightUnitor_def, tensorUnit_obj, tensorHom_def, FGModuleCat.FGModuleCatEvaluation_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, tensorObj_obj, whiskerLeft_def, whiskerRight_def, leftUnitor_def, FGModuleCat.tensorObj_obj, FGModuleCat.tensorUnit_obj, associator_def, FGModuleCat.FGModuleCatEvaluation_apply'
instMonoidalFullSubcategoryιOfLE 📖CompOp
4 mathmath: ιOfLE_ε, ιOfLE_η, ιOfLE_μ, ιOfLE_δ
monoidalι 📖CompOp
4 mathmath: ι_η, ι_ε, ι_δ, ι_μ

Theorems

NameKindAssumesProvesValidatesDepends On
associator_def 📖mathematicalCategoryTheory.MonoidalCategoryStruct.associator
FullSubcategory
FullSubcategory.category
instMonoidalCategoryStructFullSubcategory
isoMk
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
FullSubcategory.obj
ihom_map 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
FullSubcategory
FullSubcategory.obj
CategoryTheory.Functor.obj
FullSubcategory.category
CategoryTheory.ihom
fullMonoidalSubcategory
CategoryTheory.MonoidalClosed.closed
fullMonoidalClosedSubcategory
CategoryTheory.Functor.map
ihom_map_hom
ihom_map_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
FullSubcategory
FullSubcategory.obj
CategoryTheory.Functor.obj
FullSubcategory.category
CategoryTheory.ihom
fullMonoidalSubcategory
CategoryTheory.MonoidalClosed.closed
fullMonoidalClosedSubcategory
CategoryTheory.Functor.map
ihom_obj 📖mathematicalFullSubcategory.obj
CategoryTheory.Functor.obj
FullSubcategory
FullSubcategory.category
CategoryTheory.ihom
fullMonoidalSubcategory
CategoryTheory.MonoidalClosed.closed
fullMonoidalClosedSubcategory
instMonoidalLinearFullSubcategory 📖mathematicalCategoryTheory.MonoidalLinear
Ring.toSemiring
FullSubcategory
FullSubcategory.category
CategoryTheory.Preadditive.fullSubcategory
CategoryTheory.Linear.fullSubcategory
fullMonoidalSubcategory
instMonoidalPreadditiveFullSubcategory
CategoryTheory.MonoidalLinear.ofFaithful
instMonoidalPreadditiveFullSubcategory
faithful_ι
CategoryTheory.Functor.fullSubcategoryInclusionLinear
instMonoidalPreadditiveFullSubcategory 📖mathematicalCategoryTheory.MonoidalPreadditive
FullSubcategory
FullSubcategory.category
CategoryTheory.Preadditive.fullSubcategory
fullMonoidalSubcategory
CategoryTheory.monoidalPreadditive_of_faithful
faithful_ι
CategoryTheory.Functor.fullSubcategoryInclusion_additive
leftUnitor_def 📖mathematicalCategoryTheory.MonoidalCategoryStruct.leftUnitor
FullSubcategory
FullSubcategory.category
instMonoidalCategoryStructFullSubcategory
isoMk
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
prop_ihom 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
IsMonoidalClosed.prop_ihom
prop_tensor 📖mathematicalCategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
TensorLE.prop_tensor
prop_unit 📖mathematicalCategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ContainsUnit.prop_unit
rightUnitor_def 📖mathematicalCategoryTheory.MonoidalCategoryStruct.rightUnitor
FullSubcategory
FullSubcategory.category
instMonoidalCategoryStructFullSubcategory
isoMk
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
FullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
tensorHom_def 📖mathematicalCategoryTheory.MonoidalCategoryStruct.tensorHom
FullSubcategory
FullSubcategory.category
instMonoidalCategoryStructFullSubcategory
homMk
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
FullSubcategory.obj
CategoryTheory.InducedCategory.Hom.hom
tensorObj_obj 📖mathematicalFullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
FullSubcategory
FullSubcategory.category
instMonoidalCategoryStructFullSubcategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
tensorUnit_obj 📖mathematicalFullSubcategory.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
FullSubcategory
FullSubcategory.category
instMonoidalCategoryStructFullSubcategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
whiskerLeft_def 📖mathematicalCategoryTheory.MonoidalCategoryStruct.whiskerLeft
FullSubcategory
FullSubcategory.category
instMonoidalCategoryStructFullSubcategory
homMk
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
FullSubcategory.obj
CategoryTheory.InducedCategory.Hom.hom
whiskerRight_def 📖mathematicalCategoryTheory.MonoidalCategoryStruct.whiskerRight
FullSubcategory
FullSubcategory.category
instMonoidalCategoryStructFullSubcategory
homMk
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
FullSubcategory.obj
CategoryTheory.InducedCategory.Hom.hom
ιOfLE_δ 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.Functor.OplaxMonoidal.δ
FullSubcategory
FullSubcategory.category
fullMonoidalSubcategory
ιOfLE
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalFullSubcategoryιOfLE
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ιOfLE_ε 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.Functor.LaxMonoidal.ε
FullSubcategory
FullSubcategory.category
fullMonoidalSubcategory
ιOfLE
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalFullSubcategoryιOfLE
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ιOfLE_η 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.Functor.OplaxMonoidal.η
FullSubcategory
FullSubcategory.category
fullMonoidalSubcategory
ιOfLE
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalFullSubcategoryιOfLE
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ιOfLE_μ 📖mathematicalCategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
CategoryTheory.Functor.LaxMonoidal.μ
FullSubcategory
FullSubcategory.category
fullMonoidalSubcategory
ιOfLE
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalFullSubcategoryιOfLE
CategoryTheory.CategoryStruct.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
ι_δ 📖mathematicalCategoryTheory.Functor.OplaxMonoidal.δ
FullSubcategory
FullSubcategory.category
fullMonoidalSubcategory
ι
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
monoidalι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ι_ε 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
FullSubcategory
FullSubcategory.category
fullMonoidalSubcategory
ι
CategoryTheory.Functor.Monoidal.toLaxMonoidal
monoidalι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ι_η 📖mathematicalCategoryTheory.Functor.LaxMonoidal.ε
FullSubcategory
FullSubcategory.category
fullMonoidalSubcategory
ι
CategoryTheory.Functor.Monoidal.toLaxMonoidal
monoidalι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
ι_μ 📖mathematicalCategoryTheory.Functor.LaxMonoidal.μ
FullSubcategory
FullSubcategory.category
fullMonoidalSubcategory
ι
CategoryTheory.Functor.Monoidal.toLaxMonoidal
monoidalι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj

CategoryTheory.ObjectProperty.ContainsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
prop_unit 📖mathematicalCategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct

CategoryTheory.ObjectProperty.IsMonoidal

Theorems

NameKindAssumesProvesValidatesDepends On
toContainsUnit 📖mathematicalCategoryTheory.ObjectProperty.ContainsUnit
toTensorLE 📖mathematicalCategoryTheory.ObjectProperty.TensorLE

CategoryTheory.ObjectProperty.IsMonoidalClosed

Theorems

NameKindAssumesProvesValidatesDepends On
prop_ihom 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed

CategoryTheory.ObjectProperty.TensorLE

Theorems

NameKindAssumesProvesValidatesDepends On
prop_tensor 📖mathematicalCategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct

---

← Back to Index